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Proteomics vs transcriptomics 

• Proteomic profile 

– Which protein is 

found in the sample 

– How abundant it is 

 

• Similar to gene 

expression profile. So 

typical gene 

expression profile 

analysis methods can 

be applied in theory… 

• Key differences 

– Profiling 

• Complexity: 20k genes 

vs 500k proteins 

• Dynamic range: > 10 

orders of magnitude in 

plasma. Proteins 

cannot be amplified 

– Analysis 

• Much fewer features 

• Difficult to reproduce  

• Much fewer samples 

• Unstable quantitation 
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Issues in proteomics: 

 Coverage and consistency 

Technical incompleteness How it affects real data 

Only 25 out of 800+ proteins are common 

to all 5 mod-stage HCC patients! 

Per sample 



Using protein complexes to enhance 

proteomics: Basic ideas 
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A postulate and some math 

• Postulate: The chance of a protein complex being present in a 

sample is proportional to the fraction of its constituent proteins 

being correctly reported in the sample 

 

• Suppose proteomics screen has 75% reliability; a complex 

comprises proteins A, B, C, D, E; and screen reports A, B, C, D only 
 

 Complex has 60% (= 0.75 * 4 / 5) chance to be present 
 

 The unreported protein E also has  60% chance to be present, as 

presence of the complex implies presence of all its constituents 

 improving coverage 
 

 Each of the reported proteins (A, B, C, and D) individually has 90% 

(= 100% * 0.6 + 75% * 0.4) chance of being true positive, whereas a 

reported protein that is isolated has a lower 75% chance of being 

true positive 

 removing noise 



Talk given at  KSW2016, KAIST Copyright 2016 © Limsoon Wong 

6 

Detected  

protein 

Present but  

undetected  

protein 

An intuition 

• Suppose the failure to 

form a protein complex 

causes a disease 

– If any component 

protein is missing, the 

complex can’t form 

Diff patients suffering 

from the disease can 

have a diff protein 

component missing 

–  Construct a profile 

based on complexes? 
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Reference complexes 

• In this talk, human complexes (of size at least 5) 

from CORUM are used as reference complexes 

 

 

• It is possible to use subnets generated from 

pathway and PPI databases. However these such 

subnets vary significantly depending on network 

databases and subnet-generation algo used 

So I do not 

consider these… 



Improving coverage in  

proteomic profiles 
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Lots of missing values  

in real proteomics datasets 

Guo et al. Nature Medicine, 21, 407, 2015 
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Missing values 

are not due 

mostly to low-

abundance 

proteins 

Webb-Robertson, JPR, 14(5):1993-2001, 2015  
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Current 

imputation 

methods 

don’t work 

very well 

CV(RMSE) ~ 20% 

at 75th percentile 

Webb-Robertson, JPR, 14(5):1993-2001, 2015  
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FCS 

• Rescue undetected 

proteins from high-scoring 

protein complexes  
 

• Goh et al. Comparative network-based 

recovery analysis and proteomic profiling of 

neurological changes in valporic acid-treated 

mice. JPR, 12(5):2116-2127, 2013 
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Other methods for  

rescuing missing proteins 

• CEA 

– Generate cliques from PPIN 

– Rescue missing proteins 

from cliques containing lots 

of high-confidence proteins  
– Li et al. Network-assisted protein identification 

and data interpretation in shotgun proteomics. 

Mol. Syst. Biol., 5:303, 2009 

 

• MaxLink 

– Map high-confidence 

proteins (“seeds”) to PPIN 

– Rescue proteins that 

interact many seeds but few 

non-seeds 
– Goh et al.  Int J Bioinformatics Research and 

Applications, 8(3/4):155-170, 2012 

• PEP 

– Map high-confidence 

proteins to PPIN 

– Extract neighbourhood & 

predict protein complexes 

using CFinder 

– Rescue undetected proteins 

from high-ranking predicted 

complexes 
– Goh et al. A Network-based pipeline for 

analyzing MS data---An application towards 

liver cancer. J. Proteome Research, 

10(5):2261-2272, 2011 
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iTRAQ experiment 

• Valporic acid (VPA)-treated mice vs control 

– VPA or vehicle injected every 12 hours into 

postnatal day-56 adult mice for 2 days 

– Role of VPA in epigenetic remodeling 

 

• MS was scanned against IPI rat db in round #1 

– 291 proteins identified 

• MS was scanned against UniProtkb in round #2 

– 498 additional proteins identified 

 

• All recovery methods ran on round #1 data and 

the recovered proteins checked against round #2 

Goh et al. Comparative network-based recovery analysis and proteomic profiling of neurological 

changes in valporic acid-treated mice. JPR, 12(5):2116-2127, 2013 
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Moderate level of 

agreement of 

reported proteins 

between various 

recovery methods 
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Performance comparison 

• Looks like running FCS on real complexes is able 

to recover more proteins and more accurately 
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SWATH experiment 

• If there are technical replicates, they should have 

reported the same proteins. So we can run FCS 

on one replica, and see whether the predicted 

missing proteins show up in other replicas 
  

• If there are multiple biological replicates (i.e. 

patients of the same phenotype), we can run FCS 

on one of them, and check on the others 
 

• Proteomics data used: Renal cancer 
– Guo et al. Nature Medicine, 21(4):407-413, 2015 

– 6 pairs of normal vs cancer ccRCC tissues 

– SWATH in duplicates 
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~20% of predicted missing proteins 

are supported by 1 reported 

peptide in the screen 
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~20% of predicted missing proteins 

are supported by 1 reported 

peptide in the replicate 
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But ~25% of predicted missing 

proteins are supported by peptides in 

the screen or replicate 



Talk given at  KSW2016, KAIST Copyright 2016 © Limsoon Wong 

22 

~25% FCS-predicted missing proteins  

are supported by peptides in screen/replicate.  

Can we do better? 

Recall this postulate:  
 

The chance of a protein complex being present is proportional 

to the fraction of its protein members being correctly reported 

in the screen 

PROTREC: Rank predicted missing proteins by 
 

Prob(Protein p is present but unreported) =  

Maxcomplex C contains p Prob(p is present | C is present) * Prob(C is 

present) + Prob(p is present | C is absent) * Prob(C is absent) 

Presence of complex implies 

presence of all member proteins 
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Ranking by 

PROTREC 

significantly 

improves 

precision of 

FCS 

predictions 



Improving consistency in  

proteomic profile analysis 
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Proteomic profiles generally not 

consistent, even for technical replicates 

• A human kidney tissue 
– Guo et al. Nature Medicine, 21(4):407-413, 2015 

– Digested in quadruplicates 

– Analyzed in triplicates 

 

• Clustering by proteins 

– Correlation betw replicates 

is not good (~0.4) 

– Technical replicates of the 

same biological replicate 

are not tightly clustered 
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qPSP 

• Features are complexes 

 

• Feature values are fuzzy 

weighted proportion of 

proteins in a complex 
– score(C,Si) = pC fs(p,Si) / |C| 

 

• Complex C is significant 

if {score(C,Si) | Si  A} is 

very different by t-test 

from {score(C,Si) | Si  

B}  

Goh et al. Quantitative proteomics signature profiling based on network 

contextualization. Biology Direct, 10:71. 2015 
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Consistency of qPSP 

• Clustering of 

benchmarking control data 

based on protein 

complexes (i.e. qPSP) 

– Correlation betw 

replicates is >0.95 

• Cf. 0.4 based on proteins 

– Technical replicates are 

better clustered 
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Application to  

renal & colorectal cancers 



Further improving consistency, as well as 

catching significant low-abundance 

complexes 
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ESSNet, adapted for proteomics 

 

• Let gi be a protein in a 

given protein complex 

• Let pj be a patient 

• Let qk be a normal 

 

• Let i,j,k = Expr(gi,pj) – 

Expr(gi,qk) 

 

• Test whether i,j,k is a 

distribution with mean 0 

• Null hypothesis is “Complex 

C is irrelevant to the 

difference between patients 

and normals, and the 

proteins in C behave 

similarly in patients and 

normals” 

 

• No need to restrict to most 

abundant proteins 

 Potential to reliably detect 

low-abundance but 

differential proteins 

Lim et al. A quantum leap in the reproducibility, precision, and 

sensitivity of gene expression profile analysis even when 

sample size is extremely small. JBCB, 13(4):1550018, 2015 
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Five methods to compare with 

• Network-based methods 

– Hypergeometric enrichment (HE) 

– Direct group analysis (DG), similar to GSEA 

– qPSP, Goh et al., Biology Direct, 10:71, 2015 

– PFSNET, Goh & Wong, JBCB, 14(5):16500293, 2016 

 

• Standard t-test on individual proteins (SP) 
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Simulated data 

• Simulated datasets from Langley and Mayr  
– D.1.2 is from study of proteomic changes resulting from addition of 

exogenous matrix metallopeptidase (3 control, 3 test) 

– D2.2 is from a study of hibernating arctic squirrels (4 control, 4 test) 
 

• Both D1.2 and D2.2 have 100 simulated datasets, 

each with 20% significant features 
– Effect sizes of these differential features are sampled from one out 

of five possibilities (20%, 50%, 80%, 100% and 200%), increased in 

one class and not in the other 
 

• Significant artificial complexes are constructed 

with various level of purity (i.e. proportion of 

significant proteins in the complex) 
– Equal # of non-significant complexes are constructed as well 

Langley & Mayr, J. Proteomics, 129:83-92, 2015 



Talk given at  KSW2016, KAIST Copyright 2016 © Limsoon Wong 

33 

SP shows poor 

performance on 

simulated data. 

 

Can network-

based methods 

do better? 
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ESSNET shows excellent 

recall/precision on simulated data 
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Renal cancer control data (RCC) 

• 12 runs originating from a human kidney tissue 

digested in quadruplicates and analyzed in 

triplicates 

 

• Excellent for evaluating false-positive rates of 

feature-selection methods 

– Randomly split the 12 runs into two groups. 

Report of any significant features between the 

groups must be false positives 

Guo et al. Nature Medicine, 21(4):407-413, 2015 
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All 

methods 

control 

false 

positives 

well 

Dash line corresponds to expected # of false positives at alpha 0.05 (~30 complexes) 
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Renal cancer data (RC) 

• 12 samples are run twice so that we have 

technical replicates over 6 normal and 6 cancer 

tissues 

 

• Excellent opportunity for testing reproducibility 

of feature-selection methods 

– A good method should report similar feature sets 

between replicates 

 

• Can also test feature-selection stability 

– Apply feature-selection method on subsamples 

and see whether the same features get selected 

Guo et al. Nature Medicine, 21(4):407-413, 2015 
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ESSNET & PFSNET show  

excellent reproducibility 

This table is computed 

on by applying the 

methods on the full RC 

dataset 
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ESSNET & 

PFSNET 

show  

excellent 

stability 
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ESSNET & 

PFSNET 

show  

excellent 

stability 
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ESSNET can assay low-abundance 

complexes that qPSP cannot 

A: QPSP-ESSNET 

significant-

complex overlaps  

 

B: P-value 

distribution for 

overlapping and 

non-overlapping 

QPSP complexes.  

 

C: Sampling 

abundance 

distribution. The 

left panel is a 

zoom-in of the 

right. The y-axis is 

the protein 

abundance while 

the four categories 

are the distribution 

of abundances of 

complexes found 

in QPSP, 

ESSNET, 

ESSNET unique 

(complement), and 

all proteins in RC. 
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ESSNET can assay low-abundance 

complexes that PFSNET cannot 

Of the 5 ESSNET-

unique complexes, 

PFSNET can detect 4; 

the missed complex 

consists entirely of low-

abundance proteins. 

 

If p-value threshold is 

adjusted by Benjamini-

Hochberg 5% FDR, 

PFSNET can detect 

only 3 of the 5 ESSNET-

unique complexes while 

ESSNET continues to 

detect them all. 



Concluding Remarks 
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In conclusion… 

 

Contextualization (into complexes) can 

deal with coverage and consistency 

issues in proteomics 
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