Guilt by Association of Common Interaction Partners

Limsoon Wong (Based on work w/ Kenny Chua & Ken Sung)

IPM-NUS Workshop, Nov 2008

NUS National University of Singapore

Plan

- Protein Function Prediction
 - Guilt by Association of Seq Similarity

Guilt by Association of Common Friends

- Illustrative Case of Indirect Functional Association
- Functional Similarity Estimates: FS-Weight
- Function Prediction by FS-Weighted Averaging
- Suggestions for Follow Up

Protein Function Prediction: Motivation & Challenges

IPM-NUS Workshop, Nov 2008

- A protein is a large complex molecule made up of one or more chains of amino acids
- Protein performs a wide variety of activities in the cell

Function Assignment to Protein Seq

SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE VT

How do we attempt to assign a function to a new protein sequence?

An Early Example of Seq Analysis

 Doolittle et al. (Science, July 1983) searched for platelet-derived growth factor (PDGF) in his own DB. He found that PDGF is similar to v-sis oncogene

PDGF-2 1 SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34 p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 100

\Rightarrow "Guilt by association" of sequence similarity!

Important Unsolved Challenges

- What if there is no useful seq homolog?
- Guilt by other types of association!
 - Domain modeling (e.g., HMMPFAM)
 - Similarity of dissimilarities (e.g., SVM-PAIRWISE)
 - Similarity of phylogenetic profiles
 - Similarity of subcellular co-localization & other physico-chemico properties(e.g., PROTFUN)
 - Similarity of gene expression profiles
 - Similarity of protein-protein interaction partners
 - Fusion of multiple types of info

Level-2 neighbour

Guilt by Association of Common Friends: Protein Function Prediction from Protein Interactions

IPM-NUS Workshop, Nov 2008

Protein Interaction Based Approaches

Neighbour counting

(Schwikowski et al, 2000)

- Rank function based on freq in interaction partners
- Chi-square (Hishigaki et al, 2001)
 - Chi square statistics using expected freq of functions in interaction partners
- Markov Random Fields (Deng et al, 2003; Letovsky et al, 2003)
 - Belief propagation exploit unannotated proteins for prediction
- Simulated Annealing (Vazquez et al, 2003)
 - Global optimization by simulated annealing
 - Exploit unannotated proteins for prediction

- **Clustering** (Brun et al, 2003; Samanta et al, 2003)
 - Functional distance derived from shared interaction partners
 - Clusters based on functional distance represent proteins with similar functions
- Functional Flow (Nabieva et al, 2004)
 - Assign reliability to various expt sources
 - Function "flows" to neighbour based on reliability of interaction and "potential"

• Indirect Functional Assoc (Chua et al, 2006)

 Identification of reliable common interaction partners

Functional Association Thru Interactions

- Direct functional association:
 - Interaction partners of a protein are likely to share functions w/ it
 - Proteins from the same pathways are likely to interact
- Indirect functional association
 - Proteins that share interaction partners with a protein may also likely to share functions w/ it
 - Proteins that have common biochemical, physical properties and/or subcellular localization are likely to bind to the same proteins

An Illustrative Case of Indirect Functional Association?

- Is indirect functional association plausible?
- Is it found often in real interaction data?
- Can it be used to improve protein function prediction from protein interaction data?

NUS National University of Singapore

 \mathcal{I}

Materials

- Protein interaction data from General Repository for Interaction Datasets (GRID)
 - Data from published large-scale interaction datasets and curated interactions from literature
 - 13,830 unique and 21,839 total interactions
 - Includes most interactions from the Biomolecular Interaction Network (BIND) and the Munich Information Center for Protein Sequences (MIPS)
- Functional annotation (FunCat 2.0) from Comprehensive Yeast Genome Database (CYGD) at MIPS
 - 473 Functional Classes in hierarchical order

3

Validation Methods

Informative Functional Classes

- Adopted from Zhou et al, 1999
- Select functional classes w/
 - at least 30 members
 - no child functional class w/ at least 30 members

Leave-One-Out Cross Validation

 Each protein with annotated function is predicted using all other proteins in the dataset

NUS National University of Singapore

Freq of Indirect Functional Association

Prediction Power By Majority Voting

- Remove overlaps in level-1 and level-2 neighbours to study predictive power of "level-1 only" and "level-2 only" neighbours
- Sensitivity vs Precision analysis

$$PR = \frac{\sum_{i}^{K} k_{i}}{\sum_{i}^{K} m_{i}} \quad SN = \frac{\sum_{i}^{K} k_{i}}{\sum_{i}^{K} n_{i}}$$

- n_i is no. of fn of protein i
- m_i is no. of fn predicted for protein i
- k_i is no. of fn predicted correctly for protein i

- ⇒ "level-2 only" neighbours performs better
- ⇒ L1 ∩ L2 neighbours has greatest prediction power

Functional Similarity Estimate: Czekanowski-Dice Distance

$$D(u,v) = \frac{|N_u \Delta N_v|}{|N_u \cup N_v| + |N_u \cap N_v|}$$

N_k is the set of interacting partners of k

- X riangle Y is symmetric diff betw two sets X and Y
- Greater weight given to similarity

\Rightarrow Similarity can be defined as

Is this a good measure if u and v have very diff number of neighbours?

A T7

$$S(u,v) = 1 - D(u,v) = \frac{2X}{2X + (Y+Z)}$$

Functional Similarity Estimate: FS-Weighted Measure

• FS-weighted measure

$$S(u,v) = \frac{2|N_u \cap N_v|}{|N_u - N_v| + 2|N_u \cap N_v|} \times \frac{2|N_u \cap N_v|}{|N_v - N_u| + 2|N_u \cap N_v|}$$

- N_k is the set of interacting partners of k
- Greater weight given to similarity

 \Rightarrow Rewriting this as

$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$

8

Correlation w/ Functional Similarity

• Correlation betw functional similarity & estimates

Neighbours	CD-Distance	FS-Weight
$egin{array}{c} \mathbf{S}_1 \ \mathbf{S}_2 \ \mathbf{S}_1 \cup \mathbf{S}_2 \end{array}$	0.471810 0.224705 0.224581	0.498745 0.298843 0.29629

• Equiv measure slightly better in correlation w/ similarity for L1 & L2 neighbours

Copyright 2008 © Limsoon Wong

Reliability of Expt Sources

- Diff Expt Sources have diff reliabilities
 - Assign reliability to an interaction based on its
 expt sources (Nabieva et al, 2004)
- Reliability betw u and v computed by:

$$r_{u,v} = 1 - \prod_{i \in E_{u,v}} (1 - r_i)$$

- r_i is reliability of expt source i,
- E_{u,v} is the set of expt sources in which interaction betw u and v is observed

Source	Reliability
Affinity Chromatography	0.823077
Affinity Precipitation	0.455904
Biochemical Assay	0.666667
Dosage Lethality	0.5
Purified Complex	0.891473
Reconstituted Complex	0.5
Synthetic Lethality	0.37386
Synthetic Rescue	1
Two Hybrid	0.265407

Functional Similarity Estimate: FS-Weighted Measure with Reliability

20

• Take reliability into consideration when computing FS-weighted measure:

$$S_{R}(u,v) = \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}{\left(\sum_{w \in N_{u} - N_{v}} r_{u,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{u,w}(1 - r_{v,w})\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}} \times \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}{\left(\sum_{w \in N_{v} - N_{u}} r_{v,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{v,w}(1 - r_{u,w})\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{v,w}r_{v,w}}$$

• N_k is the set of interacting partners of k

r_{u,w} is reliability weight of interaction betw u and v

 \Rightarrow **Rewriting**

$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$

Integrating Reliability

 Equiv measure shows improved correlation w/ functional similarity when reliability of interactions is considered:

Neighbours	CD-Distance	FS-Weight	FS-Weight R
$egin{array}{c} S_1 \ S_2 \ S_1 \cup S_2 \end{array}$	0.471810	0.498745	0.532596
	0.224705	0.298843	0.375317
	0.224581	0.29629	0.363025

Improvement to Prediction Power by Majority Voting

Considering only neighbours w/ FS weight > 0.2

National University of Singapore

23

Improvement to Over-Rep of Functions in Neighbours

Copyright 2008 © Limsoon Wong

Use L1 & L2 Neighbours for Prediction

• FS-weighted Average

$$f_x(u) = \frac{1}{Z} \left[\lambda r_{\text{int}} \pi_x + \sum_{v \in N_u} \left(S_{TR}(u, v) \delta(v, x) + \sum_{w \in N_v} S_{TR}(u, w) \delta(w, x) \right) \right]$$

- *r_{int}* is fraction of all interaction pairs sharing function
- λ is weight of contribution of background freq
- $\delta(\mathbf{k}, \mathbf{x}) = 1$ if k has function x, 0 otherwise
- N_k is the set of interacting partners of k
- π_x is freq of function x in the dataset
- Z is sum of all weights

$$Z = 1 + \sum_{v \in N_u} \left(S_{TR}(u, v) + \sum_{w \in N_v} S_{TR}(u, w) \right)$$

>

25

Performance of FS-Weighted Averaging

• LOOCV comparison with Neighbour Counting, Chi-Square, PRODISTIN

Performance of FS-Weighted Averaging

- Dataset from Deng et al, 2003
 - Gene Ontology (GO) Annotations
 - MIPS interaction dataset
- Comparison w/ Neighbour Counting, Chi-Square, PRODISTIN, Markov Random Field, FunctionalFlow

Freq of Indirect Functional Association in Other Genomes

 $\mathbf{77}$

D. melanogaster

Genome	Annotation	S ₁ -S ₂	S_2-S_1	$S_1 \cap S_2$	$S_1 \cup S_2$
S. cerevisiae	MIPS	0.007193	0.226574	0.463960	0.706872
D. melanogaster	GO	0.008801	0.168622	0.138138	0.315561
C. elegans	GO	0.007193	0.051237	0.061080	0.119510

Effectiveness of FS Weighted **Averaging in Other Genomes**

28

Precision vs Recall (Yeast / GO Level 3) 1 ┼┥╎┥╎┥╎┥┥┥┥ 0.9 0.9 0.8 0.8 0.7 0.7 0.0 0.5 0.4 0.4 0.7 0.6 0.5 0.4 - State Canadana 0.3 0.3 0.2 0.2 0.1 0.1 0 0 0.4 Recall 0.2 0.6 0.8 0 0.2 0 0.4 0.6 0.8 1 Recall Precision vs Recall (Fly / GO Level 3)

Precision

Precision vs Recall (Worm / GO Level 3)

- ♦ Neighbour Counting ×NC (Weighted)
- \square NC (Weighted + L2)
- + Weighted Avg

Conclusions and Suggestions

IPM-NUS Workshop, Nov 2008

National Univers

Conclusions

- Indirect functional association is plausible
- It is found often in real interaction data
- It can be used to improve protein function prediction from protein interaction data
- It should be possible to incorporate interaction networks extracted by literature in the inference process within our framework for good benefit

Follow-Up Works

- FS-Weight correlates well with function homogeneity and localization coherence. Thus can use FS-Weight as a technique for PPI network cleansing
- After PPI network cleansing, use FS-Weighted Averaging to predict functions and use clustering or clique finding to predict protein complexes
- some ideas in the development of FS-Weight and FS-Weighed Averaging can be adapted for protein function prediction by information fusion

- H.N. Chua, W.K. Sung, & L. Wong. "Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions". *Bioinformatics*, 22:1623-1630, 2006
- H.N. Chua, W.-K. Sung, Limsoon Wong. Using Indirect Protein Interactions for the Prediction of Gene Ontology Functions. *BMC Bioinformatics*, 8(Suppl 4):S8, 2007
- H.N. Chua, W.K. Sung, & L. Wong. "A graph-based approach to integrating multiple data sources for protein function prediction ". *Bioinformatics*, 23(24):3364-3373, 2007
- H.N. Chua, et al. Using Indirect Protein-Protein Interactions for Protein Complex Prediction. *Journal of Bioinformatics and Computational Biology*, 6(3):435--466, 2008
- G. Liu, J. Li, L. Wong. "Assessing and predicting protein interactions using both local and global network topological metrics", *Proc GIW2008*

Any Question?

IPM-NUS Workshop, Nov 2008