Protein Function Prediction By Information Fusion

Limsoon Wong (joint work w/ Hon Nian Chua & Wing Kin Sung)

Protein Function Prediction Approaches

- Sequence alignment (e.g., BLAST)
- Generative domain modeling (e.g., HMMPFAM)
- Discriminative approaches (e.g., SVM-PAIRWISE)
- Phylogenetic profiling
- Subcellular co-localization (e.g., PROTFUN)
- Gene expression co-relation
- Protein-protein interaction
- Information fusion, ...

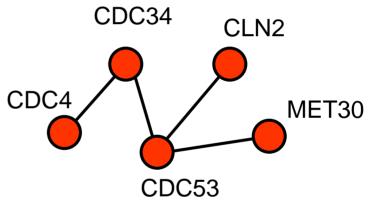
Information Fusion

- Markov Random Fields (Deng et al., *JCB*, 2004)
 - Maximum Likelihood
 - Model data sources as binary relation betw proteins
- Kernel Fusion (Lanckriet et al., *PSB*, 2004)
 - Discriminative approach
 - Models each data source w/ diff feature vectors
 - Weighted linear combination of kernels via semidefinite programming

Difficulties w/ Information Fusion

- Differences in nature
 - E.g., sequence homology vs PPI are very different relationships
- Differences in reliability
 - E.g., noisy datasets such as Y2H PPI and gene expression
- Differences in scoring metrices
 - E.g., E-Score from BLAST vs Pearson correlation between expression profiles

Motivation


• Problems:

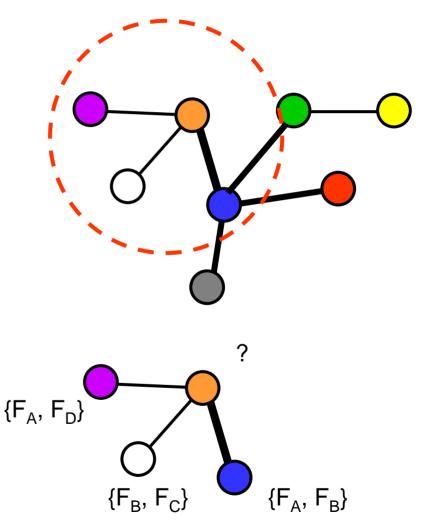
- Complex models such as MRF and Kernel Fusion are computationally expensive
- Difficult or not possible to identify contributing sources in a prediction
- Unified scoring of multiple sources has potential (Lee et al., *Science*, 2004)
 - Simple scoring using Log Likelihood
 - Identified many functional clusters
- ⇒ A simple, flexible, and effective way to integrate data sources that reports contributing sources in predictions to allow users to exercise judgment

Strategy – Step 1

- Model a data source as undirected graph G = (V,E)
 - V is a set of vertices;
 each vertex reps a protein

 E is a set of edges; each edge (u, v) reps a relationship (e.g. seq similarity, interaction) betw proteins u and v

Strategy – Step 2


• Combine graphs from different data sources to form a larger graph

Copyright © 2006 by Hon Nian Chua & Limsoon Wong

Strategy – Step 3

- Estimate edge confidence from contributing data sources
- Predict function by observing which functions occur frequently in the highconfidence neighbours

Unified Confidence Evaluation

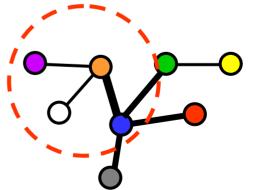
- Subdivide each data source into subtypes to improve precision (e.g., expt sources, sub-ranges of existing scores like E-scores)
- Estimate confidence of subtype k for sharing function f by:

$$p(k,f) = \frac{\sum_{(u,v)\in E_k, f} S_f(u,v)}{\left|E_{k,f}\right| + 1}$$

- E_{k,f} is subset of edges of subtype k where each edge has either one or both of its vertices annotated with function f
- $S_f(u,v) = 1$ if u and v shares function f, 0 otherwise

Discretization of Existing Scores

- Scores may come in many forms
 - E.g., Blast e-values, Pearson's correlation
- A simple approach to discretization
 - Split ranges into n equal intervals
 - Each interval becomes a new subtype
 - Assume linearity in range
 - Other strategies possible



Combination of Confidence

• Combine confidence of data sources contributing to each edge:

$$r_{u,v,f} = 1 - \prod_{k \in D_{u,v}} (1 - p(k, f))$$

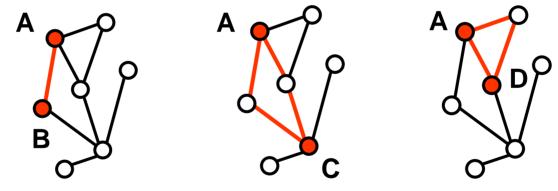
- P(k.f) is confidence of edges of subtype k sharing function f
- D_{u,v} is the set of subtypes of data sources which contains the edge (u,v)

NUS National University of Singapore

Function Prediction

Weighted Average

$$S_f(u) = \frac{\sum_{v \in N_u} \left(e_f(v) \times r_{u,v,f} \right)}{1 + \sum_{v \in N_u} r_{u,v,f}}$$


$$\{F_{A}, F_{D}\} \xrightarrow{\begin{subarray}{c} \\ \end{subarray}} \{F_{B}, F_{C}\} \xrightarrow{\begin{subarray}{c} \\ \end{subarray}} \{F_{A}, F_{B}\}$$

- S_f(u) is score of function f for protein u
- $e_f(v)$ is 1 if protein v has function f, 0 otherwise
- N_u is set of neighbours of u
- $r_{u,v,f}$ is confidence of edge (u, v)

Level-2 Neighbours

- Increase coverage of Protein-Protein interactions
 - Indirect function association (Chua et al. 2006)
 - Topological weight applied to PPI
 - Divide into 3 subtypes:

Level-1 Neighbours

Level-2 Neighbours

Level-1&2 Neighbours

 A theshold of 0.01 is applied on L2 neighbours to limit false positives

Topological Weight Applied to PP

• Take reliability into consideration when computing FS-weighted measure:

$$S_{R}(u,v) = \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}{\left(\sum_{w \in N_{u}} r_{u,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{u,w}(1-r_{v,w})\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}} \times \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}{\left(\sum_{w \in N_{v}} r_{v,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{u,w}(1-r_{u,w})\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}}$$

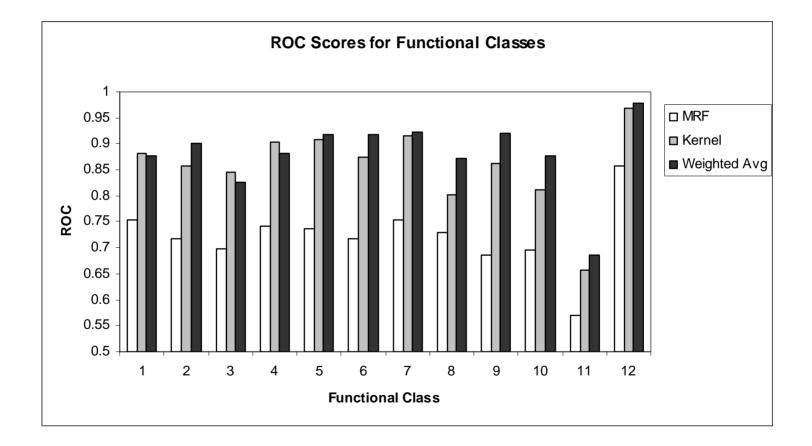
• N_k is the set of interacting partners of k

• r_{u,w} is reliability weight of interaction betw u and v

 \Rightarrow **Rewriting**

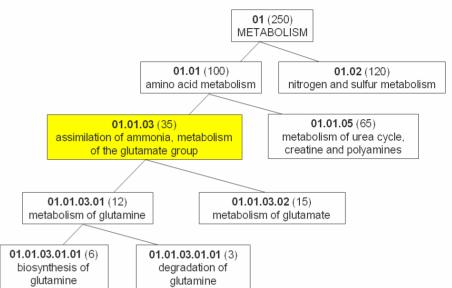
$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$

- Dataset from Deng et al, 2004
- 4 data sources (Saccharomyces cerevisiae)
 - Protein-Protein Interactions
 - 2,448 edges
 - Protein Complexes
 - 30,731 edges
 - Pfam Domains
 - 28,616 edges
 - Expression Correlation
 - 1,366 edges



• 12 functional classes

	Category	Size
1	Metabolism	1048
2	Energy	242
3	Cell cycle & DNA processing	600
4	Transcription	753
5	Protein synthesis	335
6	Protein fate	578
7	Cellular transport & transport mechanism	479
8	Cell rescue, defense & virulence	264
9	Interaction with the cellular environment	193
10	Cell fate	411
11	Control of cellular organization	192
12	Transport facilitation	306


- Validation Method (Lanckriet et al, 2004)
 - Receiver Operating Characteristics (ROC)
 - True Positives vs False Positives
 - Area under ROC curve for each function
 - Averaged over 3 repetitions of 5-fold cross validation

GO Terms Prediction for Yeast Proteins

- Proteins from Saccharomyces Cerevesiae
 - 5448 proteins from GO Annotation (SGD)
- Functional Annotation
 - Gene Ontology
 - Hierarchical
 - 3 Namespaces (molecular function, biological process, cellular component)

- Informative GO Terms (for evaluation)
 - Zhou et al. (2002)
 - FC associated with at least 30 proteins and no subclass associated with at least 30 proteins

• PPI

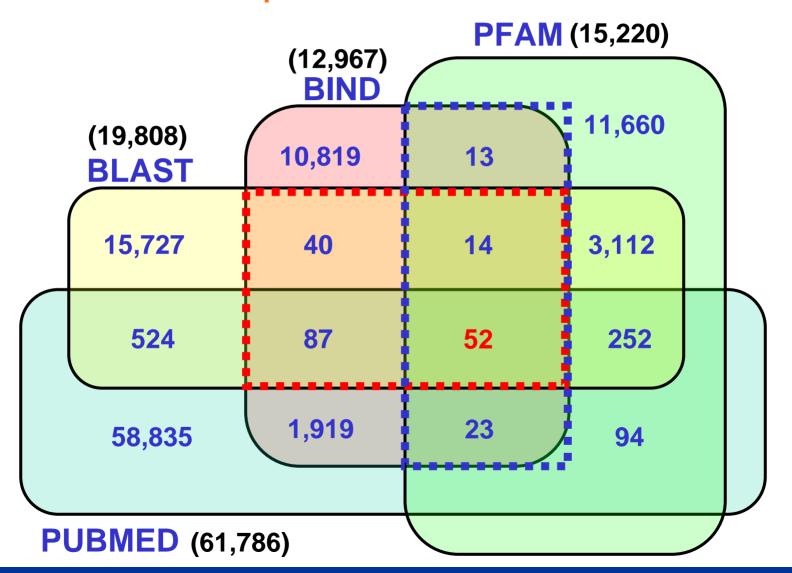
- BIND
- 12,967 unique interactions betw yeast proteins
- FS weight used as score

Protein Sequences

- Seqs from GO database (archive.godatabase.org)
- Each yeast seq is aligned w/ rest using BLAST (cutoff E-Score = 1)
- log(e-score) used as score
- Top 5 results w/ known annotations
- 19,808 unique pairs involving yeast proteins

Data Sources

Pfam Domains


- SwissPfam database (http://www.sanger.ac.uk/ Software/Pfam/ftp.shtml)
- Precomputed Pfam domains for SwissProt and TrEMBL proteins w/ E-value threshold 0.01
- Number of common domains used as score
- 15,220 unique pairs involving yeast proteins

• Pubmed Abstracts

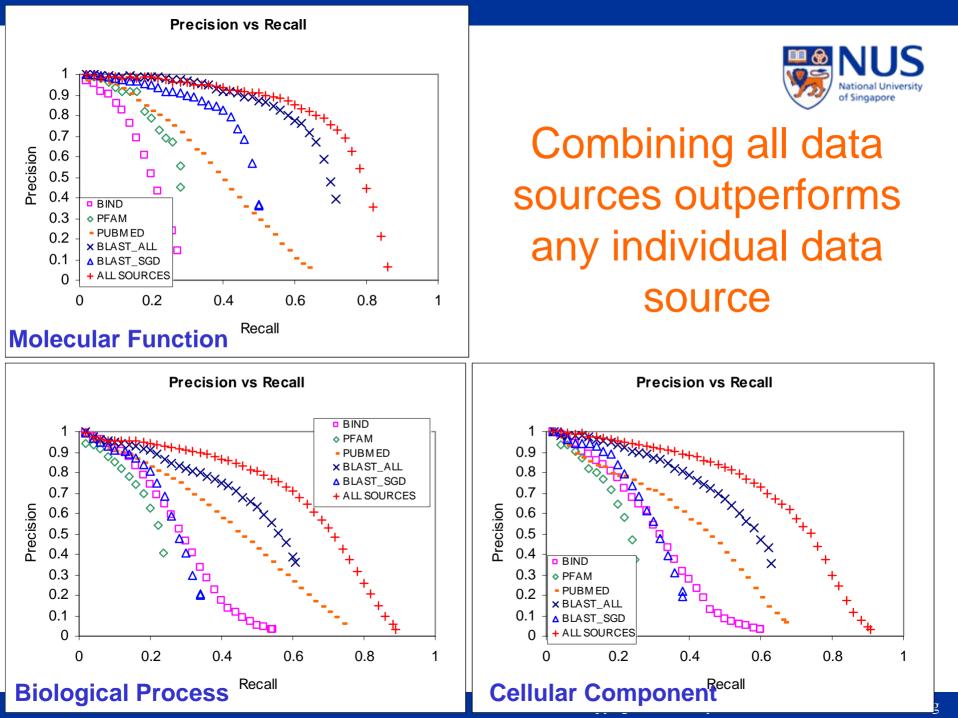
- Pubmed abstracts obtained by searching protein's name and aliases on Pubmed
- Limit to first 1000 abstracts returned
- Fraction of abstracts w/ cooccurrence used as score
- 61,786 unique pairs involving yeast proteins

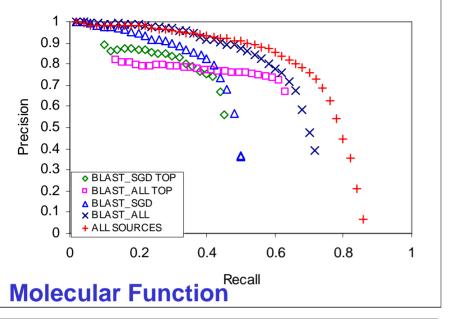
Multiple Data Sources

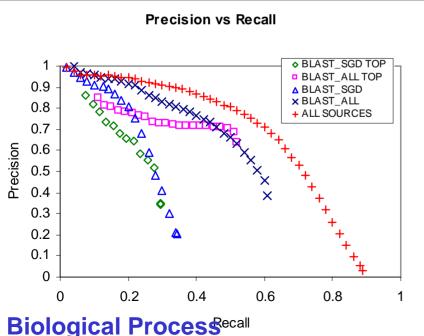
Copyright © 2006 by Hon Nian Chua & Limsoon Wong

Validation

- Precision vs Recall
 - Precision

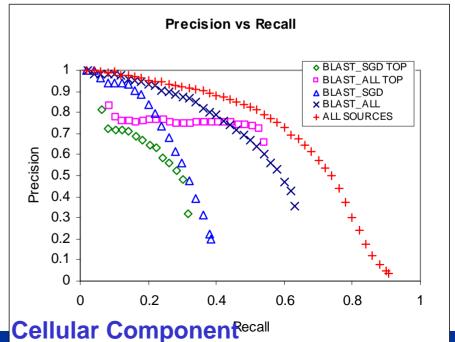

k_i is the number of functions correctly predicted for protein i


– Recall



m_i is the number of functions predicted for protein i

n_i is the number of functions annotated for protein i



- Weighted Averaging predicts w/ better precision than transferring function from top blast hit
- Using all data sources outperforms topblast in both sensitivity and precision

Predictions

Novel Predictions for biological_process - transport

	Protein		wn Functions	Pre	dicted Function		Evidence
Protein:	SGD S00006221	biological_process		Score:	0.563181012346511	SGD_S00001856	0.686851211072664
Aliases:	YPR017C, DSS4	Function:	0045045	Est.	0.982142857142857	Pubmed	0.373702422145329
Desc.:	Nucleotide release factor functioning in the post-Golgi secretory pathway, required for ER-to-Golgi transport, binds zinc, found both on membranes and in the cytosol; guanine nucleotide dissociation stimulator	Category:	biological_process	Support:		L12	0.5
		Level:	5			SGD_S00000833	0.642857142857143
		Desc.:	secretory pathway	Function:		L12 SGD S00004542	0.642857142857143
		cellular_component		Category:	biological_process	Pubmed	0.441702891391688 0.441702891391688
			0005624	Level:	5	SGD S00006259	0.378765740440446
		Category:	cellular component	Desc.:	vesicle-mediated transport	Pubmed	0.378765740440446
		Level:	3			SGD 500001776	0.378765740440446
			3 membrane fraction	t	Level 4: 0006810	Pubmed	0.378765740440446
		Desc.:			transport Level 3: <u>0051234</u> establishment of localization	SGD 500003202	0.378765740440446
		Function:	0005625			Pubmed	0.378765740440446
		Category:	cellular_component			SGD S000001889	0.29166666666666
		Level:	3		Level 2: 0050875	Pubmed	0.29166666666666
		Desc.:	soluble fraction		cellular physiologica	SGD_S00000663	0.257767548906789
	mole		molecular_function		process	Blast	0.257767548906789
		Function:	0008270	local	Level 2: 0051179	FB_FBGN0032020	0.257767548906789
		Category:	molecular function		localization	Blast	0.257767548906789
		Level:	5		Level 1: 0009987 cellular process	SGD_S00001266	0.211815846670618
		Desc.:	zinc ion binding		Level 1: <u>0007582</u> physiological process	Pubmed	0.211815846670618
		Function:	0005085			SGD_S00000938	0.211815846670618
		Category:	molecular function			Pubmed	0.211815846670618
		Level:	3		Level 0: 0008150	SGD_S00002216	0.211815846670618
			-	_	biological_process	Pubmed	0.211815846670618
		Desc.:	guanyl-nucleotide exchange factor			SGD_S00004258	0.211815846670618
			activity			Pubmed	0.211815846670618
			activity			SGD_S00005562	0.0842438182863715
antributing adapage datageurs						12	0.0842438182863715
ontributing edges, datasource			es.		SGD_S00001485	0.0842438182863715	
	–			, -		12	0.0842438182863715
nd respective confidence						SGD_S000004016	0.0842438182863715
						2	0.0842438182863715

- We developed a simple graph-based method that combines multiple sources of data sources for function prediction
- Our method is simple, flexible and can report datasources contributing to each prediction
- We have shown that our method performs comparable, if not better, than existing approaches

- Ashburner M. *et al.* (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nature Genetics*. 25(1):25-29.
- Zhou, X., Kao, M.C., Wong, W.H. (2002) Transitive functional annotation by shortestpath analysis of gene expression data. *Proc. Natl. Acad. Sci. U S A*. 99(20), 12783-88.
- Chua H.N., Sung W.K., Wong L. Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics, 22:1623-1630.
- Deng M., Chen T., Sun F. (2004) An integrated probabilistic model for functional prediction of proteins. *J. Comp. Biol.* 11(2-3):463-75.
- Lanckriet G.R., et al. (2004) Kernel-based data fusion and its application to protein function prediction in yeast. *Proceedings of the Pacific Symposium on Biocomputing*, January 3-8, 2004. pp. 300-311.
- Cherry J.M., et al. (1997) Genetic and physical maps of Saccharomyces cerevisiae..*Nature*, 387(6632 Suppl):67-73.
- Lee I.,et al. Probabilistic functional network of yeast genes. *Science*. 306(5701):1555-8.
- Martin D.M., Berriman M., Barton G.J. (2004) GOtcha: a new method for prediction of protein function assessed by the annotation of seven genomes. BMC Bioinformatics. 5:178
- Cohen A.M., et al. (2005) Using co-occurrence network structure to extract synonymous gene and protein names from MEDLINE abstracts. *BMC Bioinformatics*. 6:103
- Xiao G., Pan W. (2005) Gene function prediction by a combined analysis of gene expression data and protein-protein interaction data. *J. Bioinform. Comp. Biol.*, 3(6):1371-89