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Preliminaries

« This tutorial assumes you already know a little about what biological
networks are. If you don’t, Natasa Przulj’s lecture slides maybe helpful

« Arelated ppt for this tutorial can be downloaded at

* Brief notes for this tutorial can be downloaded at
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Outline

Part 1: Delivering
reproducible gene
expression analysis

+ Batch effect &
normalization

+ Some issues in gene
expression analysis

" * Reproducibility

— Law of large numbers
— Use background info
— Find more consistent

disease subnetworks
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Part 2: Delivering
more powerful « Common issues in
proteomic profile proteomic profile
: analysis
analysis
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* Improving coverage
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Application: Disease Subtype Diagn
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Application: Drug Action Detection
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Which group of genes are the drug affecting on?
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Typical Analysis Workflow

 Gene expression
data collection Signal Selection Basic Idea

+ Choose a signal w/ low intra-class distance
« Choose a signal w/ high inter-class distance

 DE gene selection
by, e.q., t-statistic

e Classifier training
based on selected
DE genes

Class 1 Class 2

 Apply the classifier
fo I d | ag nos | S Of Image credit: Golub et al., Science, 286:531-537, 1999
future cases

Terminology: DE gene = differentially expressed gene
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Image credit: Yeoh et al, Cancer Cell, 1:133-143, 2002
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Part 1: Delivering
reproducible gene
expression analysis

e Some issues in gene
expression analysis
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Some Headaches

« Natural fluctuations of gene expression in a
person

* Noise in experimental protocols
— Numbers mean diff things in diff batches

— Numbers mean diff things in data obtained from
diff platforms

— Selected genes may not be meaningful
— Diff genes get selected in diff expts

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Sometimes, a gene expression study - B &
may involve batches of data collected
over a long period of time...

National University
C C of Singapore
Time Span of Gene Expression Profiles a e S
Tnsage credit: Dong Difeng
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« Samples from diff batches are gro'upedmtogether,
regardless of subtypes and treatment response
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Percentage of Overlapping Genes

of Singapore

« Low % of overlapping Datasets DEG POG
genes from diff expt in
general Prostate | Top 10 | 0.30

Cancer Top 50 0.14
— Prostate cancer Top100 0.15

« Lapointe et al, 2004
e Singh et al, 2002
— Lung cancer
« Garber et al, 2001
« Bhattacharjee et al,

Lung Top 10 0.00
Cancer | Top50 | 0.20
Top100 0.31

2001
— Top 10 0.20
DMD DMD P
« Haslett et al, 2002 Top 50 0.42
* Pescatori et al, 2007 Top100 0.54

Zhang et al, Bioinformatics, 2009
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Part 1: Delivering
reproducible gene
expression analysis

« Batch effect &

Batch Effects ﬁNUS

« Samples from diff batches are grouped together,
regardless of subtypes and treatment response
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Approaches to Normalization

« Aim of normalization: e Transform data so

Reduce variance w/o that distribution of
increasing bias probe intensities is
same on all arrays
 Scaling method -Eg.,(x-n/o
— Intensities are scaled | o
so that each array * Quantile normalization

has same ave value
— E.g., Affymetrix’s

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Quantile Normalization

Density of PM probe intensities for Spikeln chips

« Given n arrays of length p,
form X of size p x n where _
each array is a column

e Sort each column of X to =
give Xsort

« Take means across rows LA
of X, and assign this
mean to each elem in the
row to get X,

« Get X, ormaiizeg PY @rranging | ¢ Implemented in some

each column of X’ to microarray s/w, e.g.,
have same ordering as X EXPANDER

1.0

— After Quantile Normalization

ensity
06 0.8

0.4

0z

oo
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In such a case, batch effect may be RENUS

severe... to the extent that you can B & N
predict the batch that each sample W

comes!

National University
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After quantie
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GEP after removing batch effect by quantile normalization
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Quantile normalization improves B2NUS

National University
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cross-batch prediction accuracy In
gene expression profile analyses

Owerall AUC changes in various settings (108)

Percentage of Cases (%)

- =

A Rank Values B. Bagging {10} C. Bagging (100) D. Dynamic Bagging

Chuan Hock Koh, Limsoon Wong. Embracing noise to improve cross-batch
prediction accuracy. BMC Systems Biology, 6(Suppl 2):S3, December 2012.
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Wang et al. Molecular Biosystems, 8:818-827, 2012
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Part 1: Delivering
reproducible gene
expression analysis

% NUS
Percentage of Overlapping Genes~™ """

+ Low % of overlapping Datasets DEG POG
genes from diff expt in R d . b . | - t
(]
) S eproducibility
Cancer Top 50 0.14
— Prostate cancer Top100 | 0.5

« Lapointe et al, 2004 - La.W Of |arge numbers

« Singh et al, 2002
Lung Top 10 0.00
— Lung cancer

— Use background info

+ Bhattacharjee et al, Top10 0.31

2001 . .
- oo — Find more consistent
+ Haslett et al, 2002 Top 50 0.42
* Pescatori et al, 2007 Top100 0.54

disease subnetworks

Tutorial for APBC 2012 Copyright 2012 © Limsoon Wong
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a2 NUS
Individual Genes 9 s
 Suppose  Prob(ageneis
— Each gene has 50% COrrelated) = 1/2°
chance to be high « #o0f genes on array =
— You have 3 disease 100,000
and 3 normal — E(# of correlated
samples genes) = 1,562

« How many genes ona = Many false positives

microarray are + These cannot be
expected to perfectly eliminated based on
correlate to these pure statistics!
samples?

Copyright 2013 © Limsoon Wong
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SEINUS
Group of Genes W
 Suppose  Prob(group of genes
— Each gene has 50% correlated) = (1/2°°
chance to be high — Good, << 1/2°
— You have 3 disease « # of groups = 100000C,
and 3 normal — E(# of groups of genes
samples correlated) = 100000C
 What is the chance of (1/25)°> = 2.6*1012

a group of 5 genes
being perfectly
correlated to these
samples?

— Even more false
positives?

 Perhaps no need to
consider every group

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Reqgulatory Circuits — The Contex

of Singapore

Anti-Apoptotic Pathway : :

Fl3kK FTEM

Growth Growth TRADD TRAF2 MIK
factors factor
racepions

« Uncertainty in selected
genes can be reduced by
considering biological
processes of the genes

« Each disease phenotype
has some underlying
cause

« Thereis some unifying
biological theme for genes
that are truly associated
with a disease subtype

 The unifying biological
theme is basis for inferring
the underlying cause of
disease subtype

Copyright 2013 © Limsoon Wong
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Taming false positives by TINUS

considering pathways instead of 95 e
all possible groups
ZINUS

o # of pathways =
Group of Genes 1000
* Suppose * Prob(group of genes
— Each gene has 50% correlated) = (1/2°)°

chanc?e to be high — Good, << 1/25 E(gfrglgtpea(;? V:vays
— You have 3 disease  * #-of-grotps-=-100000G, 1000 * (1/26)5 =

and 3 normal - Ef#-ofgroups-of-gencs )

9.3*10°/

samples coTTelatet="+0%C~
« What is the chance of ( .
a group of 5 genes
being perfectly
correlated to these
samples?

— Even more false
positives?

* Perhaps no need to
consider every group

Microarray Workshop for Gene Expression Profiling, NUH, 23/9/2011 Copyright 2011 © Limsoon Wong
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AANUS
Towards More Meaningful Gene 88 ™
« ORA
— Khatri et al = Overlap Analysis
— Genomics, 2002 ]
« FCS )
— Pavlidis & Noble
— PSB 2002 _ _
. GSEA = Direct-Group Analysis
— Subramanian et al
— PNAS, 2005 _/
« SNet )
- Sohetal = Network-Based Analysis
— BMC Genomics, 2011

—

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



Threshold

Genes

ABCB1
G5TM
GSTP1
MSHE
SAA1
SLC19A1
TPMT
CYP3A4
UGT1A1
IL10
MTHFR
TYMS
CYP3AL
VDR
GSTM1
ME3CH

Overlap Analysis: ORA

Genes

ABCBA1
ST
GSTP1
MSHE
MTHFR
TYMS
CYP3AL
VDR
GSTM
MNE3C1

GO Class 1

GO Class 2

*{ GO Class N

Binomial
estimation

National University
of Singapore

N US
%

Significant Class 1

Non Significant Class 2

Significant Class N

S Draghici et al. “Global functional profiling of gene expression”. Genomics, 81(2):98-104, 2003.

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013
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A problem w/ ORA

« Itis essentially testing whether AnB is
significant, where

— A =the set of differentially expressed genes
— B =the set of gene in a specified pathway

 The set of differentially expressed genes is
defined by an arbitrary threshold on, e.qg., fold
change, t-statistic, ...

* If you change that threshold, you can change A
drastically. This has big impact on AN B

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Direct-Group Analysis: FCS

Ave expression

of the class

Genes

ABCBA1
ST
GSTP1
MSHG
SAA1
SLC19A1
TPMT
CYP3A4
UGT1A1
IL10
MTHFR
TYMS
CYP3AL
VDR
GSTMA1
MNR3CH

GO Class 1

GO Class 2

GO Class N

1 <
T Y log(P, )

Permutation

Test

Score 1l

Score 2

Score 3

Significant Class 1

Non Significant Class 2

Significant Class N

P Pavlidis et al. “Using the gene ontology for microarray data mining: A comparison of methods and application to
age effects in human prefrontal cortex”. Neurochem Res., 29(6):1213-1222, 2004.

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013

Copyright 2013 © Limsoon Wong



TINUS
95

National University
of Singapore

FCS: Key variations

e “Correlation score”

— Score of a class C = average pair-wise correlation
of genes in the class C

« “Experimental score”

— Score of a class C = average of log-transformed p-
values of genes in the class C

* Null distribution to estimate the p-value of the
scores above is by repeated sampling of random
sets of genes of the same size as C

Pavlidis et al., PSB 2002

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



Goeman & Buhlmann. “Analyzing gene expression data in terms of gene =)
sets: Methodological issues”. Bioinformatics, 23(8):980-987, 2007 W N US
National University

A problem w/ FCS
* Its null hypothesis:

as proposed by
Pavlidis et al in — “genes in C are indepen-
dently expressed & not

PSB 2002 diff from other genes

A . But...
=@y, Key variations _ Genes In a pathway are
+ “Correlation score” .
- Scoretof a class C = average pair-wise correlation nOt Independent
of genes in the class C -
— Becomes over sensitive

+ “Experimental score”
— Score of a class C = average of log-transformed p-
values of genes in the class C

ull distributic?n to estimate the p-v.alue of the ° SO I u tl O n g en erate n u I I .
scores above is by repeated sampling of random d | Strl b u t| 0 n by ran d O m | _

genes of the same size as C

Pavidis et al., PSB 2002 Zlng pa“ent CIaSS IabEIS

Copyright 2012 © Limsoon Wong

Copyright 2013 © Limsoon Wong
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Direct-Group Analysis: GSEA

Rank Genes Assign score to each Permutation test
class based on gene
rank
Mex(Ry (S, 1) Pris(S.,1))
Genes p-values
ABCB1 0.0040 GOClass1l | -------- > Significant Class 1
. |GSTTY 0.0051 % )
Rulsl) 5sT 0.0126 P (.1
gﬁ:f gg;g: ,4 GOClass2 | - > | Non Significant Class 2
SLC19A1 oodt0f 7 RSl Rl
TPMT 0.0423] . .
CYP3A4 0.0500) ~~.. "/ . .
UGT1A1 0.0610f </ . .
IL10 0.0626)
MTHFR 00756 _#%|GoOcClassN | - » | Significant Class N
TYMS 0.0871
CYP3A5 0.0879] -7 Pu(Swoi)  Puss(Sus)
VDR 0.0906]
GSTM1 0.0949] /
NR3C1 0.0991

A Subramanian et al. “Gene set enrichment analysis: A knowledge-based approach for interpreting
genome wide expression profiles”. PNAS, 102(43):15545-15550, 2005
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GSEA: Key Points

 “Enrichment score” A Phendipe B I s

“ ene se (]]IHH:II]]] m
- The degree that the | ' i N 1 CérrelationwithPhenotype
genes in gene set C are — e
enriched in the extremes

of ranked list of all genes -
{43 enrichment score ES(S)
— M eaS u re d by Fig. 1. A GSEA overview illustrating the method. (A) An expression data set

sorted by correlation with phenotype, the corresponding heat map, and the
KO m O O rOV_ S m I rn OV ""gene tags,” i.e., location of genes from a set S within the sorted list. (B) Plot
g of the running sum for Sin the data set, including the location of the maximum
t t. t. enrichment score (ES) and the leading-edge subset.
Statistic

Ranked Gene List

-~ —
F
f“ T
| —

Subramanian et al., PNAS, 102(43):15545-15550, 2005

« Null distribution to estimate the p-value of the
scores above is by randomizing patient class
labels

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



Wong. “Using Biological Networks in Protein Function Prediction and =)
Gene Expression Analysis”. Internet Mathematics, 7(4):274--298, 2011. N US

National University
of Singapore

A problem W/ e Its enrichment score
considers all genes in C
GSEA J

 But...

— Not all branches of a

NS ‘I‘arge path}’/vay have to
— go wrong

\i¥ i | — Cannot detect if only a

small part of a pathway
malfunctions

A Phenotype B Leading
Cl

— The degree that the
genesin gene set C are ;S
enriched in the extremes St
of ranked list of all gene :
Komogorov-Smirnov
statistic

* Null distribution to estimate the p-value of the
scores above is by randomizing patient class

R Subramanian et al., PNAS, 102(43):15545-15550, 2005 ° SO I u ti O n : B reak p at h W ays
e Copyright 2012 © Limsoon Wong I n to S u b n etW O r k S
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Soh et al. “Finding Consistent Disease Subnetworks Across Microarray Datasets”.

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. B & N US

National University

Network-Based Analysis: SNet

 Group samples into type D and —D
« Extract & score subnetworks for type D

— Get list of genes highly expressed in most D samples
 These genes need not be differentially expressed!

— Put these genes into pathways

— Locate connected components (ie., candidate
subnetworks) from these pathway graphs

— Score subnetworks on D samples and on —D samples

 For each subnetwork, compute t-statistic on the two
sets of scores

 Determine significant subnetworks by permutations

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



Soh et al. “Finding Consistent Disease Subnetworks Across Microarray Datasets”.

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. B &® N US

SNet: Score Subnetworks 3=

Step 2: Subnetwork Scoring We assign a score vector 5V -79°" with

sn,d
respect to phenotype d to each subnetwork s» within SN 2*** according to

Equation 1.
SNZIE"e = (SN, SNESE, W SNES) ()
Where » 1s the number of patients in phenotype . The formula 5 N;;f;‘fg =
for the ** patient (also the " element of this vector) is given by:
. g
SNEg = 6y ©
=1
= ;f;% refers to the score of the %" gene (say, gene ) in the subnetwork
s7 for p.hanot}?pe d. (This score Gii‘f;ffd 15 given by Equation 3) and i1s
simply given by:
smodd = B/7 3)

Where % 1s the number of patients of phenotype o who has gene x highly
expressed (top %) and » is the total number of patients of phenotype d. The
entire Step 2 1s repeated for the other disease phenotype —d, giving us the
score vectors, SN:?;E;QWE and SN;‘ff;i‘f;E for the same set of connected
components. The t-test is finally calculated between these two wvectors,

creating a final t-score for each subnetwork s» within SNy ;¢

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



Soh et al. “Finding Consistent Disease Subnetworks Across Microarray Datasets”.

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. B &® N US

National University

SNet: Significant Subnetworks

« Randomize patient
samples many times

« (Get t-score for
subnetworks from the
randomizations

e Use these t-scores to
establish null
distribution

* Filter for significant
subnetworks from real
samples

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Key Insight # 1
/ - SNet does not require

@ all the genes in subnet

\@ to be diff expressed

Genes A, B, C are high in * It only requires the
phenotype D subnet as a whole to

be diff expressed
A is high in phenotype ~D but B

and C are not

 Able to capture entire
Conventional techniques: Gene relationship,

B and Gene C are selected. : :
Possible incorrect postulation postulating a mutation

of mutations in gene B and C In gene A

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Key Insight # 2

@ A branch within pathway
consisting of genes A, B, C, D and

/: @ E are high in phenotype D

Genes C, D and E not high in
@ phenotype ~D

30 other genes not diff expressed

30 other genes

Conventional techniques: Entire
network is likely to be missed

 SNet: Able to capture the subnetwork branch
within the pathway

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Key Insight # 3

Pathway 1 / Pathway 2

S 5

Genes A, B and C are present in Conventional techniques:
two separate pathways

Both pathways are scored equally.

A, B and C are high in phenotype | | So both got selected, resulting in
D, but not high in phenotype ~D pathway 2 being a false positive

« SNet: Able to select only pathway 1, which has
the relevant relationship
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Let’'s see whether SNet gives us
subnetworks that are

() more consistent between
datasets of the same types of
disease samples

(1) larger and more meaningful
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Soh et al. “Finding Consistent Disease Subnetworks Across Microarray Datasets”.

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. B &® N US
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Better Subnetwork Overlap

Table 1. Table showing the percentage overlap significant subnetworlks
between the datasets. Each row refers to a separate dizeasze (as indicated
in the first column). Each dizeaze iz tested against two datasets depicted in
the second and third column. The overlap percentages refer to the pathway
overlaps obtained from running SMet {column 4) and GEEA {column 3) The
actual mimber of overlaps are parentheszized in the same columns.

Overlap = |A nB| / min(|A[,|B|)

Disease | Dataset 1 | Dataset 2 s INet GSEA
Leuk (3olub Armstrong | 83.3% 200 | 0.0% ()
subtype | Eoss Yeoh 47.6% (1 | 23.1% (6)

DMD Haslett Pescatori | 58.3% (' | 55.6% (10)
Lung Bhatt Garber 00.9% () | 0.0% ()

 For each disease, take significant subnetworks
from one dataset and see if it is also significant in
the other dataset
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Better Gene Overlaps

Table 2. Table showing the number and percentage of =ipgnificant
overlapping genes. -y refers to the mumber of genes compared against and
iz the mumber of unique genes within all the significant subnetworks of the
dizeasze datasets. The percentages refer to the percentage gene overlap for the

corresponding algorithms.
Overlap = |A nB| / min(|A[,|B|)
hsease | v | SNet | GSEA | SAM | t-test
Leuk 8d | 91.3% | 24% | 22.6% | 143%
subtype | 73 | 93.0% | 40% | 493% | 373%
DMD 45 | 69.2% | 28.9% | 42.2% | 200%
Lung 65 | 31.2% | 4.0% | M4.6% | 262%

 For each disease, take significant subnetworks
extracted independently from both datasets and
see how much their genes overlap
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Soh et al. “Finding Consistent Disease Subnetworks Across Microarray Datasets”.

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. 1 N US
Larger Subnetworks 95 e

Table 3. Table comparing the size of the subnetworks obtained from the
t-test and from SNet. The first column shows the disease and the second
column shows the number of genes which comprizsed of the subnetworks,
The third and fourth column depicts the mumber of genes present within
each subnetwork for the t-test and SNet respectively. So for instance in the
lenkemia datazet, we have 8 subnetworks with size 2 genes, 1 subnetwork
with size 3 genes for the t-test. For SNet, we have 2 subnetworks with size
5 genes, 3 subnetworks with size 6 genes, 2 subnetworks with size 7 genes
and 1 subnetwork with a size of > 8 genes

Disease | - | Num (enes (t-testy | Num Genes (SNet)
2 3 4 5 5 6 T =8
Leuk 8418 1 0O 0 23 2 1
subtype | 73 (5 1 1 1 1 O 1 &
DMD 4513 1 0O 0 1 O O 35
Lung 65|13 2 1 0 5 3 0 1
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Issue #1
m— tOp Olf% genes that )
= occur natleast B with SNet

Fig. 2. In SNet, the top a% of genes of each sample in phenotype D is
highlighted in yellow. A subset of these genes that are represented in color
bands are in at least 3% of the samples are then taken to induce subnetworks.

« What if the real important genes are close to, but not
In, the top % most highly expressed genes?

* Blindly increasing o does not help, as this will bring in
lots of false-positive genes
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Issue #2 with SNet

LECD'?"E Saore
s, 1,d E r Gﬁﬂ}j} (2)

(= ji‘:';" ", refers tothe score of the 4t* oene (say, gene ) in the subnetwork

sn. for phenotype d. (This score 7 g;‘f;‘fd 15 given by Equation 3) and is
simply given by:

se0re, — k/m (3)

Where % 1s the number of patients of phenotype < who has gene « highly
expressed (top «%) and = is the total number of patients of phenotype d.

« SNet weighs genes & scores subnetworks only
on the basis of phenotype D

« Why not consider phenotype ~D as well?
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PFSNet

« Deal with issue #1 of SNet using “fuzzification”
 Deal with issue #2 of SNet using paired t-test

— PFSNet — Paired Fuzzy SNet
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Fuzzification

0, By

Our goal in this step is to compute a gene list, which segregates the
pathways into smaller components. The voting criteria that determines
whether the gene g; 1s accepted into this gene list is given below:

Z fS{Eg«sipj} > 3 1)

p; €L D

where D) is the phenotype for which the subnetwork is generated, p; ranges
over the patients of phenotype D and f's is the fuzzy function which converts
the gene expression value eg; p. to a value between 0 and 1.
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In PFESNet, instead of computing the gene scores with respect to
phenotype ), we also compute the gene scores with respect to phenotype BE ® N US
—D. Hence, each node is given scores which we denote as 37 (g;) and W Natonal Unversy
3% (g:), computed as follows:

grigy = 3 Lmr) ey 5o Slemn)

o D =, DI

Accordingly, for every subnetwork S, each patient of phenotype IJ can be
scored under 57 and 33, as follows:

Scorel*(8) = fs(e y k} * 37 (g:), (5) -
1 2 o(Com) * i Paired
Scoreb®(S) = Z fsleg; pr) * 52(g:) (6) T'TeSt
g:i€S

« ScorePk,(S) and ScorePk,(S) are computed for the
same sample Pk and subnetwork S

— Can do paired t-test

— Null hypothesis: If S is irrelevant to D vs ~D, we
expect ScorePk, (S) — ScorePk,(S) to be around 0
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PFSNet vs GSEA & GGEA:  #gNu>
Pathway Agreement

Dataset ‘ PFSNet ‘ FSNet ‘ GSEA ‘ GGEA
Leukemia 1.00 0.75 0.12 0.18
ALL (subtype) 0.56 0.38 0.34 0.37
DMD 0.82 0.79 0.57 0.51

For PFSNet and FSNet, threshold values of #; = 0.95, 0, =
0.85 are used.

Overlap = |AnB| / |[AUB|
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PFSNet vs T-Test: 95 VUS>
Gene Agreement

of Singapore

Table 2. Comparing gene-level agreement of PFSNet, FSNet, SNet, GSEA, SAM. t-test.

Dataset PFSNet FSNet SNet GSEA SAM(5% sig)  SAMitop 100) t-test(5% sig) t-test(top 100)
b |-D[D|-D|D|-D|D|-D|D|-D|DJf]-D|D]J-D|D]J]=D|
Leukemia 1.00 | 0.81 | 0.64 | 042 | 035 | 058 | 0.12 | 0.20 | 050 | 047 | 001 0.01 0.35 | 0.29 | 0.19 0.07
ALL (subtype) | 0.54 | 0.70 | 0.38 | 0.41 | 0.20 | 057 | 0.04 | 0.04 | O.19 | 027 | 0.12 0.21 0.08 | 0.10 | 0.01 0.00
DMD 082 | 072 [ 088 [ 075|076 054|044 | 020|034 | 008 | 027 0.19 0.41 0.19 | 0.11 0.25

For PFSNet and FSNet, threshold values of #; = 5%, #2 = 15% are used. D represents subnetworks enriched in phenotype I and — D represents subnetworks

enriched in phenotype — ). For GSEA, the "leading edge genes” were used. For SAM and t-test, we took genes at 5% significance level and also the top n genes
indicated in brackets.

Overlap = |AnB| / |[AUB|
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PFSNetvs GSEA & GGEA:

Pathway Agreement B8 & N US
Dataset | PFSNet | FSNet | GSEA | GGEA W orSingepore
Leukemia 1.00 0.75 0.12 0.18
ALL (subtype) | 056 | 038 | 034 | 037
DMD 082 | 079 | 057 | 051

Testing subnets from PFSNet
using GSEA & GGEA

PFSNet | FSNet | SNet

Leukemia (GSEA) 0.50 0.00 | 0.00
Leukemia (GGEA) 0.67 0.50 | 0.50
ALL subtype (GSEA) 1.00 0.15 | 0.11
ALL subtype (GGEA) 1.00 047 | 0.35
DMD (GSEA) 0.90 0.57 | 0.50
DMD (GGEA) 0.54 0.71 0.45
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Top 5 Subnets

Table 4. Top 5 subnetworks that have biological significance.

Leukemia ALL subtype DMD

Proteasome Degradation Wnt Signaling®# Striated Muscle Contraction®#
[L-4 Signaling*# Antigen Processing Integrin Signaling

Antigen Processing® Jak-STAT Signaling*# VEGF Signaling*

B-Cell Receptor Signaling#  T-Cell Receptor Signaling Tight Junction

Wnt Signaling*# Adherens Junction®# Actin Cytoskeleton Signaling

* indicates subnetworks that were not found in SNet and # indicates pathways that were missed by GSEA
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DMD: Striated Muscle Contractior: ==

Z Disk M Disk Z Disk

Other Structural
Regulatory Proteins

.

ACTHZ

For DMD, the subnetwork responsible for striated muscle
contraction is shown in figure Sa (supplementary material). The
cause of Duchenne muscular dystrophy is well known to stem

from the gene Dystrophin, which codes for a protein attached A

to the cell membrane (sacrolemma) of striated muscle cells

(Goldstein and McNally, 2010). When its expression is perturbed, bES
WIM

the cell membrane becomes fragile and permits an amplification
in calcium signals into the muscle cell causing a cascade of

signals to induce cell death. Our subnetwork is generated around /’ / Myasin Binding Myasin Haavy Chain

the Dystrophin gene and implicates other genes belonging to
the Myosin (MYBPC1,MYBPC2) and Troponin (TNNI1,TNNI2)
family. The Myosin and Troponin genes are responsible for
controlling muscle contractions. The down-regulation of Troponin
in DMD patients might help explain muscle contracture, a condition f
in which the muscle shortens. This is because with lower abundance /
of Troponin, Myosin is able to bind to Actin. This mechanism |
together with the amplification of calcium causes the muscle to A Model of Tnggenng of Striated Muscle Contraction by Ca++
constantly contract, shortening over time (Goldstein and McNally, .
2010; Krans, 2010). ;

MYBPCL MYHE

{ MYBPCZ MYHZ

/ MYBRCT MYHE

TMODL

Troponin-T Troponin-1
THNT2 THHIL
THHTL THMIZ
Tropomyosin THNT3

TPM1 Tropanin-C
TPMZ THHCL
TPM3 THHCZ sin Head
TRM& —

Myosin Binding Site

(Covered)
Myosin Light Chain
MYLL
MYL2
MYLY
ACTAL M¥L4
- ACTAZ M¥LE
ACTC
ACTGL

Fig. 5. Anexample of a biologically relevant pathway for DMD. The nodes
from the induced subnetwork identified by PESNet is highlighted with red

=8 boxes.
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[¥es | AK Kz Ligand| [Protein] [ have acute lymphoblastic leukemia or acute myeloid leukemia), one
_?‘-E!' £ kT} of the significant subnetworks that is biologically relevant is part of
i_ Receptor  |Enzyme complex the Interleukin-4 signaling pathway; see figure 6b (supplementary
/ T material). The binding of Interleukin-4 to its receptor (Cardoso
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What have we learned?

« Common headaches in gene expression analysis
— Natural fluctuation, protocol noise, batch effect

« Use of biological background info to tame false
positives

 Overlap analysis = direct-group analysis =
network-based analysis

 Subnetwork-based methods yield more
consistent and larger disease subnetworks

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Still a major challenge

« Suppose there are very few samples, so few that
you cannot estimate the p-value by permuting
class labels

« What do you do?

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Typical Proteomic MS Experimen

preparation/ Protein -, Peptide Sample Mass Mass spectrum  Data
ﬁg ® fractionation digestion *":r =, Separation ./I\_)[' ionization spectrometry £ analysis
@ @ — { — — ¥ — = I | —
® @. SD5-PAGE = Trypsin * HPLC = Electrospray  'Peptide = Quadrupole = e » PeptideSearch
Cell culture = 20-0€l = Lys-C = lon exchange ionization ions = Time of fight = Sequest
electrophoresis + Asp-N * MALDI = Quadrupole ion traps = Mascot ===
= Glu-C = FTICR

Figure 1 | The mass-spectrometry/proteomic experiment. A protein population is prepared from a biclogical source — for
example, a cell culture — and the last step in protein purification is often SD5-PAGE. The gel lane that is obtained is cut into several
slices, which are then in-gel digested. Numerous different enzymes and/or chemicals are available for this step. The generated
peptide mixture is separated on- or off-line using single or multiple dimensions of peptide separation. Peptides are then ionized by
electrospray ionization (depicted) or matrix-assisted laser desorption/ionization (MALDI) and can be analysed by various different
mass spectrometers. Finally, the peptide-seguencing data that are obtained from the mass spectra are searched against protein
databases using one of a number of database-searching programmes. Examples of the reagents or technigues that can be used at
each step of this type of experiment are shown beneath each arrow. 20, two-dimensional;, FTICR, Fourier-transform ion cyclotron
resonance; HPLC, high-performance Bquid chromatography.

Source: Steen & Mann. The ABC’s and XYZ'’s of peptide sequencing.
Nature Reviews Molecular Cell Biology, 5:699-711, 2004
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Diagnosis Using Proteomics

Technology-dependent Technology-independent

a) peptide and protein
identification from PSMs

c) peptide significance analysis e) class discovery g) data integration

A
%‘ peptide spectrum protein 5
s matches names »
2 g
- > fL -
= .Ae : S
mass/charge _» HALPNFKK —»  Axx1 . @ gt Z light = S s
) sy AL
2 e o §Fe0l8.
IDDSETWR = Bxx2 E = eptid 2 s ';’.."
= ) 3 | ° ool gloeel
PEPTIDE LQMCDDE —>» Cxx3 2 eptide 2 a o
DATABASE | @ ide 1 heavy ®
| | 9o eptide 14
L [

relative mRNA expression

bl P b

>
8
| —~ @© @ N
S 5 S e o ra 2 S
T = ® C 2 o >
g Y] > D o ° =
S N &o| = = 211
) £ 28 | -.28% Rl
& 5 e
c © /
] 2
3 = log fold change > S I
% (practical significance) 1-specificity
b) feature detection, quantification, S : o :
) 9 d) protein significance analysis f) class prediction h) pathway analysis

annotation, and alignment

Kall and Vitek, 2011
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Protein lIdentification by Mass Spec
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T: +cdFullms2 638.00 [ 165.00 - 1925.00]
u
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95

MS/MS Instrument

\_ - J
e —

Database search D
» Sequest, Mascot, InSpect . ‘ l ‘
de Novo interpretation - ST
* Lutefisk, Peaks, PepNovo

Relative Abundance

1048

Source: Leong Hon Wai
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Breaking Protein into Peptides, 8
and Peptides into Fragment lons

 Proteases, e.g. trypsin, break protein into
peptides
« A Tandem Mass Spectrometer further breaks the

peptides down into fragment ions and measures
the mass of each piece

« Mass Spectrometer accelerates the fragmented
lons; heavier ions accelerate slower than lighter
ones

« Mass Spectrometer measures mass/charge ratio
of an ion

Source: Leong Hon Wai
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indicates the differentially expresed protein at 53 da.

Source: Hegedus et al. Proteomic analysis of childhood leukemia. Leukemia, 19:1713-1718, 2005
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Peptide Identification by Mass Spe W

a )
MS/MS instrument -
nderstandmg an

ZZ: S/MS Spectrum
— /

653
T =
ERaE 425.0 _851.4
949.4

NUS

National Universit
of Singapor

Database search

» Sequest, Mascot, InSpect =3 )

de Novo interpretation = = "7« |
- Lutefisk, Peaks, PepNovo 4 ‘ l 15 B r |

Source: Leong Hon Wai
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Peptide Fragmentation

Collision Induced Dissociation
H..-HN-CH-CO ™~
|

N - \— _
. Y .v
Prefix Fragment Suffix Fragment

* Peptides tend to fragment along the backbone

 Fragments can also loose neutral chemical
groups like NH; and H,O

Source: Leong Hon Wai
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Mass Spectra

0
« The peaks in the mass spectrum:

— Prefix  and Suffix Fragments
— Fragments with (-H,0, -NH,)
— Noise and missing peaks

Source: Leong Hon Wai
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Bafna & Edwards. “On de novo interpretation of tandem mass
spectra for peptide identification”. RECOMB 2003, pp. 9-18 BE ® N US

Example MS/MS Spectrum 95 e

a8 145 292 405 534 663 778 924 b-ions
b [ F L E E D K
024 837 780 633 520 391 262 141 y-ions
100 — %
[M+2H}H+
g b
< : _ . %
c 7
K= . b,
éi? &
% s b,
) R P (P | b el lly
200 400 600 200
m'z

Figure 2: MS/MS spectrum for peptide SGFLEEDK.

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



72

NUS

ngp

BE &

Protein Identification with MS/M 95

Peptide
MS/MS |dentification

Intensity

» Mass
()

Source: Leong Hon Wai
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Peptide Identification by Mass & =

M M l n r S#: 1708 RT:54.47 AV:1 NL:527E6
T: +c d Full ms2 638.00 [ 165.00 - 1925.00]
1

/Step 3: Computatlonal <

P
(D
—
-
o
0
wn

Database search
Sequest, Mascot -
de Novo interpretation ‘ l H ‘ T
Lutefisk, Peaks, PepNovo el /' bt

Source: Leong Hon Wai
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 Database search
— Used for spectrum from known peptides
— Rely on completeness of database

 General Approach
— Match given spectrum with known peptide

— Enhanced with advanced statistical analysis and
complex scoring functions

* Methods
— SEQUEST, MASCOT, InsPecT, Paragon

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Theoretical Spectrum for a Peptid

« Given this peptide

« Its theoretical spectrum is

| | | 1 I

I & & & - - -

0
 Theoretical spectrum is dependent on

— Set of ion-types considered
— Larger if multi-charge ions are considered

Source: Leong Hon Wai

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Database Search Algorithm

Database i

Database of Match
known peptides ’ 1

MDERHILNM, KLQWVCSDL, ”_ “_

PTYWASDL, ENQIKRSACVM, II

TLACHGGEM, NGALPQWRT, - _
HLLERTKMNVV, GGPASSDA, / 0  Theoretical Matching Score
GGLITGMQSD, MOPLMNWE, spectrum - -
ALKIIMNVRT}, AVGELTK, V] for this peptide

HEWAILF, HNEVYAIVHNAES;
GVFGSVLRA, EKLNKAATYIN..

Repeat for all the peptides in
the Database

Source: Leong Hon Wai

Copyright 2013 © Limsoon Wong
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 There are also approaches for de novo peptide
Identification. ..

« Butlwill omit these here

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



TINUS
95

National University
of Singapore

Protein Identification

« After all the peptides have been identified, they
are grouped into protein identifications

 Peptide scores are added up to yield protein
scores

 Confidence of a particular peptide identification
Increases if other peptides identify the same
protein and decreases if no other peptides do so

 Protein identifications based on single peptides
should only be allowed in exceptional cases

Source: Steen & Mann. The ABC’s and XYZ’s of peptide sequencing.
Nature Reviews Molecular Cell Biology, 5:699-711, 2004
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Cf. Gene Expression Profile Analy

 Once the proteins are identified, the proteomic
profile of a sample can be constructed

— l.e., which protein is found in the sample and how
abundant it is

« Similar to gene expression profile. So gene
expression profile analysis techs can be applied

« Some key differences
— Proteomic profile has much fewer features
— Proteomic profiling study has much fewer samples

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Part 2: Delivering
more powerful + Common issues in
proteomic profile proteomic profile

Distribution of counts in mod Distribution of counts in poor
o
g _
(3]
o
2 -
o~
o
2
N
o
S 4
= N
g
o™
= >
g g g 2 5
3 o - =]
o - o
o o
[ [ o
=] S
8 4 S
8 - 8
e - N ’ e - A e
| <] T 1/ T T ~_ 1T T
1 2 3._4_-5 1 2 3 4°5°%6 7
mod$Counts poor$Counts
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Distribution of counts in mod Distribution of counts in poor

Typical -

frequency
distribution of ~_ #- o
proteins A
detected in °
proteomic N P

“ s
~
| T 1T 1.1

[ [
Fe_4_-"5 1 2 3 4°%°%6 71

profiles |

mod$Counts poor$Counts

Only 25 out of 800+ proteins are
common to all 5 mod-stage HCC
patients!
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Issues In Proteomic Profiling

 Coverage — Thresholding
« Consistency — Somewhat arbitrary
| — Potentially wasteful
Paiont | Potiont 2 Paint 3 o _+ By raising threshold,
| . some info disappears

Moderate Threshold

.....................

Detected
protein

Present but
undetected
protein

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



8

N US
9
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of Singapore

Part 2: Delivering
more powerful
proteomic profile
analysis

* Improving consistency
— PSP
— PDS

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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An inspiration from gene expression NUS

profile analysis

11
%? NUS
Gene Regulatory Circuits
Anti-Apoptotic Pathway : : 7
= - e
- Taming false positives by NUS
- Each disease phenotype ~ * Uncertainty in selected considering pathways instead of e
has some underlying genes can be reduced by .
cause considering biological all pOSSIbIe groups
processes of the genes -
. L G e NUS # of pathways =
+ There is some unifying o roup of enes 1000
biological theme for genes  * The unifying biological . Subpose - Prob(group of genes
that are truly associated theme is ba_S|s for inferring - Ezch ehe has 50 co,,e,ﬂtedf’: ‘325)5 -
with a disease subtype tl?e underlying cause of Chanc% b 0 " ood. < 1125 E(# of pathways
disease subtype o have B di . ' correlated) =
Tt e 1000 * (1126 =
* Etfofgroupsofgenes 9.3*107

samples COTTetatet =%~
* What is the chance of ( =
a group of 5 genes
being perfectly
correlated to these
samples?

= Even more false
positives?

+ Perhaps no need to
consider every group

Microarray Workshop for Gene Expression Profiling, NUH, 23/9/2011 Copyright 2011 © Limsoon Wong

Copyright 2011 © Limsoon Wong
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) FINUS
Intuitive Example e
Patient1  Patient2  Patient 3 ° SUppOse the failure to

form a protein complex
causes a disease

— If any component
protein is missing, the
complex can’t form

= Diff patients suffering
from the disease can
have a diff protein
eesCOMpPONENt missing
:b Construct a profile
ot based on complexes?

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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We try an adaptation of SNet on
proteomics profiles...

“Proteomic Signature Profiling” (PSP)

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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of Singapore

Goh et al. Proteomics signature profiling (PSP): A novel contextualization approach for cancer
proteomics. Journal of Proteome Research. accepted.

“Threshold-free” Principle of PSF

Hitrate ina !
ref complex

Cluster dendrogram with AUBP values (%)

15

in

Haght

B (R B/ E B OE OEI||E B||IR B
L |-~-I r-' W :hl bl u:-' ! a' wl el l.n'
o o = L m (=3 =] L] ~ =1 " [
S 2||& W[|IT B & 2|2 RB||= =
Distance: suclidean
Cluster msdhod: ward
M5-Detected proteins Proteomics Signature Profile Functional Analysis

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Goh et al. Proteomics signature profiling (PSP): A novel contextualization
. == )
approach for cancer proteomics. Journal of Proteome Research. accepted.

Applying PSP to a HCC Dataset

National University
of Singapore

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



Goh et al. Proteomics signature profiling (PSP): A novel contextualization
: == )
approach for cancer proteomics. Journal of Proteome Research. accepted. W

Consistency:. Samples segregate by
their classes with high confidence

National University
of Singapore

Cluster dendrogram with AWEBP values (%)

= au  bp
=
C=IES 100 | fgs
ow 100 | 100
g -
=
o
100 | 100 100 | 100 100 | 100 100 | 100 100
I R R N N R B l
B B B Bllg & & & -

Distance: euclidean
Cluster method: ward

Copyright 2013 © Limsoon Wong
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Goh et al. Proteomics signature profiling (PSP): A novel contextualization
approach for cancer proteomics. Journal of Proteome Research. accepted.

Feature Selection

Patient 1 Patient 2 Patient 3

National University
of Singapore

Mod Cancer

Poor Cancer

Protein t_score= — — § _ { (m =DSy, +(n —DSyp
Undetected SgiamJ—+— B0 U m+n —2
Protein ’ n o m

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



Goh et al. Proteomics signature profiling (PSP): A novel contextualization
approach for cancer proteomics. Journal of Proteome Research. accepted.

Top-Ranked Complexes

National University
of Singapore

N US
%

Cluster ID mod score DOOr score cluster name

5179

5235
1193

159

2657

3067
1226

5176

1189
5251
2766

0.000300541

0.000300541
0.000300541

0.008815869

0.00911641
0.013323983

0

0.513951977

0.513951977
0.513951977

0
0.715352108

0.513951977

0.513951977
0.513951977
0.513951977

3.159758312

3.159758312
3.159758312

2.810927655

2.55616281

2.55616281
2.420592827

2.339059313

2.339059313
2.339059313
2.339059313

NCOAG6-DNA-PK-Ku-
PARP1 complex
WRN-Ku70-Ku80-PARP1
complex

Rapl complex

Condensin I-PARP-1-
XRCC1 complex
ESR1-CDK7-CCNH-
MNAT1-MTA1-HDAC2
complex

RNA polymerase I
complex, incomplete (CDK8
complex), chromatin
structure modifying

H2AX complex |
MGC1-DNA-PKcs-Ku
complex

DNA double-strand break
end-joining complex

Ku-ORC complex
TERF2-RAP1 complex

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013
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Goh et al. Proteomics signature profiling (PSP): A novel contextualization
approach for cancer proteomics. Journal of Proteome Research. accepted.

Top-Ranked GO Terms

B8 &

%5

NUS

National University
of Singapore

No. of

GO ID Description clusters

G0:0016032 | viral reproduction 36
G0O:0000398 | nuclear mRNA splicing, via spliceosome 34
G0O:0000278 | mitotic cell cycle 28
GO:0000084 | S phase of mitotic cell cycle 28
G0O:0006366 | transcription from RNA polymerase II promoter 26
G0O:0006283 | transcription-coupled nucleotide-excision repair 22
G0O:0006369 | termination of RNA polymerase II transcription 22
G0O:0006284 | base-excision repair 21
G0O:0000086 | G2/M transition of mitotic cell cycle 21

regulation of cyclin-dependent protein kinase
GO:0000079 | activity 20
G0:0010833 | telomere maintenance via telomere lengthening 20
G0:0033044 | regulation of chromosome organization 19
G0O:0006200 | ATP catabolic process 18
G0:0042475 | odontogenesis of dentine-containing tooth 18
G0:0034138 | toll-like receptor 3 signaling pathway 17
GO:0006915 | apoptosis 17
DNA strand elongation involved in DNA
GO:0006271 | replication 17

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013

Copyright 2013 © Limsoon Wong



Goh et al. Enhancing utility of proteomics signature profiling (PSP) with pathway derived
subnets (PDSs), performance analysis and specialized ontologies. BMC Genomcs, to appear. B2 & N US

National University

False Positive Rate Analysis

* Divide 7 poor patients into 2
groups
— Significant complexes produced
by PSP here are false positives

 Repeat many times to get dull
distribution

1500 2000 2500 3000 3500
|

Fraguency

g _ — Median = 40, mode = 6
27 « Cf. 523 complexes in CORUM
o - (size 24) used in PSP. At p < 5%,
o =0 10 2m 523 *5% =27 false positives
Sig Clusters (Abs) exp ected

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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A Shortcoming of PSP

 Protein complex databases are still relatively
small & incomplete...

= Augment the set of protein complexes by protein
clusters predicted from PPl networks!

 Many protein complex prediction methods
— CFinder, Adamcsek et al. Bioinformatics, 22:1021--1023, 2006
— CMC, Liu et al. Bioinformatics, 25:1891--1897, 2009

— CFA, Habibi et al. BMC Systems Biology, 4:129, 2010

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



 Protein complexes provided a biologically-rich
feature set for PSP

— But it is only one aspect of biological function

« The other aspect is biological pathways

— But coverage issue of proteomic profiles create
lots of “holes”

« Can we extract and use subnets from pathways?

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Another adaptation of SNet on
proteomics profiles...

“Pathway-Derived Subnets™ (PDS)

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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* |dentify the set S; of proteins detected in more
than 50% of samples having phenotype P,

— Do this for each phenotype P, ..., P,
* Overlay u; S, to pathways

 Remove nodes not covered by U; S,
=This fragments pathways into subnets

« Use these subnets to form “proteomic signature
profiles”

— The rest of the steps Is same as PSP

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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PDS consistently segregates
mod vs poor patients

N SEEEE——————— - :
| .
: B Cluster dendrogram with AU/BP values (%) I C Kresponse to toxin 1
| ]
| 1
: o _ au bp : K gluconeogenesis 1
| 1
I 1 ) 1
| | © liver development ]
: w | !
|
: ! K response to lipid :
|
I 1 1
: © - I & xenobiotic metabolic process :
1
1 1 I
l N . . I
e < - 100 | 100 100 | 100 : [ activation of MAPKK activity 1
:% 90 | 51 92| 80 ! : :
1T ! ¥ MyD83-dependent tol ke receptor |
! o~ - I signaling pathway !
: : K epidermal growth factor receptor :
1 I signaling pathway 1
: o - 100 | 100 100 100 100 100 100 100 100 100 100 ] 100 : bloodvesseldevelopment :
i T I R N :
" = = = - = = = ! KT cell receptor signaling pathway "
 EEEPENEEROLOEE RGO :
| £ 5 8 g8 &€ 8 5 8 8 §8 8 o regeerto -
I 1 1
! . . ) ]
| : reactive oxygen species metabolic I
] | process !
: Distance: euclidean | 1
e e Clustermethod:ward ________________ ; '
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What have we learned?

« PSP /PDS can deal with consistency issues in
proteomics

« GO term analysis also indicates that PSP / PDS
select clusters that play integral roles in cancer

« PSP /PDS reveal many potential clusters and is
not constrained by any prior arbitrary filtering
which is a common first step in conventional
analytical approaches

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Part 2: Delivering
more powerful
proteomic profile
analysis

: Expanded
1 HCC Network HCC Network
1

1

1

|

M*

HCC Tumor

% intensity

* Improving coverage

resL;‘::?:on iTRAQ- ! _ F C S y

2DLC-MS/MS Integrated Analysis Pipeline

— CEA, PEP
— Max Link

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Peptide & protein identification by MS Is
still far from perfect

e

« ... peptides with low scores are, nevertheless, \
often correct, so manual validation of such hits
can often ‘rescue’ the identification of important
proteins.”

Steen & Mann. The ABC’s and XYZ’s of peptide sequencing.
\ Nature Reviews Molecular Cell Biology, 5:699-711, 2004 /

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



Patient 1 FPatient 2 Fatient 3 W of Singapore

ypical proteomic
profiling misses
many proteins

Need to improve
coverage!

Detected
protein

Present but
undetected
protein

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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FCS

 Rescue undetected proteins from high-scoring
protein complexes

« Why?

Let A, B, C, D and E be the 5 proteins that function as a complex
and thus are normally correlated in their expression. Suppose only
Ais not detected and all of B-E are detected. Suppose the screen
has 50% reliability. Then, A's chance of being false negative is
50%, & the chance of B—E all being false positives is (50%)*=6%.
Hence, it is almost 10x more likely that A is false negative than B—
E all being false positives.

 Shortcoming: Databases of known complexes are
still small

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Li et al. Network-assisted protein identification and data interpretation

in shotgun proteomics. Mol. Syst. Biol., 5:303, 2009. B8 & N US
W National University
C EA of Singapore

* Generate cligues from PPIN

 Rescue undetected proteins from cliques with
containing many high-confidence proteins

 Reason: Cliques in a PPIN often correspond to
proteins at the core of complexes

« Shortcoming: Cliques are too strict
— Use more power complex prediction methods

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



Goh et al. A Network-based pipeline for analyzing MS data---An application

towards liver cancer. Journal of Proteome Research, 10(5):2261--2272, May 2011 BE ® N US
€ Map high-confidence proteins to PPIN O

« Extract immediate neighbourhood & predict
protein complexes using CFinder

 Rescue undetected proteins from high-ranking
\_ predicted complexes Y

 Reason: Exploit powerful protein complex
prediction methods

« Shortcoming: Hard to predict protein complexes
— Do we need to know all the proteins a complex?

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Goh et al. A Network-based maximum-link approach towards MS identifies potentially important
roles for undetected ARRB1/2 and ACTB in liver cancer progression. IJBRA, 8(3/4):155-170, 2012  E2K&) N US

- National University
MaxLink

 Map high-confidence proteins (“seeds”) to PPm

 Identify proteins that talk to many seeds but few
non-seeds

e Rescue these proteins
N ; Y

 Reason: Proteins interacting with many seeds are
likely to be part of the same complex as these
seeds

 Shortcoming: Likely to have more false-positives

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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“Validation” of Rescued Proteins

 Direct validation

— Use the original mass spectra to verify the quality
of the corresponding y- and b-ion assignments

— Immunological assay, etc.

 |Indirect validation

— Check whether recovered proteins have GO terms
that are enriched in the list of seeds

— Check whether recovered proteins show a pattern
of differential expression betw disease vs normal
samples that is similar to that shown by the seeds

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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An example using the PEP approach
to recover undetected proteins ...

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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« HCC (Hepatocellular carcinoma)

— Classified into 3 phases: differentiated, moderately
differentiated and poorly differentiated

« Mass Spectrometry

— ITRAQ (Isobaric Tag for Relative and Absolute
Quantitation)

— Coupled with 2D LC MS/MS

— Popular because of ability to run 8 concurrent
samples in one go

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong
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Poor and mod proteins are widely _ asNLS

Interspersed . FX

* In the subnet of S| ek K \ot
reported proteins e X NESANERC
in mod and poor, . Tl e L
poorand mod *° . - ‘Wwyz”'”":,:‘;-’t
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mixed “ TN <A -

Mod and Poor . o 7T . 0,.‘. . ..

® Poor only EFD. . 9‘. =2y .n.. N
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1

Identify the “seeds”
Ratio < 0.8 and > 1.25 for Mod (min 3 patients)
Ratio < 0.8 and > 1.25 for Poor (min 4 patients)

PEP Workflow

Goh et al. A Network-based pipeline for
analyzing MS data---An application towards
liver cancer. Journal of Proteome Research,
10(5):2261--2272, May 2011

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



Goh et al. A Network-based pipeline for analyzing MS data---An application towards
liver cancer. Journal of Proteome Research, 10(5):2261--2272, 2011 N US
National University

Expansion to include neighbors
greatly improves coverage

Mod Network
‘ Expanded Network

Integrated
Analysis
Poor Network Pipeline
W/o expan3|on s PR r After expansion,
4 k3 cligues were returned ~120 clusters were returned

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



Goh et al. A Network-based pipeline for analyzing MS data---An application towards
liver cancer. Journal of Proteome Research, 10(5):2261--2272, 2011 B2 & N US

Returning to Mass Spectra & 5=

« Test set: Several proteins (ACTR2, CDC42,
GNB2L1, KIF5B, PPP2R1A, PKACA and TOP1)
from top 34 clusters not detected by Paragon

 The test: Examine their GPS and Mascot search
results and their MS/MS-to-peptide assignments

 Assessment of MS/MS spectra of their top ranked
peptides revealed accurate y- and b-ion
assignments and were of good quality (p < 0.05)

= In silico expansion verified

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



Goh et al. A Network-based pipeline for analyzing MS data---An application towards
liver cancer. Journal of Proteome Research, 10(5):2261--2272, 2011 BE ® N US
National University

Successful Verification
CDC42

722,

ACTR2

IPIO0O0E1ED =
Tax_Id=90606 Gene_Swyrinol=ACTRZ Aetin-like protein 2

1068 . Mass: Scere: 55 Queries matched: 3

IPI00016786 Mass: 24113 Score: 62 Queries matched: 3

Tax_Id=9606 Gene Symbol=CDC4Z Isoform Z of Cell division control protein 42 homolog precursor

[]cheek to include this hit in error tolerant search or srchive report

1
2
3
4
5

o

Fixed modifications:
Ions Score:
Matches {Bold Red):

# Immon. a a* a0 b

HHMT3

39 Expect: 0.018

b*

87.06/231.16/214.13 259.15|242.13
159.0%1417.24 400.21 445.23|428.21
88.04532.26|515.24|514.25|560.26 | 543.23 | 542.25
88.04 64729 |630.26 629.28|675.29 |658.26 657.28
104.051778.33761.30 760.32/806.33 |789.30 788.32
24512

'bU

(C), (N-TERM) iTRAQ,Lysine (K] iTRAQ

§/57 fragmwent ions using 15 most intense peaks

Seq. ¥y | y*
N

W |838.30/821.27 820.29
D (65222 635.19]634.21
D [537.19/520.17/519.18
M 422.17/405.14

K 2911327410

th| o | He

4
3
2
1

Query Ohserved Mr{expt) Mr{calc) Delta Miss Scere Expect Rank Peptide [Jcheck to inelude this hit in error tolerant sesrch or archive report
735 1096.54  1095.53  1095.4a 0.10 o 35  0.018 1 R.NWDDMEK.M
2711 1410.79  1409.78  1409.65 0.13 1 10 11 3 K.LNIDTRNCK.I
Ss787  1siz.0z  1811.01 1s911.00 o.o1 1 - 20 & K.ILLTEPPMNPTENE.E
Query Observed Mr{expt) Mr{calc) Delta Miss Score Expect Rank Peptide
R R R 3593  1475.79 1474.78 1474.65 0.13 0 38 0.018 1 K.YVECSALTQK.G
Proteins matching the same set of peptides: —=
IPID0470573 Mass: 49610 Score: 39 Queries matched: 3 4313 1590.84 1589.83 1589.75 0.08 0 8 18 3 EK.TCLLISYTIHE.F
Tex_Id=9606 Gene Svmbol=ACTRZ actin-related protein 2 isoform a b
IPIDD749250 Mass: 495490 Score: 30 Queries matched: 3 4880 1680.85 1679.84 1679.76 0.08 0 48 0.0018 1 K.WVPEITHHCPK.T
Tex_Id=9606 Gene Symbol=ACTRZ 45 kDa protein
4
|
! g a
| 2 2
- 1 g a o
i = | = 5 ¢ €
ES o ~ o : =
] o :\ ) =3 N —~ -
' o) El [ S . [ &
iy z FLE= S N I Z
5 2 f [ - : i
— EN E [ o PR
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J ‘ J v ‘ L] 200 400 600 o0 1000 1200 1400
|"JI|||I ol 1] ‘ |||||| ‘l an I
L T T 25'0 T T T T 550 T T T T ?5'0 T T T 10'00 MOHOISOTOPIC mass of neutral peptide Mr(calc): 1472.65
Fixed modifications: HNTS (C), (H-TERM) iTRLQ,Lysine (Kj_iTRAQ
Ions Score: 33 Expect: 0.015
N Matches (Bold Red): 17/119 fragwent ions using 26 most intense peaks
MONOISOTOPIC mass of neutral peptide Mr{calc): 1095.44 { ) am & P

# Immon. a a* a0 b b* b0 Seq. y v*
1 126.08| 280.18 308.17 Y
2 7208| 37925 407.24 V 116845 115147
3 102.05| 508.29 490.28| 536.28 31827 E 1069.42 1052 40
4 12201| 65729 63528 68528 66727 C | 94038 923736
5 60.04| 74432 72631 TI23 754300 8§ | 79138 77436
6 44.05 81536 797.34| 84335 82534 A | 70435 68733
7 86.10] 92844 91043 956.43 93842 L | 63332 61629
8 7406102949 1011.48|1057.48 103947 T | 52023 50320
9 101.07|1157.55 1140.52/1139.53|1185.54 | 1168.51 1167.53| Q | 419.18 402,16
10 24512 K | 29113 27410
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92237
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Another Experiment

 Valporic acid (VPA)-treated mice vs control

— VPA or vehicle injected every 12 hours into
postnatal day-56 adult mice for 2 days

— Role of VPA in epigenetic remodeling

« MS was scanned against IPI rat db in round #1
— 291 proteins identified

« MS was scanned against UniProtkb in round #2
— 498 additional proteins identified

* All recovery methods ran on round #1 data and
the recovered proteins checked against round #2
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FCS (Real Complexes)

Moderate level of
agreement of
reported proteins
between various
recovery methods
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Performance Comparison

Method Movel Suggested Proteins  Recovered proteins Recall Precision
PEP 1037 158 0.317 0.152
Maxlink 822 226 0.454 0.275
[prefjfted] 6338 224 0.450 0.351
FCS 895 477 0.958 0.533

(complexes)

 Looks like running FCS on real complexes is able
to recover more proteins and more accurately

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



11

TINUS
95

8

National University
of Singapore

| e i

AoemacetE-GoA'qr—-Hllﬁ-Gﬂﬁ a— lulevdunlc acid |- g Mevalonate-5P g~ Mevalonate-5PP

Aoe‘t)'l-CoA Mvd

j-ﬁ/ From

%.il__“/ll Dimethylallyl-PP rﬁili;%/ prOteOmiCS to
T g, gy Metabolomics
T e el & lipidomics:

Farnesyl PP I INNNENEREEE

Cholestadienol - g~ Lathosterol |

 S——L |
S . r_sﬁ_“Can the same
—_— !
Squalma-:,Mo:ﬂdlrllll-l Dhcr24 / Danm:mol |7—dohydiro-dmlosterol| network based
Sqle [T BRI ENENEEEN Dhnr?
= 2 1 et o nnroach be
ﬂﬁhydraxy-choluterull Cholesterol s M‘ f?
! S SR . APIEC
:25:’:’:: cholesterol| 27hydroxy-cholesterol | / \““““
R i s

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



TINUS
95

National University
of Singapore

References

« Kall & Vitek. Computational Mass Spectrometry—Based
Proteomics. PLoS Comput Biol , 7(12): e1002277, 2011

« Goh et al. How advancement in biological network analysis
methods empowers proteomics. Proteomics, 12(4-5):550-563, 2012

psp] Goh et al. Proteomics signature profiling (PSP): A novel
contextualization approach for cancer proteomics. J Proteome
Research. 11(3):1571-1581, 2012

[cea] Li et al. Network-assisted protein identification and data
interpretation in shotgun proteomics. Mol. Syst. Biol., 5:303, 2009.

PeP] Goh et al. A Network-based pipeline for analyzing MS data---An
application towards liver cancer. J Proteome Research, 10(5):2261-
2272, 2011

[Fcs) Goh et al. Comparative network-based recovery analysis and
proteomic profiling of neurological changes in valproic acid-
treated mice. J Proteome Research, 12(5):2116-2127, 2013

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong



ZINUS
Acknowledgements e
Chuan Hock Koh « Singapore funding
agencies
Kevin Lim — A*STAR
Donny Soh — MiniStry of Education
— National Research
Wilson Goh Foundation

UK funding agencies

— Wellcome Trust
scholarship

EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong


http://www.nrf.gov.sg/nrf/default.aspx

