Identifying Protein Complexes from
Protein Interactome Maps
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* Motivation and Approaches

* PPI Network Cleansing based on PPI Topology
— CD-Distance, FS-Weight

* Impact of Cleansing on PPI-based Protein
Complex Prediction Methods

* Recent Improvement to PPl Network Cleansing
and PPI-Based Protein Complex Prediction




Motivation &
Approach

Nature of high-throughput

PPI expts

— Proteins are taken out of
their natural context!

Motivation

Can a protein interact with
S0 many proteins
simultaneously?

A big “hub” and its
“spokes” should probably
be decomposed into
subclusters
— Each subcluster is a set
proteins that interact in
the same space and time

— Viz., a protein complex
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Approaches to PPI|-Based ._.'E'.._L_E
Protein Complex Prediction

RNSC MCODE MCL
Type Clustering, Local Flow
local search neighborhood |simulation
cost based density search
Multiple No Yes No
assignment
of protein
Weighted No No Yes
edge

* Issue: recall vs precision has to be improved

EINUS
Possible Cause of Low Recall/Precisigrr—

Experimental method category* MNumber of interacting pairs Co-localization” (%) Co-cellular-role® (%)
All: All methods 9347 64 49
A: Small scale Y2H 1861 73 62
AD: GY2ZH Uetz et al. (published results) 956 66 45
Al: GY2ZH Uetz et al. (unpublished results) 516 53 33
A2 GYZH lto et al. (core) 798 64 40
A3 GY2H Ito et al. (all) 3655 41 15
B: Physical methods 71 98 95
C: Genetic methods 1052 77 75
D1: Biochemical, in vitro 614 87 79
D2: Biochemical, chromatography 648 93 88
El: Immunological, direct 1025 a0 a0
E2: Immunological, indirect 34 100 a3
2M: Two different methods 3 87 85
3M: Three different methods 1212 92 94
4M: Four different methods 570 95 93

- N
Sprinzak et al., JMB, 327:919-923, 2003 Large disagreement betw methods

» High level of noise
= Need to clean up before protein complex prediction




PPl Network Cleansing
based on PPI Topology

Guilt by Association of
Common Interaction Partners

* Two proteins participating in

same biological process/ Fraction of neighbours with Functional Similarity
cellular compartment are likely 1 at FSWeight threshold 02
to interact 091 psi-s2
0.8 1 DSs2-81
.71 msinsz
» Two proteins having a large g ::::
proportion of their interaction & o4,

. - 0.3
partners in common are likely to |

participate in same biological 0.1
process/ cellular compartment 0 -
0 1 2 3 4 5

MIPS Annotation Level

= Two proteins having a large Chua et al, Bioinformatics, 22:1623--1630, July 2006
proportion of their interaction
partners in common are likely to
directly interact also




e
Measures that correlate with function %

homogeneity and localization coherence

+ CD-distance & FS-Weight

« Two proteins participating — Based on concept that two
in same biological process proteins with many
are more likely to interact interaction partners in
common are likely to be in
. Two proteins in the same same biological process &

cellular compartments are localize to the same
more likely to interact compartment

— Correlate well with
functional homogeneity
and localization coherence

FINUS
Czekanowski-Dice Distance -

* Functional distance between two proteins eunea, 2

D(U.v)= IN,AN, |
"INy UN|+N, AN

* N, is the set of interacting partners of k
* X A Yis symmetric diff betw two sets X and Y
» Greater weight given to similarity

= Similarity can be defined as
2X
2X+(Y +2)

S(u,v)=1-D(u,v) =
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FS-Weight G

* FS-Weight (chuaetal, 200

2N, "N, 2N, "N,|
S(u,v)= x
\NU—NV\+2(NumNV\ \NV—NU\+qNumNV\

* N, is the set of interacting partners of k
* Greater weight given to similarity

= Rewriting this as

S( ,v): 2X y 2X
2X+Y 2X+Z

EBANUS
Comrelation with Functional Similarity Correlation with Expression Profile
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Impact of Cleansing on PPI-Based
Protein Complex Prediction Methods

RNSC MCODE MCL
Type Clustering, Local Flow
local search neighborhood |simulation
cost based density search
Multiple No Yes No
assignment
of protein
Weighted No No Yes
edge

» Issue: recall vs precision has to be improved
* Does a “cleaner” PPI network help?
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Cleaning PPI Network by FS-Weight '-‘*"--“‘““'

@ O <) @)
e
* Modify existing PPl network as follow

— Remove level-1 interactions with low FS-weight
— Add level-2 interactions with high FS-weight

* Then run RNSC, MCODE, MCL, & PCP

%? NUS
; ol
Experiments
PPI datasets « Validation criteria
— PPI[BioGRID], BioGRID
db from Stark et al., 2006 A 2
overlap(S,C) :ll\\//S | |\\//C||
Gold standards S ¢
— PC,y4, Protein where .
complexes from MIPS — S = predicted cluster
03/30/2004 — C = true complex
- E(S;rﬁop())ise ngﬁ')':n MIPS -V, = vertices of subgraph
X .
05/18/2006 defined by X
Overlap(S,C) > 0.25is
considered a correct
prediction




SINUS
Validation on PC,, N

Precision vs Recall Pre sision vs Recall Presision vs Recall
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d) Original level-1 PPI
e) Original level-1 PPI and filtered level-2 PPI
f) Filtered level-1 and level-2 PPI

* Precision is improved in all methods

TINUS
Validation on PC,yys =

Precision vs Recall Precision vs Recall
{Biogrid, Fittered L18L2 PC2004 (Biogrid, Filtered L1&L2 / PC2008)
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* When predictions are validated against PC,,
precision of all algo improved

* Many “false positives” wrt PC,,,, are actually real
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PCP Algorithm G

* Find all max cliques in the modified PPI network

— If two cliques overlap, distribute the overlapped
nodes such that both cliques have larger average
FS-weight

* Merge resulting (partial) cliques with good inter-
cluster density

ICD(S{!.S!J): ZSFS("—-J') ielV,-V,)jel, _V;)*(LJ{)E E
IANARIANA

* Modify the PPI network by treating the merged
partial cliques as vertices

* Iterate the steps above
Chua et al, JBCB, 6:435-466, 2008

INUS
Robustness of PCP Against Noise~” =~

Precision vs Recall against Random Precision vs Recall against Random Precision vs Recall against Random
Additons Deletions Reroutes
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 PCPis robust against 10-50% random additions
— FW-weight is able to remove spurious interactions
* Random deletions negatively impacts recall

— Increased sparseness caused edges to received
smaller FS-weight; more interactions got filtered

— Led to insufficient info to form good cliques
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== mm mm PCoyy complex
=— = = MCL cluster
——————— RNSC cluster
PCP cluster

PCygps complex
PCP cluster

PCypgq complex
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PCP
Prediction
Example 1

PCP Prediction

Example 2

NUS
&=

11



Conclusions

* Precision of protein complex prediction can be
improved by

— PPI network augmented with level-2 interactions
— PPI network cleansed by FS-weight

Recent Improvement to
PPI Network Cleansing & PPI-Based
Protein Complex Prediction
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Expectation Maximization ""‘""‘"‘"’

e CD-distance

2X
2X+(Y +2)

« Xis #common neighbours of 1st & 2"d proteins
* Y/Zis # unique neighbours of 1s/2"d protein

S(u,v)=1-D(u,v) =

* These counts are noisy

* Use CD-distance to weigh these counts and
recompute CD-distance

= lIterated CD-distance, ditto for FS-weight

= NUS
Local Score: lterated CD-Distance

 CD-Distance

2X
2X+(Y +2)

* Define “local score” by iterating CD-distance

S(u,v)=1-D(u,v) =

.R‘—l . =1
u,k(u v) = ZIENuﬂh wy(w,u +th\ m\' wy~ (w,v)
L. v) = -
Z.L'ENu Ufi ' ’l u +ZL(:\' uL )+)\h+}\k

where ui Yz, u) is the score of (z,u) in the (k-1)-th iteration, w (zow)=11f (z,u) €
E and w (z,u)=0if (z,u) ¢ E. The two terms, A\* and A*, are used to penalize

proteins with very few neighhbors
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Validation of Iterated CD-Distanc’*’"—"‘“"

* DIP yeast dataset

— Functional homogeneity is 32.6% for PPIs where
both proteins have functional annotations and
3.4% over all possible PPls

— Localization coherence is 54.7% for PPIs where
both proteins have localization annotations and
4.9% over all possible PPIs

* Let’'s see how much better iterated CD-distance/
FS-weight is over the baseline above, as well as
over the original CD-distance/ FS-weight

Performance of Iterated CD—DistanceE...._l_E

wrt Functional Homogeneity

Cf. ave functional homogeneity of protein pairs in DIP < 4%
ave functional homogeneity of PPl in DIP < 33%

1 — 1
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o 0.1 0.2 0.3 0.4 0.5 0.8 a 1000 2000 3000 4000 5000
Coverage #oredicted interactions

» Iterated CD-distance achieves best performance
wrt functional homogeneity at k=2
» Ditto wrt localization coherence (not shown)
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Performance of Iterated FS-Weight ,'E'.._'“_E
wrt Functional Homogeneity

Cf. ave functional homogeneity of protein pairs in DIP < 4%
ave functional homogeneity of PPI in DIP < 33%
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+ lterated FS-weight achieves best performance wrt
functional homogeneity at k=2

» Ditto wrt localization coherence (not shown)

Interacting Motif Pairs

* If one group of proteins
interact with another group, it
is likely that the interactions
are mediated by an
underlying complementary YEO24¢
domain/motif pair

Yvs167

= If a protein pair participates in >
an interacting protein group Yerl3ow
pair whose two groups are Yprisaw
densely connected, then the Bdcl

interaction between these two
proteins is more likely to be
true




3]
ERANUS
Global Score &=

* Find all protein group pairs V, and V, that are
sufficiently large and have dense interactions

* Then define “global score” of a PPl based on
interacting confidence of the interacting group
pairs it participates in and the degree of its
participation

2

N, NVy
+ |Nu|

2IN, NV}
Vil+ IV,

we(w,v) = max{conf(Vy, V) - lueVi,veVa}

where conf(V;, V,) is the ratio of # of interactions betw V, and V, to # of distinct protein
pairs contained in (V;, V,)

BE& E}é
Combining Local and Global Scores”*

* Local score
k—1 k—1
Yven,on, W (@) 30 oy, W (@)
k— k— . .
> oren, Wr Yo, u) + > oven, Wr Yo, v) £ Nk £ 2K
* Global score

wh (u,v) =

AN, NV, 2N, NV
[Val + [Nul - [Vi] + [Ny

welu.v) = max{conf(17.15) lu eV, v el

Where conf(V,, V,) is the ratio of # of interactions betw V; and V, to # of distinct protein pairs contained in (V,, V,)

e Combined measure

LGTweight(u,v) = w? (u, v) + wea(u, v).

Liu & Wong, GIW 2008
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Validating the Scores &z
* Retain protein group pairs (V,, V,) where

- V,, V, have at least 5 members each

— V, proteins have =2 1 common partner in V,

— Conf(V,,V,) 20.1

— P-value for such protein group pairs is < 0.005

+ Use DIP yeast dataset to check functional
homogeneity and localization coherence of PPI
ranked by our scores

* Use DIP yeast dataset in 5-fold cross validation

o

ENUS
|dentifying False Positive PPls ==

Cf. ave localization coherence of protein pairs in DIP < 5%
ave localization coherence of PPI in DIP < 55%

1 B
e
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 LGTweight & iterated CD-distance are
improvement over previous measures for
assessing PPl reliability
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ZEANUS
Identifying False Negative PPlIs ""*"-'"’""

Cf. ave localization coherence of protein pairs in DIP < 5%
ave localization coherence of PPI in DIP < 55%
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= Global score —& o Global score &
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 LGTweight & iterated CD-distance are
improvement over previous measures for
predicting new PPlIs

ZNUS
5-Fold X-Validation -

1 j T T T T
Ei* LGTweight —+—
A Gl_logal score ¥
0.8 # obal score —@— |
FSweight ---o--
CD-distance -

Precision

0 01 02 0.3 04 05
Sensitivity

* LGTweight, iterated CD-distance, & our global
score are improvement over previous measures
for identifying false positive & false negative PPIs
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Now we can make protein complex ,'E'.._'“_E
prediction as follows...

* Remove noise edges in the input PPI network by
discarding edges having low score/LGTweight

« Augment the input PPI network by addition of
missing edges having high score/LGTweight

» Predict protein complex by simple clique finding!

ENUS
Validation Experiments =

* Matching a predicted complex S with a true
complex C

— Vs: set of proteins in S
— Vc: set of proteins in C
— Overlap(S, C) = |[Vs nVc|? /|Vs||Vc|
— Overlap(S, C) >0.25
« Evaluation
— Precision = matched predictions / total predictions
— Recall = matched complexes / total complexes
+ Datasets: BioGrid yeast
— #interactions: 38555
— #interactions with >0 common neighbor: 27940
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FSweight vs lterated FSweight

* Remove interactions that have no common neighbors

* Add N new interactions to the remaining network, N=0,
1000, 5000, 10000, 20000

| 0 & X 0 ——
W 1000 - B- X >% ;888 -a-
3 5000 —o - | 0.8 H1 —o - |
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Recall Recall

Iterated FSweight FSweight

T

NUS
lterated CD-Distance vs FSWeight” ™

* Remove interactions that have no common neighbors

* Add N new interactions to the remaining network, N=0,
1000, 5000, 10000, 20000

Precision
Precision

Recall

20000 new interactions added

Iterative adjusted CD-distance
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What have we learned?

* Guilt by association of common interaction
partners is useful for predicting

— PPI cellular localization
— Missing PPIs
— Protein complexes
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Any Question?
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NUS
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