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Background

® Protein-protein interactions play a critical role in most
cellular processes and form the basis of biological

mechanisms.

* High-throughput experimental techniques enable the study
of protein-protein interactions at the proteome scale.

* However, high-throughput protein interaction data are often
associated with high false positive and false negative rates
® limitations of the associated experimental techniques

° dynamic nature of protein interaction maps

Computational methods

® A weight is assigned to each interaction such that the higher
the weight is, the more likely the interaction is true
® Various Information have been used
® 3D protein structures
e co-evolution
¢ co-localization
® gene fusion
e literature
* network topology

® protein domains/motifs




Methods based on network topology

® Represents PPl networks as undirected graphs, where vertices are proteins, and edges represent
interactions between proteins.

® IGI [Saito et al. 2002]
® The first one on evaluating the reliability of PPIs using solely PPI network topology
® Mainly for PPI data generated by yeast-two-hybrid experiments

® Given a protein pair (u,v), IG1 is calculated based on the number of proteins that interact with and
only with either u or v

® IG2 [Saito et al. 2002]
® Uses 5 local network motifs
® Performs better than IG1
® IRAP [Chen etal. 2005]
e the collective rcliability of the strongest alternative path between two proteins
® Expensive to compute
® CD-distance [Brun et al. 2003] and FSWeight [Chua et al. 2006]
® Based on the number of common neighbors of two proteins
® Easy to compute
. Thcy are initiall)’ proposcd for function prcdiction

® Outperforms the previous three methods on large PPI networks [Chen et al. 2006]

CD-distance

* Given a pair of proteins (u, v) in a PPl network G=(7, E)
® N,: the set of neighbors of u in G
® N,: the set of neighbors of vin G

2|NuﬂNv|

* DOV N N

¢ Consider relative intersection size of the two neighbor sets,
not absolute intersection size
e Case 1: [N,| =1, N, |= 1, [IN,AN_ [=1, CD(u,v)=1
e Case 2: |N_| =10, [N, |= 10, [N,AN, | =10, CD(u,v)=1
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FSWeight

® Try to overcome the weakness of CD-distance

2|NuﬂNv| y 2|Nuva|
|Nu|+|NuﬂNv|+/1u |Nv|+|NuﬁNv|+ﬂ,v

° FS(u,v) =

Where Xu and Kv are used to penalize those proteins with very

few neighbors
_ D INy _ L
A, = max {0, XETTI_“\M }, A, = max{0, XETTI_“\M }
® Suppose the average degree is 4, then
o Casel: [N,| =1, |N,|=1, INON, | =1, FS(u,v)=4/25=0.16

o Case2: [N | =10, |N,|=10, [N, N, |=10, FS(u,v)=1

o

Our method

e CD-distance and FSWeight are local metrics
® We use both local and global network topological metric

¢ Local metric
a variant of CD-distance
Computed iteratively
¢ Global metric
Computed using interacting protein group pairs
® These two metrics are combined to get the final score of an

interaction




Local topological metric

® A variant of CD-distance which penalizes proteins with few

neighbors

2|NuﬂNv|
|Nu|+/1u+| Nv|+ﬂ,v

| Nx | DINy
A, = max {0, XelGT'—|Nu| }, A, = max{0, X€‘|BT|—|NV| }
(same as in FSWeight)

w (u,v) =

® Iterate local topological metric
® Motivation: the weight of an interaction reflects its reliability,
so can we get better results if we use this weight to re-calculate

the score of other interactions?

©

Iterate local metric
* w,%u,v) = 1if (u,v)€G, otherwise w’(u,v)=0
| NuﬁNv|+| NuﬂNvl

| Nu | +Au+ | Nv | +Av

°w!(uy)=

D WU x)+ D Wiy, x)

° w k (u,v) — xeNunNv xeNunNv
- D WU X) + At Y WV, )+ A
xeNu xeNv
D> W (x,y)
o Ak = max {0, Xy yElev | - ZWLk_l(UyX) }
xeNu
D> wk(x,y)
[ ka = max{o’ xeV yeleV | _ zWLk_l(V, X)}
xeNv




Global topological metric

e Observation:
® if one group of proteins interact with another group of proteins, then
it is likely that the interaction between these two protein groups is
mediated by an underlying complementary binding domain/motif
pair.
® In a protein pair participates in an interacting group pair, then the

interaction between them is likely to be true

Calculating global topological
metric

® Three steps:

L Stepl: generate protein groups that have common interacting

partners

® Step 2: calculate the interacting score of the generated protein
groups

® Step 3: calculate the global topological score of a protein pair




Step 1: generate protein groups

* A protein group is considered if it

e Contains at least s proteins
® Its members have at least t common interacting partners

® The adjacency matrix of an undirected graph can be regarded
as a transaction database

® Each adjacency list is a transaction

® Each protein is an item

:>finding protein groups can be mapped to finding frequent

itemsets that contain at least s items and appear in at least ¢
transactions.

—We use a frequent itemset mining algorithrn to find qualified

protein groups
L

Va

Step 2: calculate interaction score h
of protein groups

® Let V, and V, be two protein groups generated in Step 1, the
interacting confidence score of V, and V, is defined as

(Vv = #interactions betweenViandV 2
cont(Vy, V3) = #possible protein pairs betweenViandV

* Example
e #interactions: 10
* #possible protein pairs: 12
e conf(V,, V,) = 10/12 = 0.833




Step 3: calculating global metric
score

® The global interacting score of a protein pair is computed
based on the interacting confidence score of the interacting
group pairs it participates in and the degree of its
participation

® Given a protein pair (u,v)

2| NuﬁV2|>< 2| NvnV1

w(u,v)= max{conf (V1,V2)x
o(wv) {conf (V,V2) INa[+|V2| [Ne|+|Va]

2[NuAV:2 |
® |Nu|+|Ve| isu’s participation degree in interacting protein

group pair (V,, V,)

o 2[NvaVi| g v’s participation degree in (V,, V,)
| Nv|+|V1]

||u eVyveVa}

=

Combine local metric and global
metric

® The final score of a protein pair (u,v) is defined as the sum of
its local metric score and global metric score

LGTweight(u, v) = w* (u, v) + wg(u, v)

=




Experiments

* PPI dataset: DIP yeast (dated 07-Oct-2007)
® 4932 proteins and 17491 interactions
e Core dataset: 6459 interactions
¢ Evaluation methods:
® Functional homogeneity
Use Gene Ontology (GO) annotations
® [ocalization coherence
use Gene Ontology (GO) annotations
e 5-fold cross validation

DIP core dataset

©

GO annotations

® Select only informative GO terms.

® A GO term is informative if no less than 30 proteins are
annotated with that term, and none of its descendant terms has
at least 30 proteins

® 50 molecular function terms and 110 biological process
terms

® 3251 proteins and 11229 interactions have functional

annotations.
® 42 cellular component terms

® 1615 proteins and 4246 interactions have cellular component
annotations




Functional Homogeneity

® Given a set of protein pairs, its functional homogeneity is

defined as

#protein pairs sharing same function annotation
#protein pairs that have function annotations

* Similarly, localization coherence is defined as

# protein pairs sharing same localization annotation
# protein pairs that have localization annotations

o J

e .
Experiment 1: the effect of k to
local metric
® Assessing the reliability of PPIs in DIP dataset
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The effect of k to local metric

° Predicting new PPIs
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Experiment 2: comparing different
scoring methods

® Assessing the reliability of PPIs in DIP dataset

* For global topological metric, we set s=5, t=1

LGTweight —+—

Local score (k=2) — *—
\ Local score (k=1) — & |

o Global score — < —
\ FSweight
® CD-distance —v— |
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Functional homogeneity
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Comparing different scoring

methods

° Predicting new PPIs
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Experiment 3: b-fold cross-

validation

e Use the DIP core dataset as the golden standard

* Divide the proteins in the DIP full yeast dataset into 5

disjoint groups.

e For each group of proteins

® Training data: remove the interactions between proteins in the

group, and use the remaining interactions as training data

® Testing data: all the protein pairs within this group

* Correct answer PPIs: the pairs of proteins in the group that are

in the core dataset




©

5-fold cross-validation

® Average number of proteins in 5 groups: 986
® Average number of interactions in 5 training datasets: 16723
® Average number of interactions in 5 testing datasets: 486591

o Average number of correct answer interactions: 307

Measures:

® sensitivity =TP/(TP + FN)

® specificity =TN/(TN + FP)
#negatives >> #positives, specificity is always very high
>97.8% for all scoring methods

® precision =TP/(TP + FP)

5-fold cross-validation
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Summary and Conclusion

® Assessing the reliability of PPIs
® CD-distance, FSWeight, and Local metric show similar performance
® Iterating local metric can improve the performance slightly

® Predicting new interactions
¢ CD-distance is not good at predicting new interactions
® Iterating local metric can improve the performance significantly

® CD-distance and FSWeight can also be iterated, and they
show similar improvement as local metric

® The global metric does not improve the performance much,
but if an interaction has both high local metric score and high
global metric score, then the interaction is more likely to be

true

/

Q&A

® Thank you for your attention
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Rank difference and score
difference

¢ Given an interaction (u,v), the rank difference of (u,v) at

k-th iteration is
rank_diff X(u,v) = |rank(u,v)-rank*!(u,v) |
® Given a set of interactions E, the average ranking difference

of all the interactions in E at k-th iteration is defined as

> | rank(u,v) —rank“*(u,v)|

(u,v)eE

avg_rank_diff %(E) = E|
® Similarly, we can define average score difference of all the
interactions in E at k-th iteration

>"| score*(u,v) —score ™ (u,v) |
(u,v)eE

avg_score_diff *(E) = E]

average rank difference
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