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Protein Function Prediction Approacl 7’ ﬂﬂﬂﬂﬂﬂﬂ

 Sequence alignment (e.g., BLAST)

 Generative domain modeling (e.g., HMMPFAM)
 Discriminative approaches (e.g., SVM-PAIRWISE)
 Phylogenetic profiling

e Subcellular co-localization (e.g., PROTFUN)
 Gene expression co-relation

 Protein-protein interaction
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Protein Interaction Based Approach

Neighbour counting

(Schwikowski et al, 2000)

 Rank function based on freq
in interaction partners

Chi-square (Hishigaki et al, 2001)
« Chi square statistics using

expected freq of functions in
interaction partners

Markov Random Fields (peng
et al, 2003; Letovsky et al, 2003)

« Belief propagation exploit
unannotated proteins for
prediction

Simulated Annealing vazquez et
al, 2003)

* Global optimization by
simulated annealing

 Exploit unannotated proteins
for prediction

NUS

Mational University

a of Singapore

CIUSte ring (Brun et al, 2003; Samanta et al,
2003)
* Functional distance derived
from shared interaction
partners

 Clusters based on functional
distance represent proteins
with similar functions

Functional Flow (Nabieva et al, 2004)

« Assign reliability to various
expt sources

* Function “flows” to
neighbour based on
reliability of interaction and
“potential”
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Functional Association Thru Interactishg™

« Direct functional association: Level-1 neighbour
— Interaction partners of a protein
are likely to share functions w/ it

— Proteins from the same >T\.

pathways are likely to interact o)
 Indirect functional association

— Proteins that share interaction
partners with a protein may also
likely to share functions w/ it

— Proteins that have common oS
. . . . @)
biochemical, physical properties o
and/or subcellular localization ./?\.
are likely to bind to the same O
proteins

Level-2 9eighbour
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An illustrative Case of NUS

Indirect Functional Associlation?

SH3 Proteins SH3-Binding
1024c Proteins
YirO24c .X

Yvsl67
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e Is indirect functional association plausible?
 |s it found often in real interaction data?

« Can it be used to improve protein function
prediction from protein interaction data?
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Materials

* Protein interaction data from General Repository
for Interaction Datasets (GRID)

— Data from published large-scale interaction
datasets and curated interactions from literature

— 13,830 unique and 21,839 total interactions

— Includes most interactions from the Biomolecular
Interaction Network (BIND) and the Munich
Information Center for Protein Sequences (MIPS)

* Functional annotation (FunCat 2.0) from Compre-
hensive Yeast Genome Database (CYGD) at MIPS

— 473 Functional Classes in hierarchical order
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Validation Methods

01 (250)

 [Informative Functional Classes METABOLISM
— Adopted from Zhou et al, 1999 o101 100 0102 (120]

. amino acid metabolism nitrogen and sulfur metabolism
— Select functional classes w/
01.01.03 (35 01.01.05 (65
® at |eaSt 30 mem be rs assimilation of ammogia‘)metabolism metabolism of u(rea} cycle,

i i of the glutamate group creatine and polyamines
* no child functional class w/
at IeaSt 30 members 01.01.03.01 (12) 01.01.03.02 (15)

metabolism of glutamine metabolism of glutamate

01.01.03.01.01 (6) 01.01.03.01.01 (3)
biosynthesis of degradation of
glutamine glutamine

e Leave-One-Out Cross Validation

— Each protein with annotated
function is predicted using all
other proteins in the dataset
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Freq of Indirect Functional Associat
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Over-Rep of Functions in Neighbo

* Functional Similarity:

FNF,

()= uFJ

J

« where F, is the set of
functions of protein k

* L1NL2neighbours show
greatest over-rep

L3 neighbours show little
observable over-rep
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Prediction Power By

* Remove overlaps in level-1

and level-2 neighbours to v
study predictive power of 04 4
“level-1 only” and “level-2 _
only” neighbours @
« Sensitivity vs Precision £
analysis
K 01 4

K
PR = Zi k' SN — Zi I

Z.K m; ﬂ ﬂ

* n,is no. of fn of protein i

* m, is no. of fn predicted for
protein i

* k; is no. of fn predicted
correctly for protein i

=

=
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Majority Voting ==

Precision V5 Recall

0.3 +

0.2 +

A S1TN 52
o 52 - 51
& o 51 - 52

0 0.2 0.4 0.6 0.8 1

Recall

“level-2 only” neighbours
performs better

L1 N L2 neighbours has
greatest prediction power



Functional Similarity Estimate: NHé

Czekanowski-Dice Distance
 Functional distance between two proteins @uneta, 200

IN,AN, |
N, UN,[+|N, AN,

D(u,v)=

* N, is the set of interacting partners of k ‘
« X AY is symmetric diff betw two sets X and Y
* Greater weight given to similarity

= Similarity can be defined as

2X
2X+(Y +2)
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S(u,v)=1-D(u,v) =




Functional Similarity Estimate: NUS
FS-Weighted Measure

 FS-weighted measure

2N, NN, 2N, NN,
N, —N,|+2N, "N, \N —N,|+2N, "N,

S(u,v)=

* N, is the set of interacting partners of k
* Greater weight given to similarity

— Rewriting this as

S(u,v): 2X 2X

X
2X+Y 2X+7
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Correlation w/ Functional Similarit

« Correlation betw functional similarity & estimates

Meighbours [CD-Distance [F5-Weight

51 D 471810 0. 408745 I
S 0. 224705 . 2985843 l
51 52 0. 224581 0.29629 l

 Equiv measure slightly better in correlation w/
similarity for L1 & L2 neighbours

Workshop on BioAlgorithms, July 2006



Mational University
of Singapore

NUS
Reliability of Expt Sources

 Diff Expt Sources have diff | source Reliability
I’e|labl|,tles o Affinity Chromatography 0.823077
— Assign reliability to an — N—
interaction based on its Affinity Precipitation 0.455904
eXPt SOUICES (nabieva et al, 2004) Biochemical Assay 0.666667
* Reliability betw u and v Dosage Lethality 05
computed by:
Purified Complex 0.891473
- 1 | I (1 Reconstituted Complex 0.5
ek, , Synthetic Lethality 0.37386
° r;is rellablllty of expt Svnthetic R 1
source i, ynthetic Rescue
* E,, is the set of expt Two Hybrid 0.265407
sources in which

interaction betw u and v is
observed
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Functional Similarity Estimate: NUS

FS-Weighted Measure with Rellablllty

« Take reliability into consideration when
computing FS-weighted measure:

2 ZUWVW 2 UWVW

N mN Hal\'H

PRORERS ) 0TI oA . e Th

e(N, M WNmN NmN NmN

S (u,v)=
|

* N, is the set of interacting partners of k
* 1, is reliability weight of interaction betw u and v

= Rewriting
2X 2X

S(u,v)= X
2X+Y 2X+7




Integrating Reliability

Mational University
of Singapore

N US
9%

 Equiv measure shows improved correlation w/
functional similarity when reliability of
interactions is considered:

[Meighbours

CD-Distance

F5S-Weight

FS-Weight B

0471810
0. 224705
0. 224581

0. 408745
) 208543
0.29629

0.532596
0.373317
0.363023
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Improvement to
Prediction Power by Majority Voting

0.5
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Improvement to
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Over-Rep of Functions in Neighbours

& O
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Use L1 & L2 Neighbours for Predict

 FS-weighted Average

f(u)=

11,
z|

Al T+ D

veN

(

Srr(UV)S(V, X)+ > Spp (U, w)5(w, x)

weN,

r... is fraction of all interaction pairs sharing function

A is weight of contribution of background freq
d(k, x) = 1 if k has function x, 0 otherwise

N, is the set of interacting partners of k

n, is freq of function x in the dataset

Z is sum of all weights

Z =1+ | S (u,v)+ > S (u,w)

veN, weN,

J
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Performance of FS-Weighted Averagi
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e LOOCV comparison with Neighbour Counting,
Chi-Square, PRODISTIN
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1

Inform ative FCs
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Performance of FS-Weighted Avera g

 Dataset from Deng et al, 2003

— Gene Ontology (GO) Annotations

— MIPS interaction dataset

« Comparison w/ Neighbour Counting, Chi-Square,
PRODISTIN, Markov Random Field, FunctionalFlow
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Performance of FS-Weighted Averagiig

e Correct Predictions made on at least 1 function
vs Number of predictions made per protein

Correct Predictions Correct Predictions Correct Predictictions
vs Predictions Made - Cellular Role vs Predictions Made - SubCellular Location vs Predictions Made - Biochemical Function
1 1 1
0.9 0.9 0.9
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. . BE & NUS
Freqg of Indirect Functional = 9g)ue
Association In Other Genomes
Genome Annotation | 5,-5; 5:-5; 5,15, S,US,
5. cerevisiae MIPS 0.007193 0.226574 0463960 0.706872
D). melanogaster GO 0.00BE01 0168622 0. 138138 0313561
C. elagans GO 0007193 0051237 0061080 0.119510
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Effectiveness of FS Weighted NUS
Averaging in Other Genomes

Precision VS Recall Fly GO Precision VS Recall Worm GO
1 1
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Conclusions

* Indirect functional association is plausible
e |t is found often in real interaction data

e |t can be used to improve protein function
prediction from protein interaction data

|t should be possible to incorporate interaction
networks extracted by literature in the inference
process within our framework for good benefit
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