Increasing Confidence of Protein-Protein Interactomes

Limsoon Wong

(Based on work of/with Jin Chen, Kenny Chua, Wynne Hsu, Mong Li Lee, See-Kiong Ng, Rintaro Salto, Wing-Kin Sung)

IPM-NUS Workshop, Nov 2008

Outline

- Reliability of experimental protein-protein interaction data
- Identification of false positives
 - Interaction generality
 - Interaction generality 2
 - Interaction pathway reliability
 - FS Weight
 - Meso-scale network motifs

PM-NUS Workshop, Nov 2008

Figure credit: Jeong et al. 2001

IPM-NUS Workshop, Nov 2008

Why Protein Interactions?

- Complete genomes are now available
- Knowing the genes is not enough to understand how biology functions
- Proteins, not genes, are responsible for many cellular activities
- Proteins function by interacting w/ other proteins and biomolecules

GENOME

PROTEOME

"INTERACTOME"

Slide credit: See-Kiong Ng

IPM-NUS Workshop, Nov 2008

- Yeast two-hybrid assays
- Mass spec of purified complexes (e.g., TAP)
- Correlated mRNA expression
- Genetic interactions (e.g., synthetic lethality)
- •

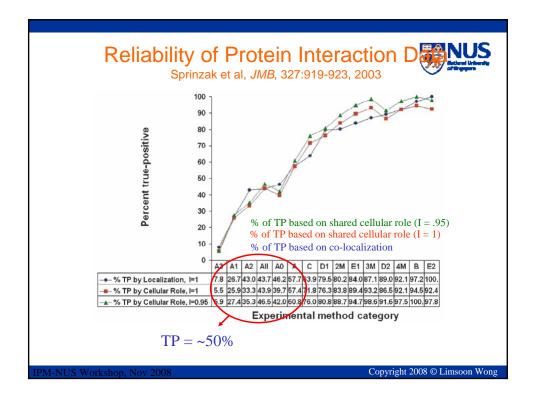
FACT: Generating <u>large amounts</u> of <u>experimental data</u> about protein-protein interactions can be done with ease.

Slide credit: See-Kiong Ng

IPM-NUS Workshop, Nov 2008

Copyright 2008 © Limsoon Wong

Exercise Section Nove 2008 Key Bottleneck Many high-throughput expt detection methods for protein-protein interactions have been devised But ... But ... Slide credit: Sec-Kiong Ng Copyright 2008 © Limsoon Wong



Sprinzak et al., JMB, 327:919-923, 2003

Experimental method category ^a	Number of interacting pairs	s Co-localization ^b (%)	Co-cellular-role ^b (%)
All: All methods	9347	64	49
A: Small scale Y2H	1861	73	62
A0: GY2H Uetz et al. (published results)	956	66	45
A1: GY2H Uetz et al. (unpublished results)	516	53	33
A2: GY2H Ito et al. (core)	798	64	40
A3: GY2H Ito et al. (all)	3655	41	15
B: Physical methods	71	98	95
C: Genetic methods	1052	77	75
D1: Biochemical, in vitro	614	87	79
D2: Biochemical, chromatography	648	93	88
E1: Immunological, direct	1025	90	90
E2: Immunological, indirect	34	100	93
2M: Two different methods	2360	87	85
3M: Three different methods	1212	92	94
4M: Four different methods	570	95	93

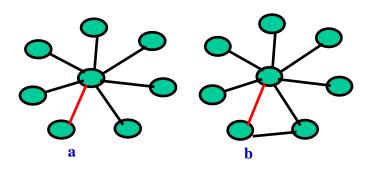
Large disagreement betw methods

- GY2H: genome-scale Y2H
- 2M, 3M, 4M: intersection of 2, 3, 4 methods

Objective

- Some high-throughput protein interaction expts have as much as 50% false positives
- Can we find a way to rank candidate interaction pairs according to their reliability?
- · How do we do this?
 - Would knowing their neighbours help?
 - Would knowing their local topology help?
 - Would knowing their global topology help?

IPM-NUS Workshop, Nov 2008


Copyright 2008 © Limsoon Wong

Would knowing their neighbours help?
The story of interaction generality

An Observation

- It seems that configuration a is less likely than b in protein interaction networks
- Can we exploit this?

IPM-NUS Workshop, Nov 2008

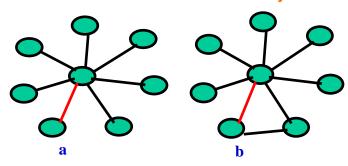
Copyright 2008 © Limsoon Wong


Interaction Generality Saito et al., NAR, 30:1163-1168, 2002

Given an edge $X \leftrightarrow Y$ connecting two proteins, X and Y, the "interaction generality" measure $ig^{\mathcal{G}}(X \leftrightarrow Y)$ of this edge as defined as

$$ig^{\mathcal{G}}(X \leftrightarrow Y) = 1 + \overbrace{|\{X' \leftrightarrow Y' \in \mathcal{G} \mid X' \in \{X,Y\}, deg^{\mathcal{G}}(Y') = 1\}|}$$

where $deg^{\mathcal{G}}(U)=|\{V|\ U\leftrightarrow V\in\mathcal{G}\}|$ is the degree of the node U in the undirected graph $\mathcal{G}.$


The number of proteins that "interact" with just X or Y, and nobody else

 $ig(YDR412W \leftrightarrow GLC7)$ = 1 + # of yellow nodes

PM-NUS Workshop, Nov 2008

Assessing Reliability Using Interaction Generality

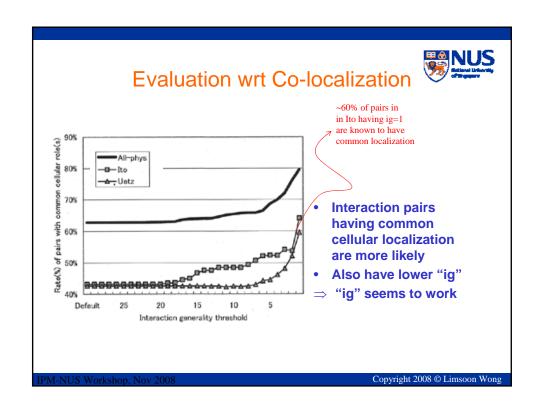
- Recall configuration a is less likely than b in protein interaction networks
- The smaller the "ig" value of a candidate interaction pair is, the more likely that interaction is

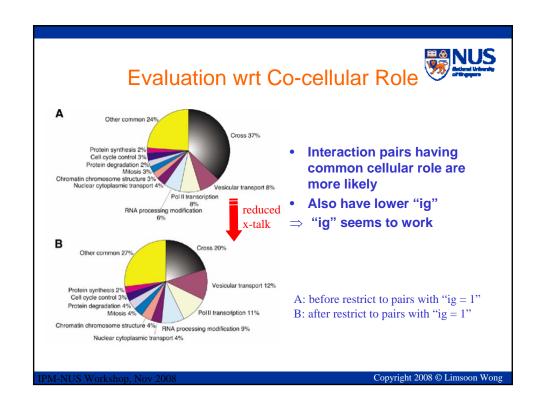
IPM-NUS Workshop, Nov 2008

Copyright 2008 © Limsoon Wong

Evaluation wrt Intersection of Ito et al. & Uetz et al.

I.G.	Ito ol.	lovlap			ı	Uetz ol.	ovlan		
1	229	66	34%	50%		236	58	29%	44%
2	137	34	54%	75%		226	37	57%	71%
3	57	16	63%	87%	Ш	113	16	71%	83%
4	43	6	69%	92%		66	6	79%	88%
5	24	4	73%	95%		38	5	83%	92%
6	16	1	75%	95%		37	2	88%	93%
7	27	Ó	79%	95%		20	3	90%	95%
8	23	1	83%	96%		16	2	92%	97%
9	9	1	84%	97%	ı	4	0	93%	97%
10	2	Ö	84%	97%	ı	44	ō	98%	97%
11	0	0	84%	97%		9	2	99%	98%
12	1	0	84%	97%		4	0	100%	98%
13	13	0	86%	97%	١	0	1	100%	99%
14	15	ō	89%	97%	1	1	1	100%	100%
15	16	ō	91%	97%	1	. 0	0	100%	100%
16	30	3	95%	99%	1	1	0	100%	100%
17	6	1	96%	100%	ı	0	0	100%	100%
18	20	0	99%	100%	1	0	0	100%	100%
19	2	0	100%	100%	1	0	0	100%	100%
20	3	0	100%	100%	1	0	0	100%	100%
21	0	0	100%	100%	1	0	0	100%	100%
22	0	0	100%	100%	1	0	0	100%	100%
23	0	0	100%	100%	1	0	. 0	100%	100%
24	0	0	100%	100%	١	0	0	100%	100%
25	0	0	100%	100%	1	0	0	100%	100%
26-	0	0	100%	100%	1	0	0	100%	100%
Total	673	133			1	815	133		

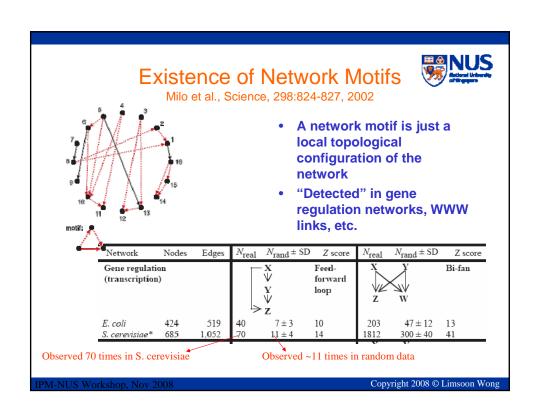

- There are 229 pairs


 in Ito having ig = 1.

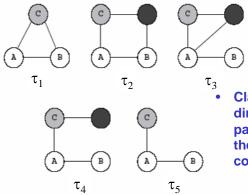
 Of these, 66 (or 34%)

 are also reported by Uetz
- Interacting pairs c'mon to Ito et al. & Uetz et al. are more reliable
- · Also have smaller "ig"
- ⇒ "ig" seems to work

IPM-NUS Workshop, Nov 2008



Would knowing their local topology help?


The story of interaction generality 2

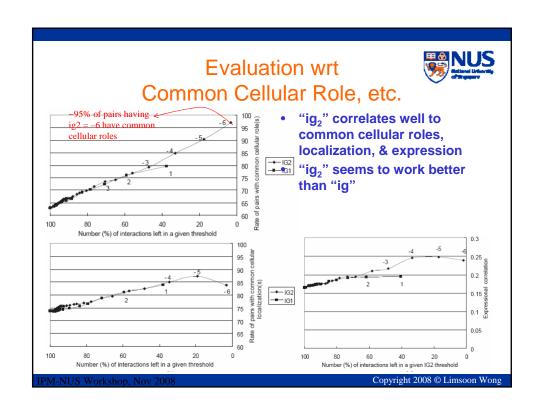
5 Possible Network Motifs

Classify a protein C that directly interacts with the pair A↔B according to these 5 topological configurations

IPM-NUS Workshop, Nov 2008

Copyright 2008 © Limsoon Wong

A New Interaction Generality


Saito et al., Bioinformatics, 19:756--763, 2003

The improved interaction generality measure $ig_2^{\mathcal{G}}(X \leftrightarrow Y)$ is defined as a weighted sum of the 5 local topological configurations $\tau_1, ..., \tau_5$ as

$$ig_2^{\mathcal{G}}(X \leftrightarrow Y) = \sum_{i=1}^{5} \lambda_i * |\{X^i | X^i \leftrightarrow Y^i \in \mathcal{G}, \ Y^i \in \{X,Y\}, \ \tau_i^{\mathcal{G}}(X^i, X \leftrightarrow Y)\}|$$

where λ_i is the weight for configuration τ_i , and $\tau_i^{\mathcal{G}}(X^i, X \leftrightarrow Y)$ means X^i is in configuration τ_i in graph \mathcal{G} wrt $X \leftrightarrow Y$.

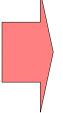
PM-NUS Workshop, Nov 2008

Would knowing their global topology help?
The story of interaction pathway reliability

Some "Reasonable" Speculations NUS

- A true interacting pair is often connected by at least one alternative path (reason: a biological function is performed by a highly interconnected network of interactions)
- The shorter the alternative path, the more likely the interaction (reason: evolution of life is through "add-on" interactions of other or newer folds onto existing ones)

IPM-NUS Workshop, Nov 2008


Copyright 2008 © Limsoon Wong

Therefore...

Conjecture:

"An interaction that is associated with an alternate path of reliable interactions is likely to be reliable."

Idea:

Use alternative interaction paths as a measure to indicate functional linkage between the two proteins

Slide credit: See-Kiong Ng

PM-NUS Workshop, Nov 2008

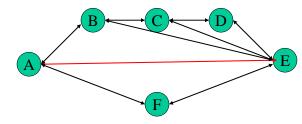
Interaction Pathway Reliability

The "interaction pathway reliability" measure $ipr^{\mathcal{G}}(X \leftrightarrow Y)$ is defined as

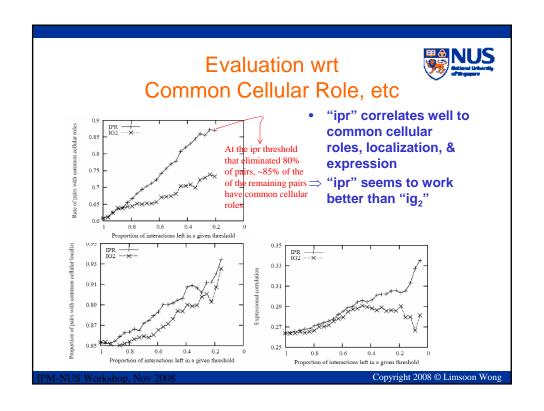
$$ipr^{\mathcal{G}}(X \leftrightarrow Y) = \max_{\phi \in \Phi^{\mathcal{G}}(X,Y)} \prod_{(U \leftrightarrow V) \in \phi} \left(1 - \frac{ig^{\mathcal{G}}(U \leftrightarrow V)}{ig^{\mathcal{G}}_{\max}}\right)$$

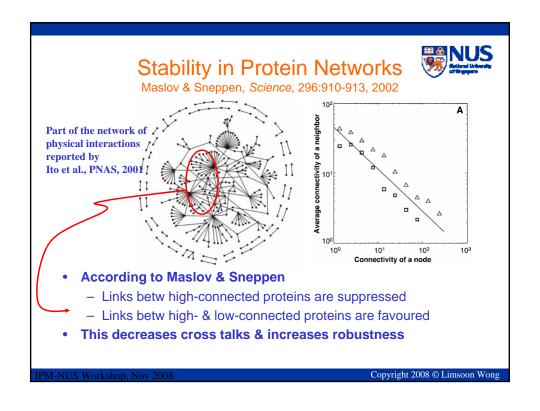
where $ig_{\max}^{\mathcal{G}} = \max\{ig^{\mathcal{G}}(X \leftrightarrow Y) \mid (X \leftrightarrow Y) \in \mathcal{G}\}$ is the maximum interaction generality value in \mathcal{G} ; and $\Phi^{\mathcal{G}}(X,Y)$ is the set of all possible non-reducible paths between X and Y, but excluding the direct path $X \leftrightarrow Y$. Here, a path ϕ connecting X and Y is non-reducible if there is no shorter path ϕ' connecting X and Y that shares some common intermediate nodes with the path ϕ .

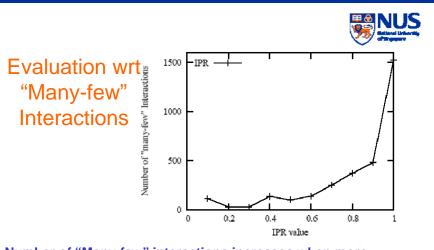
IPR is also called IRAP, "Interaction Reliability by Alternate Pathways"


IPM-NUS Workshop, Nov 2008

Copyright 2008 © Limsoon Wong


Non-reducible Paths




- · Non-reducible paths are
 - $A \leftarrow \rightarrow F \leftarrow \rightarrow E$
 - $A \leftarrow \rightarrow B \leftarrow \rightarrow E$
- · Reducible paths are
 - $A \leftarrow \rightarrow B \leftarrow \rightarrow C \leftarrow \rightarrow D \leftarrow \rightarrow E$
 - $A \leftarrow \rightarrow B \leftarrow \rightarrow C \leftarrow \rightarrow E$

IPM-NUS Workshop, Nov 2008

- Number of "Many-few" interactions increases when more "reliable" IPR threshold is used to filter interactions
- Consistent with the Maslov-Sneppen prediction

Copyright 2008 © Limsoon Won

Evaluation wrt "Cross-Talkers"

- A MIPS functional cat:
 - | 02 | ENERGY
 - | 02.01 glycolysis and gluconeogenesis
 - | 02.01.01 | glycolysis methylglyoxal bypass
 - | 02.01.03 | regulation of glycolysis & gluconeogenesis
- First 2 digits is top cat
- Other digits add more granularity to the cat
- ⇒ Compare high- & low- IPR pairs that are not colocalised to determine number of pairs that fall into same cat. If more high-IPR pairs are in same cat, then IPR works

Evaluation wrt "Cross-Talkers"

- For top cat
 - 148/257 high-IPR pairs are in same cat
 - 65/260 low-IPR pairs are in same cat
- For fine-granularity cat
 - 135/257 high-IPR pairs are in same cat.
 37/260 low-IPR pairs are in same cat
- ⇒ IPR works
- ⇒ IPR pairs that are not co-localized are real cross-talkers!

IPM-NUS Workshop, Nov 2008

Copyright 2008 © Limsoon Wong

Example Cross Talkers

		•		
ProteinA	Cellular Localization	ProteinB	Cellular Localization	Functional Pathway
YDR299w	nucleolus-protein	YLR208w	cytoplasm-release of	Vesicular transport
	transport		transport vesicles from ER	(Golgi network)
YOL018c	endosome, ER-	YMR117c	spindle pole body-	Cellular import
	syntaxin SNARE		spindle pole component	
YDL154w	nucleus-recombination	YBR133c	cytoplasm- neg.	Meiosis
			regulator of kinase	and budding
YGL192w	nucleus-put. Adenosine	YBR057c	cytoplasm-meiosis	Development of
	methyltransferase		potentially in premeiosis	asco-basido
	for sporulation		DNA synth	-zygo spore
YDR299w	nucleolous- protein	YPL085w	cytoplasm,ER-veiscle coat	both in vesicular
	transport		protein interacts cytoplasm,	transport
			with sec23p	
YEL013w	vacuole-phosphorylated	YFL039c	cytoskeleton-actin	Protein targeting
	protein which interacts with			and budding
	Atg13p for cyto to vacuole			
l	targeting vacuole targeting			

rante

Examples of interactions with high IRAP values ($\geq 0.95)$ between non-co-localized proteins ("cross-talkers") involved in the same cellular pathway

IPM-NUS Workshop, Nov 2008

Can local topology do better? The story of FS Weight

IPM-NUS Workshop, Nov 2008

Guilt by Association of Common Interaction Partners

- Two proteins that have a large proportion of their interaction partners in common are likely to directly interact also
- In fact, this is a special case of the "alternative paths" used in the IPR index, because length-1 alternative paths = shared interaction partners

PM-NUS Workshop, Nov 2008

• Functional distance between two proteins (Brun et al, 2003)

$$D(u,v) = \frac{|N_u \Delta N_v|}{|N_u \cup N_v| + |N_u \cap N_v|}$$

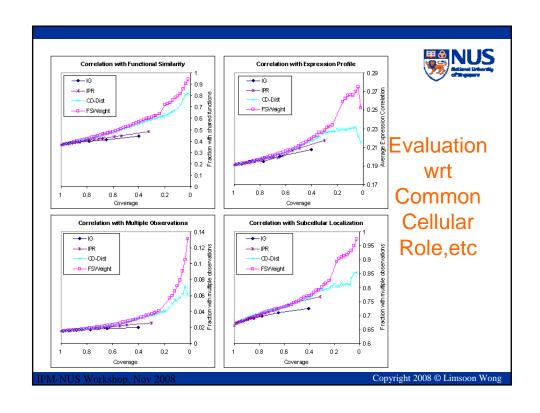
- N_k is the set of interacting partners of k
- X ∆ Y is symmetric diff betw two sets X and Y
- · Greater weight given to similarity

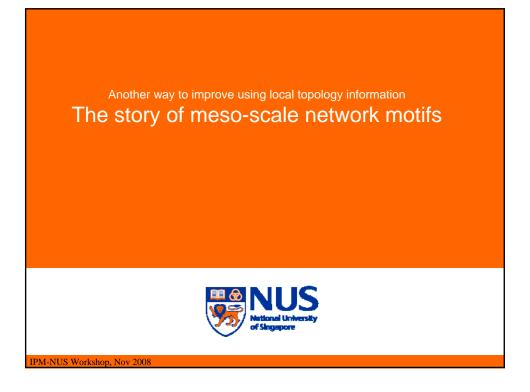
⇒ Similarity can be defined as

Is this a good measure if u and v have very neighbours?

$$S(u,v)=1-D(u,v)=\frac{2X}{2X+(Y+Z)}$$

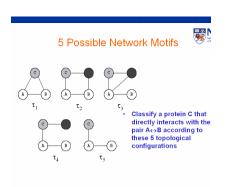
Functional Similarity Estimate: FS-Weighted Measure


FS-weighted measure


$$S(u,v) = \frac{2|N_u \cap N_v|}{|N_u - N_v| + 2|N_u \cap N_v|} \times \frac{2|N_u \cap N_v|}{|N_v - N_u| + 2|N_u \cap N_v|}$$

- N_k is the set of interacting partners of k
- · Greater weight given to similarity

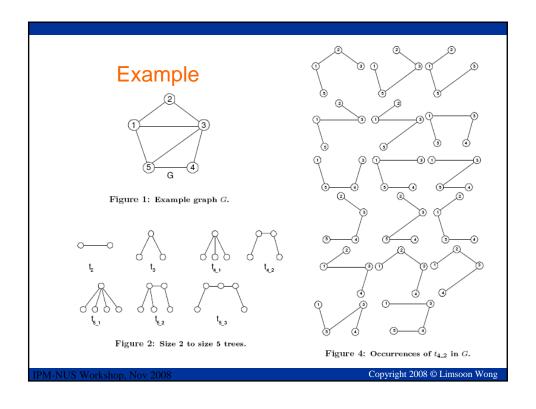
⇒ Rewriting this as

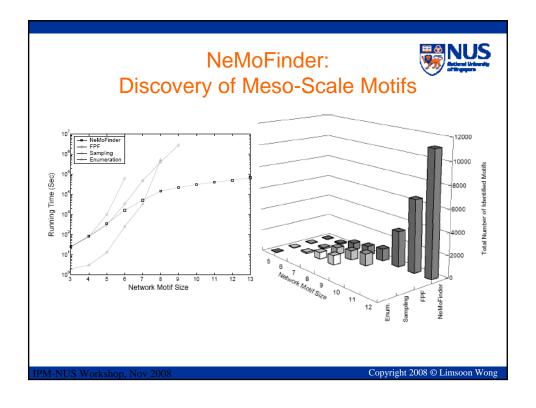

$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$

Motivation for "Meso Scale"

- These motifs are very local and very small
- Many processes in biological network are "meso-scale" (5-25 proteins)
- ⇒ Maybe we should also use meso-scale motifs?

IPM-NUS Workshop, Nov 2008


Copyright 2008 © Limsoon Wong


What is a network motif?

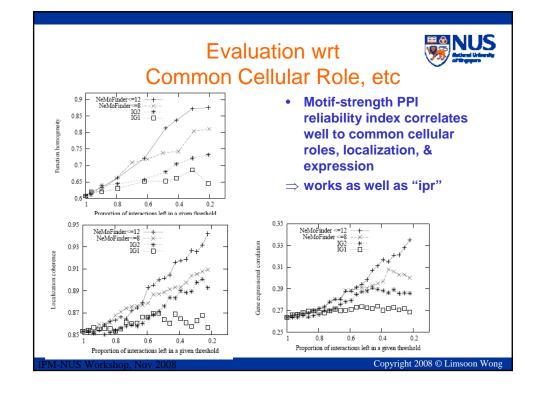
- A network motif g in a PPI network G is a connected unlabelled undirected topological pattern of inter-connections that is repeated and unique in G
- Repeated: f_g, the number of occurrences of g in G, is more than threshold F
- Unique: s_g, the number of times f_g exceeds f_{g,rand,i} over total number of randomized networks considered, is more than threshold S

PM-NUS Workshop, Nov 2008

Motif Strength and PPI Reliability

 Strength of a size k motif g is

$$MS^{k}(g) = \frac{s_{g} \times f_{g}}{\max_{k}}$$


 Motif-strength PPI reliability index is a pair of possibly interacting protein X ↔Y is

$$I(X \leftrightarrow Y) = \sum_{k=2}^{K} \sum_{i=0}^{n} MS^{k}(g_{i}) \times k$$

where \max_k is max value of $s_g x f_g$ over all size-k motifs

where g_i are motifs involving the edge $X \leftrightarrow Y$, and k is size of g_i

IPM-NUS Workshop, Nov 2008

Some Observations

- Meso-scale motifs are more reliable than small local motifs (c.f. "ig₂")
- Similar performance to "ipr", but may have advantages if network is sparse (i.e., where few alternate paths are present)
- Btw, this is the first time size-12 network motifs are known to be extracted from yeast PPI network

IPM-NUS Workshop, Nov 2008

Copyright 2008 © Limsoon Wong

Conclusions and Suggestions

Conclusions

- There are latent local & global network "motifs" that indicate likelihood of PPIs
- These network "motifs" can be exploited in computational elimination of false positives from high-throughput PPI data
- FS-Weight, CD-Distance & meso-scale motifs are effective topologically-based computational measure for assessing the reliability (false positives) of PPIs

IPM-NUS Workshop, Nov 2008

Copyright 2008 © Limsoon Wong

Follow-Up Works

- Expectation maximization can be applied on FS-Weight, CD-Distance, etc to further increase their power for detecting false positives
- FS-Weight, CD-Distance, etc can be adapted to detect false negatives

IPM-NUS Workshop, Nov 2008

Readings

- J. Chen et al, "Towards discovering reliable protein interactions from highthroughput experimental data using network topology", Artificial Intelligence in Medicine, 35:37-47, 2005
- J. Chen et al, "Increasing confidence of protein interactomes using network topological metrics", Bioinformatics, 22:1998-2004, 2006
- J. Chen et al, "NeMoFinder: Dissecting genome-wide protein-protein interactions with meso-scale network motifs", *Proc. KDD 2006*
- H.N. Chua et al. "Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions", *Bioinformatics*, 22:1623-1630, 2006
- H. N. Chua, L. Wong. "Increasing the Reliability of Protein Interactomes", *Drug Discovery Today*, 13(15/16):652-658, 2008
- G. Liu, J. Li, L. Wong. "Assessing and predicting protein interactions using both local and global network topological metrics", Proc GIW2008

IPM-NUS Workshop, Nov 2008

Copyright 2008 © Limsoon Wong

Any Questions?

