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Preliminaries  

• This tutorial assumes you already know a little about what biological 

networks are. If you don’t, Natasa Przulj’s lecture slides maybe helpful 

 

 http://www.doc.ic.ac.uk/~natasha/341_Lectures_2-3_notes.pdf 

 

• A related ppt for this tutorial can be downloaded at 

 

 http://www.comp.nus.edu.sg/~wongls/talks/sstic2013.pdf 

 

• Brief notes for this tutorial can be downloaded at 

 

 http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorialnotes.pdf  

http://www.doc.ic.ac.uk/~natasha/341_Lectures_2-3_notes.pdf
http://www.doc.ic.ac.uk/~natasha/341_Lectures_2-3_notes.pdf
http://www.doc.ic.ac.uk/~natasha/341_Lectures_2-3_notes.pdf
http://www.doc.ic.ac.uk/~natasha/341_Lectures_2-3_notes.pdf
http://www.doc.ic.ac.uk/~natasha/341_Lectures_2-3_notes.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorial.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorial.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorial.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorialnotes.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorialnotes.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorialnotes.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorialnotes.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorialnotes.pdf
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Outline 



Part 1:  

Delivering Reproducible  

Gene Expression analysis 

Limsoon Wong 
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Gene Expression Measurement  

by Affymetrix GeneChip Array 

Click to 

watch an 

interesting 

movie 

explaining the 

working o 

microarray 

http://www.bio.davidson.edu/Courses/genomics/chip/chip.html
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Application: Disease Subtype Diagnosis 
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Application: Drug Action Detection 
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Which group of genes are the drug affecting on? 
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Typical Analysis Workflow 

• Gene expression 

data collection 

• DE gene selection 

by, e.g., t-statistic 

• Classifier training 

based on selected 

DE genes 

• Apply the classifier 

for diagnosis of 

future cases  

 

Image credit: Golub et al., Science, 286:531–537, 1999 

Terminology: DE gene = differentially expressed gene 
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PCA Plots 

Image credit: Yeoh et al, Cancer Cell, 1:133-143, 2002 
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Part 1: Delivering 

reproducible gene 

expression analysis 

• Some issues in gene 

expression analysis 

 

• Batch effect & 

normalization 

 

• Reproducibility 

– Law of large numbers 

– Use background info 

– Find more consistent 

disease subnetworks 
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Some Headaches 

• Natural fluctuations of gene expression in a 

person 

 

• Noise in experimental protocols 

– Numbers mean diff things in diff batches 

– Numbers mean diff things in data obtained from 

diff platforms 

 

Selected genes may not be meaningful 

– Diff genes get selected in diff expts 
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Natural Fluctuations 

Histogram (1007_s_at | good)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1000 2000 3000 4000 5000 6000 7000

1007_s_at | good

R
e
la

ti
v
e
 f

re
q

u
e
n

c
y

Histogram (1007_s_at | poor)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000 5000 6000

1007_s_at | poor

R
e
la

ti
v
e
 f

re
q

u
e
n

c
y



EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong 

13 

Batch Effects 

• Samples from diff batches are grouped together, 

regardless of subtypes and treatment response 
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Percentage of Overlapping Genes 

• Low % of overlapping 

genes from diff expt in 

general 

 

– Prostate cancer 

• Lapointe et al, 2004 

• Singh et al, 2002 

– Lung cancer 

• Garber et al, 2001 

• Bhattacharjee et al, 

2001 

– DMD 

• Haslett et al, 2002 

• Pescatori et al, 2007 

Datasets DEG POG 

Prostate 

Cancer 

Top 10 0.30 

Top 50 0.14 

Top100 0.15 

Lung 

Cancer 

Top 10 0.00 

Top 50 0.20 

Top100 0.31 

DMD 
Top 10 0.20 

Top 50 0.42 

Top100 0.54 

Zhang et al, Bioinformatics, 2009 
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“Most random gene 

expression 

signatures are 

significantly 

associated with 

breast cancer 

outcome” 

Venet et al., PLoS Comput Biol, 7(10):e1002240, 2011.  
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Part 1: Delivering 

reproducible gene 

expression analysis 

• Some issues in gene 

expression analysis 

 

• Batch effect & 

normalization 

 

• Reproducibility 

– Law of large numbers 

– Use background info 

– Find more consistent 

disease subnetworks 
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Approaches to Normalization 

• Aim of normalization:  

 Reduce variance w/o 

increasing bias 

 

• Scaling method 

– Intensities are scaled 

so that each array 

has same ave value 

– E.g., Affymetrix’s  

 

 

• Transform data so 

that distribution of 

probe intensities is 

same on all arrays 

– E.g., (x ) /  

 

• Quantile normalization 
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Quantile Normalization 

• Given n arrays of length p, 

form X of size p × n where 

each array is a column 

• Sort each column of X to 

give Xsort 

• Take means across rows 

of Xsort and assign this 

mean to each elem in the 

row to get X’sort 

• Get Xnormalized by arranging 

each column of X’sort to 

have same ordering as X 

• Implemented in some 

microarray s/w, e.g., 

EXPANDER 
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After quantile 

normalization 

GEP after removing batch effect by quantile normalization  
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Quantile normalization improves 

cross-batch prediction accuracy in 

gene expression profile analyses  

Chuan Hock Koh, Limsoon Wong. Embracing noise to improve cross-batch 

prediction accuracy. BMC Systems Biology, 6(Suppl 2):S3, December 2012.  
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Caution: “Over 

normalize” signals in 

cancer samples 

Wang et al. Molecular Biosystems, 8:818-827, 2012 

A gene normalized by quantile 

normalization (RMA) was detected as 

down-regulated DE gene, but the original 

probe intensities in cancer samples were 

higher than those in normal samples 

A gene was detected as an up-regulated 

DE gene in the non-normalized data, but 

was not identified as a DE gene in the 

quantile nornmalized data 

Genes are extensively upregulated in 

cancers. Normalizing them mislead 

them to be considered downregulated! 
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Part 1: Delivering 

reproducible gene 

expression analysis 

• Some issues in gene 

expression analysis 

 

• Batch effect & 

normalization 

 

• Reproducibility 

– Law of large numbers 

– Use background info 

– Find more consistent 

disease subnetworks 
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Individual Genes 

• Suppose  

– Each gene has 50% 

chance to be high 

– You have 3 disease 

and 3 normal 

samples 

 

• How many genes on a 

microarray are 

expected to perfectly 

correlate to these 

samples? 

• Prob(a gene is 

correlated) = 1/26 

• # of genes on array = 

100,000 

E(# of correlated 

genes) = 1,562 

 

Many false positives 

• These cannot be 

eliminated based on 

pure statistics! 
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Group of Genes 

• Suppose  

– Each gene has 50% 

chance to be high 

– You have 3 disease 

and 3 normal 

samples 

• What is the chance of 

a group of 5 genes 

being perfectly 

correlated to these 

samples? 

• Prob(group of genes 

correlated) = (1/26)5 

– Good, << 1/26 

• # of groups = 100000C5 

E(# of groups of genes 

correlated) = 100000C5* 

(1/26)5 = 2.6*1012 

 

Even more false 

positives? 

• Perhaps no need to 

consider every group 
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Regulatory Circuits – The Context 

• Each disease phenotype 

has some underlying 

cause 

 

• There is some unifying 

biological theme for genes 

that are truly associated 

with a disease subtype 

 

• Uncertainty  in selected 

genes can be reduced by 

considering biological 

processes of the genes 

 

• The unifying biological 

theme is basis for inferring 

the underlying cause of 

disease subtype 
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Taming false positives by 

considering pathways instead of 

all possible groups 

# of pathways = 

1000 

E(# of pathways 

correlated) = 

1000 * (1/26)5 = 

9.3*10-7 
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Towards More Meaningful Genes 

• ORA  

– Khatri et al 

– Genomics, 2002 

• FCS 

– Pavlidis & Noble 

– PSB 2002 

• GSEA 

– Subramanian et al 

– PNAS, 2005 

• SNet 

– Soh et al  

– BMC Genomics, 2011 

Overlap Analysis 

Direct-Group Analysis 

Network-Based Analysis 
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GO Class 1 

GO Class 2 

GO Class N 

…
 

Significant Class 1 

Non Significant Class 2 

…
 

Significant Class N 

Binomial 

estimation 

S Draghici et al. “Global functional profiling of gene expression”. Genomics, 81(2):98-104, 2003. 

Threshold 

Overlap Analysis: ORA 
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A problem w/ ORA 

• It is essentially testing whether A B is 

significant, where  

– A = the set of differentially expressed genes 

– B = the set of gene in a specified pathway 

 

• The set of differentially expressed genes is 

defined by an arbitrary threshold on, e.g., fold 

change, t-statistic, … 

 

• If you change that threshold, you can change A 

drastically. This has big impact on A B  
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GO Class 1 

GO Class 2 

GO Class N 

…
 

Score 1 

Score 2 

…
 

Score 3 

Permutation 

Test 

Significant Class 1 

Non Significant Class 2 

…
 

Significant Class N 

  


n

k kP
n 1

log
1

P Pavlidis et al. “Using the gene ontology for microarray data mining: A comparison of methods and application to 

age effects in human prefrontal cortex”. Neurochem Res., 29(6):1213-1222, 2004. 

Direct-Group Analysis: FCS 
Ave expression 

of the class 
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FCS: Key variations 

• “Correlation score” 

– Score of a class C = average pair-wise correlation 

of genes in the class C 

 

• “Experimental score” 

– Score of a class C = average of log-transformed p-

values of genes in the class C 

 

• Null distribution to estimate the p-value of the 

scores above is by repeated sampling of random 

sets of genes of the same size as C 

Pavlidis et al., PSB 2002 
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A problem w/ FCS 

as proposed by 

Pavlidis et al in 

PSB 2002 

• Its null hypothesis:  

– “genes in C are indepen-

dently expressed & not 

diff from other genes 

• But … 

– Genes in a pathway are 

not independent 

 Becomes over sensitive 

 

• Solution: generate null 

distribution by randomi-

zing patient class labels 

 

Goeman & Buhlmann. “Analyzing gene expression data in terms of gene 

sets: Methodological issues”. Bioinformatics, 23(8):980-987, 2007 
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Rank Genes 

GO Class 1 

GO Class 2 

GO Class N 

…
 

Assign score to each 

class based on gene 

rank 

Significant Class 1 

Non Significant Class 2 

…
 

Significant Class N 

Permutation test 

Direct-Group Analysis: GSEA 

 iSPhit ,1
 iSPmiss ,1

    iSPiSP misshit ,,max 11 

 iSPhit ,2
 iSPmiss ,2

 iSP Nhit ,  iSP Nmiss ,

A Subramanian et al. “Gene set enrichment analysis: A knowledge-based approach for interpreting 

genome wide expression profiles”. PNAS, 102(43):15545-15550, 2005 



EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong 

34 

GSEA: Key Points 

• “Enrichment score” 

– The degree that the 

genes in gene set C are 

enriched in the extremes 

of ranked list of all genes 

– Measured by 

Komogorov-Smirnov 

statistic 

• Null distribution to estimate the p-value of the 

scores above is by randomizing patient class 

labels 

 

Subramanian et al., PNAS, 102(43):15545-15550, 2005 
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A problem w/ 

GSEA 

• Its enrichment score 

considers all genes in C 

 

• But … 

– Not all branches of a 

large pathway have to 

“go wrong” 

 Cannot detect if only a 

small part of a pathway 

malfunctions 

 

• Solution: Break pathways 

into subnetworks  

 

Wong. “Using Biological Networks in Protein Function Prediction and 

Gene Expression Analysis”. Internet Mathematics, 7(4):274--298, 2011.  
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Network-Based Analysis: SNet 

• Group samples into type D and D 

• Extract & score subnetworks for type D 

– Get list of genes highly expressed in most D samples 

• These genes need not be differentially expressed! 

– Put these genes into pathways 

– Locate connected components (ie., candidate 

subnetworks) from these pathway graphs 

– Score subnetworks on D samples and on D samples 

• For each subnetwork, compute t-statistic on the two 

sets of scores  

• Determine significant subnetworks by permutations 

Soh et al.  “Finding Consistent Disease Subnetworks Across Microarray Datasets”. 

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. 
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SNet: Score Subnetworks 

Soh et al.  “Finding Consistent Disease Subnetworks Across Microarray Datasets”. 

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. 
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SNet: Significant Subnetworks 

• Randomize patient 

samples many times 

• Get t-score for 

subnetworks from the 

randomizations 

• Use these t-scores to 

establish null 

distribution 

• Filter for significant 

subnetworks from real 

samples 

Soh et al.  “Finding Consistent Disease Subnetworks Across Microarray Datasets”. 

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. 
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Genes A, B, C are high in 

phenotype D 

 

A is high in phenotype ~D but B 

and C are not 

A 

B 

C 

Conventional techniques: Gene 

B and Gene C are selected. 

Possible incorrect postulation 

of mutations in gene B and C 

Key Insight # 1 

• SNet does not require 

all the genes in subnet 

to be diff expressed 

 

• It only requires the 

subnet as a whole to 

be diff expressed 

 

• Able to capture entire 

relationship, 

postulating a mutation 

in gene A 
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A branch within pathway 

consisting of genes A, B, C, D and 

E are high in phenotype D 

 

Genes C, D and E not high in 

phenotype ~D 

 

30 other genes not diff expressed 

A 

B 

C 

Conventional techniques: Entire 

network is likely to be missed 

D 

E 

30 other genes 

Key Insight # 2 

• SNet: Able to capture the subnetwork branch 

within the pathway 
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Genes A, B and C are present in 

two separate pathways 

 

A, B and C are high in phenotype 

D, but not high in phenotype ~D 

Conventional techniques:  

 

Both pathways are scored equally. 

So both got selected, resulting in 

pathway 2 being a false positive 

A 

B 

C 

A 

B 

C 

Pathway 1 Pathway 2 

Key Insight # 3 

• SNet: Able to select only pathway 1, which has 

the relevant relationship 
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Let’s see whether SNet gives us 

subnetworks that are  

 

(i) more consistent between 

datasets of the same types of 

disease samples 

 

(ii) larger and more meaningful 
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Better Subnetwork Overlap 

• For each disease, take significant subnetworks 

from one dataset and see if it is also significant in 

the other dataset 

 

 

Soh et al.  “Finding Consistent Disease Subnetworks Across Microarray Datasets”. 

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. 

Overlap = |AB| / min(|A|,|B|) 
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Better Gene Overlaps 

• For each disease, take significant subnetworks 

extracted independently from both datasets and 

see how much their genes overlap 

 

Soh et al.  “Finding Consistent Disease Subnetworks Across Microarray Datasets”. 

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. 

Overlap = |AB| / min(|A|,|B|) 
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Larger Subnetworks 

Soh et al.  “Finding Consistent Disease Subnetworks Across Microarray Datasets”. 

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. 
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Issue #1 

with SNet 

• What if the real important genes are close to, but not 

in, the top % most highly expressed genes? 
 

• Blindly increasing  does not help, as this will bring in 

lots of false-positive genes 
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Issue #2 with SNet 

• SNet weighs genes & scores subnetworks only 

on the basis of phenotype D 
 

• Why not consider phenotype ~D as well? 
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PFSNet 

• Deal with issue #1 of SNet using “fuzzification” 

 

• Deal with issue #2 of SNet using paired t-test 

 

PFSNet – Paired Fuzzy SNet 
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Fuzzification 
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Paired 

T-Test 

• ScorePk
1(S) and ScorePk

2(S) are computed for the 

same sample Pk and subnetwork S  

Can do paired t-test 

– Null hypothesis: If S is irrelevant to D vs ~D, we 

expect ScorePk
1(S) – ScorePk

2(S) to be around 0 



EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong 

51 

PSFNet vs SNet: 

Subnet 

Agreement 

Overlap = |AB| / |AB| 
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PSFNet vs SNet: 

Gene Agreement 

Overlap = |AB| / |AB| 
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PFSNet vs GSEA & GGEA:  

Pathway Agreement 

Overlap = |AB| / |AB| 
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PFSNet vs T-Test:  

Gene Agreement 

Overlap = |AB| / |AB| 
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Testing subnets from PFSNet  

using GSEA & GGEA 
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Top 5 Subnets 
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DMD: Striated Muscle Contraction 
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Leukemias: IL-4 Signaling 

in ALL  
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What have we learned? 

• Common headaches in gene expression analysis 

– Natural fluctuation, protocol noise, batch effect 

 

• Use of biological background info to tame false 

positives 

 

• Overlap analysis  direct-group analysis  

network-based analysis 

 

• Subnetwork-based methods yield more 

consistent and larger disease subnetworks  
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Still a major challenge 

• Suppose there are very few samples, so few that 

you cannot estimate the p-value by permuting 

class labels 

 

• What do you do? 
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Delivering More Powerful  

Proteomic Profile Analysis 

Limsoon Wong 
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Typical Proteomic MS Experiment 

Source: Steen & Mann. The ABC’s and XYZ’s of peptide sequencing. 

Nature Reviews Molecular Cell Biology, 5:699-711, 2004 



EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong 

64 

Kall and Vitek, 2011 

Diagnosis Using Proteomics 
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Step 1:  

Protein Identification by Mass Spec 

S 

e 
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u 

e 
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S#: 1708 RT: 54.47 AV: 1 NL: 5.27E6

T: + c d Full ms2 638.00 [ 165.00 - 1925.00]
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MS/MS instrument 

Database search 
• Sequest, Mascot, InSpect 

de Novo interpretation 
• Lutefisk, Peaks, PepNovo 

Source: Leong Hon Wai 
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Breaking Protein into Peptides,  

and Peptides into Fragment Ions 

• Proteases, e.g. trypsin, break protein into 

peptides 

• A Tandem Mass Spectrometer further breaks the 

peptides down into fragment ions and measures 

the mass of each piece 

• Mass Spectrometer accelerates the fragmented 

ions; heavier ions accelerate slower than lighter 

ones 

• Mass Spectrometer measures mass/charge ratio 

of an ion 

Source: Leong Hon Wai 
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A rather nice 

set of proteomic 

profiles of 

leukemia 

patients 

Source: Hegedus et al. Proteomic analysis of childhood leukemia. Leukemia, 19:1713-1718, 2005 
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Peptide Identification by Mass Spec 

S 

e 

q 

u 

e 

n 

c 

e 

MS/MS instrument 

Database search 
• Sequest, Mascot, InSpect 

de Novo interpretation 
• Lutefisk, Peaks, PepNovo 

Step 2: 

Understanding an  

MS/MS Spectrum 

S#: 1708 RT: 54.47 AV: 1 NL: 5.27E6

T: + c d Full ms2 638.00 [ 165.00 - 1925.00]
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EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong 

69 

Peptide Fragmentation 

• Peptides tend to fragment along the backbone 

• Fragments can also loose neutral chemical 

groups like NH3 and H2O 

H...-HN-CH-CO    .  .   .   NH-CH-CO-NH-CH-CO-…OH 

Ri-1 Ri Ri+1 

H+ 

Prefix Fragment Suffix Fragment 

Collision Induced Dissociation 

Source: Leong Hon Wai 
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Mass Spectra 

G V D L K 

mass 
0 

57 Da = ‘G’  99 Da = ‘V’ 
L K   D V G 

• The peaks in the mass spectrum: 

– Prefix  

– Fragments with neutral losses (-H2O, -NH3) 

– Noise and missing peaks 

and Suffix Fragments 

D 

H
2
O

 

Source: Leong Hon Wai 
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Example MS/MS Spectrum 

Bafna & Edwards. “On de novo interpretation of tandem mass 

spectra for peptide identification”. RECOMB 2003, pp. 9-18 
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Protein Identification with MS/MS 

G V D L K 

mass 

0 

In
te

n
s
it
y
 

mass 
0 

MS/MS 

Peptide 

Identification  
 

Source: Leong Hon Wai 
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Peptide Identification by Mass 

S 

e 

q 

u 

e 

n 

c 

e 

MS/MS instrument 

Database search 
•Sequest, Mascot 

de Novo interpretation 
•Lutefisk, Peaks 

Step 3: Computational Methods 
Database search 

     Sequest, Mascot 

de Novo interpretation 

     Lutefisk, Peaks, PepNovo 

S#: 1708 RT: 54.47 AV: 1 NL: 5.27E6

T: + c d Full ms2 638.00 [ 165.00 - 1925.00]
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Source: Leong Hon Wai 
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Database Search Algorithms  

• Database search 

– Used for spectrum from known peptides 

– Rely on completeness of database 

 

• General Approach 

– Match given spectrum with known peptide 

– Enhanced with advanced statistical analysis and 

complex scoring functions 

 

• Methods 

– SEQUEST, MASCOT, InsPecT, Paragon 
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Theoretical Spectrum for a Peptide 

• Given this peptide 

 

 

 

• Its theoretical spectrum is 

 

 

• Theoretical spectrum is dependent on 

– Set of ion-types considered 

– Larger if multi-charge ions are considered 

 

 

 

 

G V D L K 

mass 
0 

Source: Leong Hon Wai 
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Database Search Algorithm  

Repeat for all the peptides in 

the Database 

S#: 1708 RT: 54.47 AV: 1 NL: 5.27E6

T: + c d Full ms2 638.00 [ 165.00 - 1925.00]

200 400 600 800 1000 1200 1400 1600 1800 2000

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
e

la
tiv

e
 A

b
u

n
d

a
n

ce

850.3

687.3

588.1

851.4
425.0

949.4

326.0
524.9

589.2

1048.6
397.1226.9

1049.6
489.1

629.0

Database 

Search 

Match 

Theoretical 

spectrum 
0 

Database of 

known peptides 

 
MDERHILNM,   KLQWVCSDL, 

PTYWASDL,   ENQIKRSACVM, 

TLACHGGEM,  NGALPQWRT, 

HLLERTKMNVV,   GGPASSDA,   

GGLITGMQSD,  MQPLMNWE, 

ALKIIMNVRT,  AVGELTK,  
HEWAILF,  GHNLWAMNAC, 

GVFGSVLRA,  EKLNKAATYIN.. 

Matching Score 

for this peptide 

Source: Leong Hon Wai 
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• There are also approaches for de novo peptide 

identification. .. 

 

• But I will omit these here 
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Protein Identification 

• After all the peptides have been identified, they 

are grouped into protein identifications 

• Peptide scores are added up to yield protein 

scores  

• Confidence of a particular peptide identification 

increases if other peptides identify the same 

protein and decreases if no other peptides do so 

• Protein identifications based on single peptides 

should only be allowed in exceptional cases 

Source: Steen & Mann. The ABC’s and XYZ’s of peptide sequencing. 

Nature Reviews Molecular Cell Biology, 5:699-711, 2004 
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Cf. Gene Expression Profile Analysis 

• Once the proteins are identified, the proteomic 

profile of a sample can be constructed 

– I.e., which protein is found in the sample and how 

abundant it is 
 

• Similar to gene expression profile. So gene 

expression profile analysis techs can be applied 
 

• Some key differences  

– Proteomic profile has much fewer features 

– Proteomic profiling study has much fewer samples 
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Part 2: Delivering 

more powerful 

proteomic profile 

analysis 

• Common issues in 

proteomic profile 

analysis 

 

• Improving consistency 

– PSP 

– PDS 

 

• Improving coverage 

– CEA 

– PEP 

– Max Link 
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Typical 

frequency 

distribution of 

proteins 

detected in 

proteomic 

profiles 

Only 25 out of 800+ proteins are 

common to all 5 mod-stage HCC 

patients! 
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Issues in Proteomic Profiling 

• Coverage 

• Consistency 

 

Thresholding 

– Somewhat arbitrary 

– Potentially wasteful 

• By raising threshold, 

some info disappears 

 

 

Detected  

protein 

Present but  

undetected  

protein 
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Part 2: Delivering 

more powerful 

proteomic profile 

analysis 

• Common issues in 

proteomic profile 

analysis 

 

• Improving consistency 

– PSP 

– PDS 

 

• Improving coverage 

– CEA 

– PEP 

– Max Link 

 



EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong 

84 

An inspiration from gene expression 

profile analysis 
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Detected  

protein 

Present but  

undetected  

protein 

Intuitive Example 

• Suppose the failure to 

form a protein complex 

causes a disease 

– If any component 

protein is missing, the 

complex can’t form 

Diff patients suffering 

from the disease can 

have a diff protein 

component missing 

–  Construct a profile 

based on complexes? 
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We try an adaptation of SNet on 

proteomics profiles… 

 

“Proteomic Signature Profiling” (PSP) 
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“Threshold-free” Principle of PSP 

Hit rate in a 

ref complex 

Goh et al. Proteomics signature profiling (PSP): A novel contextualization approach for cancer 

proteomics. Journal of Proteome Research. accepted. 
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Applying PSP to a HCC Dataset 

Goh et al. Proteomics signature profiling (PSP): A novel contextualization 

approach for cancer proteomics. Journal of Proteome Research. accepted. 
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Consistency: Samples segregate by 

their classes with high confidence 

Goh et al. Proteomics signature profiling (PSP): A novel contextualization 

approach for cancer proteomics. Journal of Proteome Research. accepted. 



EMS Autumn School on Computational Aspects of Gene Regulation, Oct 2013 Copyright 2013 © Limsoon Wong 

90 

Feature Selection 

Goh et al. Proteomics signature profiling (PSP): A novel contextualization 

approach for cancer proteomics. Journal of Proteome Research. accepted. 
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Top-Ranked Complexes 
Cluster_ID p_val mod_score poor_score cluster_name 

5179 0.000300541 0.513951977 3.159758312 
NCOA6-DNA-PK-Ku-

PARP1 complex 

5235 0.000300541 0.513951977 3.159758312 
WRN-Ku70-Ku80-PARP1 

complex 

1193 0.000300541 0.513951977 3.159758312 Rap1 complex 

159 0 0 2.810927655 
Condensin I-PARP-1-

XRCC1 complex 

2657 0.008815869 0 2.55616281 

ESR1-CDK7-CCNH-

MNAT1-MTA1-HDAC2 

complex 

3067 0.00911641 0 2.55616281 

RNA polymerase II 

complex, incomplete (CDK8 

complex), chromatin 

structure modifying 

1226 0.013323983 0.715352108 2.420592827 H2AX complex I 

5176 0 0.513951977 2.339059313 
MGC1-DNA-PKcs-Ku 

complex 

1189 0 0.513951977 2.339059313 
DNA double-strand break 

end-joining complex 

5251 0 0.513951977 2.339059313 Ku-ORC complex 

2766 0 0.513951977 2.339059313 TERF2-RAP1 complex 

Goh et al. Proteomics signature profiling (PSP): A novel contextualization 

approach for cancer proteomics. Journal of Proteome Research. accepted. 
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Top-Ranked GO Terms 

Goh et al. Proteomics signature profiling (PSP): A novel contextualization 

approach for cancer proteomics. Journal of Proteome Research. accepted. 
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False Positive Rate Analysis 

• Divide 7 poor patients into 2 

groups 

– Significant complexes produced 

by PSP here are false positives 

• Repeat many times to get dull 

distribution 

– Median = 40, mode = 6 

 

• Cf. 523 complexes in CORUM 

(size ≥4) used in PSP. At p ≤ 5%,  

523 * 5%   27 false positives 

expected 

Goh et al. Enhancing utility of proteomics signature profiling (PSP) with pathway derived 

subnets (PDSs), performance analysis and specialized ontologies. BMC Genomcs, to appear.  
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A Shortcoming of PSP 

• Protein complex databases are still relatively 

small & incomplete… 

 

Augment the set of protein complexes by protein 

clusters predicted from PPI networks! 

 

• Many protein complex prediction methods 

– CFinder, Adamcsek et al. Bioinformatics, 22:1021--1023, 2006 

– CMC, Liu et al. Bioinformatics, 25:1891--1897, 2009 

– CFA, Habibi et al. BMC Systems Biology, 4:129, 2010 

– … 
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Another Shortcoming of PSP 

• Protein complexes provided a biologically-rich 

feature set for PSP 

– But it  is only one aspect of biological function 

 

• The other aspect is biological pathways 

– But coverage issue of proteomic profiles create 

lots of “holes” 

 

• Can we extract and use subnets from pathways? 
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Another adaptation of SNet on 

proteomics profiles… 

 

“Pathway-Derived Subnets” (PDS) 
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Pathway-Derived Subnets (PDS) 

• Identify the set Si of proteins detected in more 

than 50% of samples having phenotype Pi 

– Do this for each phenotype P1, …, Pk 
 

• Overlay i Si to pathways 
 

• Remove nodes not covered by i Si  

This fragments pathways into subnets 
 

• Use these subnets to form “proteomic signature 

profiles” 

– The rest of the steps is same as PSP 
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PDS consistently segregates 

mod vs poor patients  
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What have we learned? 

• PSP / PDS can deal with consistency issues in 

proteomics 

 

• GO term analysis also indicates that PSP / PDS 

select clusters that play integral roles in cancer  

 

• PSP / PDS reveal many potential clusters and is 

not constrained by any prior arbitrary filtering 

which is a common first step in conventional 

analytical approaches 
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Part 2: Delivering 

more powerful 

proteomic profile 

analysis 

• Common issues in 

proteomic profile 

analysis 

 

• Improving consistency 

– PSP, PDS 

 

• Improving coverage 

– FCS, 

– CEA, PEP 

– Max Link 
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Peptide & protein identification by MS is 

still far from perfect 

• “… peptides with low scores are, nevertheless, 

often correct, so manual validation of such hits 

can often ‘rescue’ the identification of important 

proteins.” 

 Steen & Mann. The ABC’s and XYZ’s of peptide sequencing. 

Nature Reviews Molecular Cell Biology, 5:699-711, 2004 
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Detected  

protein 

Present but  

undetected  

protein 

Typical proteomic 

profiling misses 

many proteins 

 

Need to improve 

coverage! 
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FCS 

• Rescue undetected proteins from high-scoring 

protein complexes  

 

• Why?  

 

 

 

 

 

• Shortcoming: Databases of known complexes are 

still small 

Let A, B, C, D and E be the 5 proteins that function as a complex 

and thus are normally correlated in their expression. Suppose only 

A is not detected and all of B–E are detected. Suppose the screen 

has 50% reliability. Then, A’s chance of being false negative is 

50%, & the chance of B–E all being false positives is (50%)4=6%. 

Hence, it is almost 10x more likely that A is false negative than B–

E all being false positives. 
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CEA 

• Generate cliques from PPIN 

• Rescue undetected proteins from cliques with 

containing many high-confidence proteins  

 

• Reason: Cliques in a PPIN often correspond to 

proteins at the core of complexes 

 

• Shortcoming: Cliques are too strict 

Use more power complex prediction methods 

Li et al. Network-assisted protein identification and data interpretation 

in shotgun proteomics. Mol. Syst. Biol., 5:303, 2009. 
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PEP 

• Map high-confidence proteins to PPIN 

• Extract immediate neighbourhood & predict 

protein complexes using CFinder 

• Rescue undetected proteins from high-ranking 

predicted complexes 

 

• Reason: Exploit powerful protein complex 

prediction methods 

 

• Shortcoming: Hard to predict protein complexes 

– Do we need to know all the proteins a complex? 

Goh et al. A Network-based pipeline for analyzing MS data---An application 

towards liver cancer. Journal of Proteome Research, 10(5):2261--2272, May 2011 
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MaxLink 

• Map high-confidence proteins (“seeds”) to PPIN 

• Identify proteins that talk to many seeds but few 

non-seeds 

• Rescue these proteins 

 

• Reason: Proteins interacting with many seeds are 

likely to be part of the same complex as these 

seeds 

 

• Shortcoming: Likely to have more false-positives 

Goh et al. A Network-based maximum-link approach towards MS identifies potentially important 

roles for undetected ARRB1/2 and ACTB in liver cancer progression. IJBRA, 8(3/4):155-170, 2012 
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“Validation” of Rescued Proteins 

• Direct validation 

– Use the original mass spectra to verify the quality 

of the corresponding y- and b-ion assignments 

– Immunological assay, etc. 

 

• Indirect validation 

– Check whether recovered proteins have GO terms 

that are enriched in the list of seeds 

– Check whether recovered proteins show a pattern 

of differential expression betw disease vs normal 

samples that is similar to that shown by the seeds 
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An example using the PEP approach 

to recover undetected proteins … 
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Background 

• HCC (Hepatocellular carcinoma) 

– Classified into 3 phases: differentiated, moderately 

differentiated and poorly differentiated 

 

• Mass Spectrometry 

– iTRAQ (Isobaric Tag for Relative and Absolute 

Quantitation) 

– Coupled with 2D LC MS/MS 

– Popular because of ability to run 8 concurrent 

samples in one go 
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Poor and mod proteins are widely 

interspersed 

• In the subnet of 

reported proteins 

in mod and poor, 

poor and mod 

genes are well 

mixed 

 
Mod and Poor 

Poor only 
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PEP Workflow 

Identify the “seeds” 

Ratio < 0.8 and > 1.25 for Mod (min 3 patients) 

Ratio < 0.8 and > 1.25 for Poor (min 4 patients) 

Goh et al. A Network-based pipeline for 

analyzing MS data---An application towards 

liver cancer. Journal of Proteome Research, 

10(5):2261--2272, May 2011 
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Expansion to include neighbors 

greatly improves coverage 

W/o expansion, 

4 k3 cliques were returned 

After  expansion,  

~120 clusters were returned 

Goh et al. A Network-based pipeline for analyzing MS data---An application towards 

liver cancer. Journal of Proteome Research, 10(5):2261--2272, 2011 
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Returning to Mass Spectra 

• Test set: Several proteins (ACTR2, CDC42, 

GNB2L1, KIF5B, PPP2R1A, PKACA and TOP1) 

from top 34 clusters not detected by Paragon 

 

• The test: Examine their GPS and Mascot search 

results and their MS/MS-to-peptide assignments  

 

• Assessment of MS/MS spectra of their top ranked 

peptides revealed accurate y- and b-ion 

assignments and were of good quality (p < 0.05)  

 In silico expansion verified 

Goh et al. A Network-based pipeline for analyzing MS data---An application towards 

liver cancer. Journal of Proteome Research, 10(5):2261--2272, 2011 
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Successful Verification 
CDC42 ACTR2 

Goh et al. A Network-based pipeline for analyzing MS data---An application towards 

liver cancer. Journal of Proteome Research, 10(5):2261--2272, 2011 
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Another Experiment 

• Valporic acid (VPA)-treated mice vs control 

– VPA or vehicle injected every 12 hours into 

postnatal day-56 adult mice for 2 days 

– Role of VPA in epigenetic remodeling 

 

• MS was scanned against IPI rat db in round #1 

– 291 proteins identified 

• MS was scanned against UniProtkb in round #2 

– 498 additional proteins identified 

 

• All recovery methods ran on round #1 data and 

the recovered proteins checked against round #2 
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Moderate level of 

agreement of 

reported proteins 

between various 

recovery methods 
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Performance Comparison 

• Looks like running FCS on real complexes is able 

to recover more proteins and more accurately 
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From 

proteomics to 

metabolomics 

& lipidomics: 

Can the same 

network-based 

approach be 

applied? 
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