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Plan

• Protein Function Prediction
– Guilt by Association of Seq Similarity

• Guilt by Association of Common Friends
– Illustrative Case of Indirect Functional Association
– Functional Similarity Estimates: FS-Weight
– Function Prediction by FS-Weighted Averaging

• Suggestions for Follow Up



IPM-NUS Workshop, Nov 2008

Protein Function Prediction: 
Motivation & Challenges
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• A protein is a large 
complex molecule 
made up of one or 
more chains of amino 
acids

• Protein performs a 
wide variety of 
activities in the cell
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Function Assignment to Protein Seq

• How do we attempt to assign a function to a new 
protein sequence?

SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR
YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE
QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD
VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG
TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE
VT
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An Early Example of Seq Analysis

• Doolittle et al. (Science, July 1983) searched for 
platelet-derived growth factor (PDGF) in his own 
DB. He found that PDGF is similar to v-sis 
oncogene
PDGF-2  1       SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34
p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 100

⇒“Guilt by association” of sequence similarity!

Source: Ken Sung
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Important Unsolved Challenges

• What if there is no useful seq homolog?
• Guilt by other types of association!

– Domain modeling (e.g., HMMPFAM)
– Similarity of dissimilarities (e.g., SVM-PAIRWISE)
– Similarity of phylogenetic profiles
– Similarity of subcellular co-localization & other 

physico-chemico properties(e.g., PROTFUN)
– Similarity of gene expression profiles
– Similarity of protein-protein interaction partners
– Fusion of multiple types of info
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Guilt by Association of 
Common Friends:

Protein Function Prediction
from Protein Interactions

Level-2 neighbour
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Protein Interaction Based Approaches
• Neighbour counting 

(Schwikowski et al, 2000)

• Rank function based on freq 
in interaction partners

• Chi-square (Hishigaki et al, 2001)

• Chi square statistics using 
expected freq of functions in 
interaction partners

• Markov Random Fields (Deng 
et al, 2003; Letovsky et al, 2003)

• Belief propagation exploit 
unannotated proteins for 
prediction

• Simulated Annealing (Vazquez et 
al, 2003)

• Global optimization by 
simulated annealing 

• Exploit unannotated proteins 
for prediction

• Clustering (Brun et al, 2003; Samanta et al, 
2003)

• Functional distance derived 
from shared interaction 
partners

• Clusters based on functional 
distance represent proteins 
with similar functions

• Functional Flow (Nabieva et al, 2004)

• Assign reliability to various 
expt sources

• Function “flows” to 
neighbour based on 
reliability of interaction and 
“potential”

• Indirect Functional Assoc 
(Chua et al, 2006)

• Identification of reliable 
common interaction partners



10

IPM-NUS Workshop, Nov 2008 Copyright 2008 © Limsoon Wong

Functional Association Thru Interactions

• Direct functional association:
– Interaction partners of a protein 

are likely to share functions w/ it
– Proteins from the same 

pathways are likely to interact
• Indirect functional association

– Proteins that share interaction 
partners with a protein may also 
likely to share functions w/ it

– Proteins that have common 
biochemical, physical properties 
and/or subcellular localization 
are likely to bind to the same 
proteins

Level-1 neighbour

Level-2 neighbour
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An Illustrative Case of 
Indirect Functional Association?

• Is indirect functional association plausible?
• Is it found often in real interaction data?
• Can it be used to improve protein function 

prediction from protein interaction data?

SH3 Proteins SH3-Binding
Proteins
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Materials

• Protein interaction data from General Repository 
for Interaction Datasets (GRID)
– Data from published large-scale interaction 

datasets and curated interactions from literature 
– 13,830 unique and 21,839 total interactions
– Includes most interactions from the Biomolecular 

Interaction Network (BIND) and the Munich 
Information Center for Protein Sequences (MIPS)

• Functional annotation (FunCat 2.0) from Compre-
hensive Yeast Genome Database (CYGD) at MIPS
– 473 Functional Classes in hierarchical order
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Validation Methods

• Informative Functional Classes
– Adopted from Zhou et al, 1999
– Select functional classes w/

• at least 30 members
• no child functional class w/ 

at least 30 members

• Leave-One-Out Cross Validation
– Each protein with annotated 

function is predicted using all 
other proteins in the dataset



14

IPM-NUS Workshop, Nov 2008 Copyright 2008 © Limsoon Wong

YBR055C
|11.4.3.1

YDR158W
|1.1.6.5
|1.1.9

YJR091C
|1.3.16.1
|16.3.3

YMR101C
|42.1

YPL149W
|14.4
|20.9.13
|42.25
|14.7.11

YPL088W
|2.16
|1.1.9

YMR300C
|1.3.1

YBL072C
|12.1.1

YOR312C
|12.1.1

YBL061C
|1.5.4
|10.3.3
|18.2.1.1
|32.1.3
|42.1
|43.1.3.5
|1.5.1.3.2

YBR023C
|10.3.3
|32.1.3
|34.11.3.7
|42.1
|43.1.3.5
|43.1.3.9
|1.5.1.3.2

YKL006W
|12.1.1
|16.3.3 YPL193W

|12.1.1

YAL012W
|1.1.6.5
|1.1.9

YBR293W
|16.19.3
|42.25
|1.1.3
|1.1.9

YLR330W
|1.5.4
|34.11.3.7
|41.1.1
|43.1.3.5
|43.1.3.9

YLR140W

YDL081C
|12.1.1

YDR091C
|1.4.1
|12.1.1
|12.4.1
|16.19.3

YPL013C
|12.1.1
|42.16

YMR047C
|11.4.2
|14.4
|16.7
|20.1.10
|20.1.21
|20.9.1
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Source: Kenny Chua
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Prediction Power By Majority Voting

• Remove overlaps in level-1 
and level-2 neighbours to 
study predictive power of 
“level-1 only” and “level-2 
only” neighbours

• Sensitivity vs Precision 
analysis

• ni is no. of fn of protein i
• mi is no. of fn predicted for 

protein i
• ki is no. of fn predicted 

correctly for protein i

⇒ “level-2 only” neighbours 
performs better

⇒ L1 ∩ L2 neighbours has 
greatest prediction power
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• Functional distance between two proteins (Brun et al, 2003)

• Nk is the set of interacting partners of k
• X Δ Y is symmetric diff betw two sets X and Y 
• Greater weight given to similarity

⇒Similarity can be defined as 

Functional Similarity Estimate:
Czekanowski-Dice Distance
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Functional Similarity Estimate:
FS-Weighted Measure
• FS-weighted measure

• Nk is the set of interacting partners of k
• Greater weight given to similarity

⇒Rewriting this as
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Correlation w/ Functional Similarity 

• Correlation betw functional similarity & estimates

• Equiv measure slightly better in correlation w/ 
similarity for L1 & L2 neighbours

Source: Kenny Chua
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Reliability of Expt Sources

• Diff Expt Sources have diff 
reliabilities
– Assign reliability to an 

interaction based on its 
expt sources (Nabieva et al, 2004)

• Reliability betw u and v 
computed by:

• ri is reliability of expt
source i,

• Eu,v is the set of expt
sources in which 
interaction betw u and v is 
observed
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Functional Similarity Estimate:
FS-Weighted Measure with Reliability
• Take reliability into consideration when 

computing FS-weighted measure:

• Nk is the set of interacting partners of k
• ru,w is reliability weight of interaction betw u and v

⇒ Rewriting
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Integrating Reliability

• Equiv measure shows improved correlation w/ 
functional similarity when reliability of 
interactions is considered:
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Improvement to 
Prediction Power by Majority Voting

Considering only 
neighbours w/ FS 
weight > 0.2
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Improvement to 
Over-Rep of Functions in Neighbours

Source: Kenny Chua
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Use L1 & L2 Neighbours for Prediction

• FS-weighted Average

• rint is fraction of all interaction pairs sharing function
• λ is weight of contribution of background freq
• δ(k, x) = 1 if k has function x, 0 otherwise
• Nk is the set of interacting partners of k
• πx is freq of function x in the dataset
• Z is sum of all weights
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Performance of FS-Weighted Averaging

• LOOCV comparison with Neighbour Counting, 
Chi-Square, PRODISTIN
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Performance of FS-Weighted Averaging

• Dataset from Deng et al, 2003
– Gene Ontology (GO) Annotations
– MIPS interaction dataset

• Comparison w/ Neighbour Counting, Chi-Square, 
PRODISTIN, Markov Random Field, FunctionalFlow
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Freq of Indirect Functional 
Association in Other Genomes

D. melanogaster
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Effectiveness of FS Weighted 
Averaging in Other Genomes
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Conclusions and Suggestions
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Conclusions

• Indirect functional association is plausible

• It is found often in real interaction data 

• It can be used to improve protein function 
prediction from protein interaction data

• It should be possible to incorporate interaction 
networks extracted by literature in the inference 
process within our framework for good benefit
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Follow-Up Works

• FS-Weight correlates well with function 
homogeneity and localization coherence. Thus 
can use FS-Weight as a technique for PPI network 
cleansing

• After PPI network cleansing, use FS-Weighted 
Averaging to predict functions and use clustering 
or clique finding to predict protein complexes

• some ideas in the development of FS-Weight and 
FS-Weighed Averaging can be adapted for protein 
function prediction by information fusion
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Any Question?


