Practical advice for bewildered lay analysts

Wong Limsoon

National University of Singapore

© Copyright National University of Singapore. All Rights Reserved.

About Limsoon

Position

Kwan-Im-Thong-Hood-Cho-Temple Chair Professor, Dept of Computer Science, NUS

Research

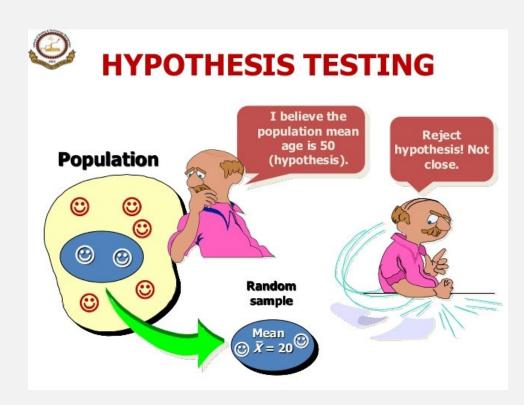

Database systems & theory, knowledge discovery, bioinformatics & computational biology

Honours

ACM Fellow

FEER Asian Innovation Gold Award 2003 ICDT Test of Time Award 2014

Lecture plan


Testing a hypothesis Test sample fidel to population? Right null hypothesis? Right null distribution?

Finding a better hypothesis & explaining why it is better Exceptions? Trend reversals? Trend enhancements?

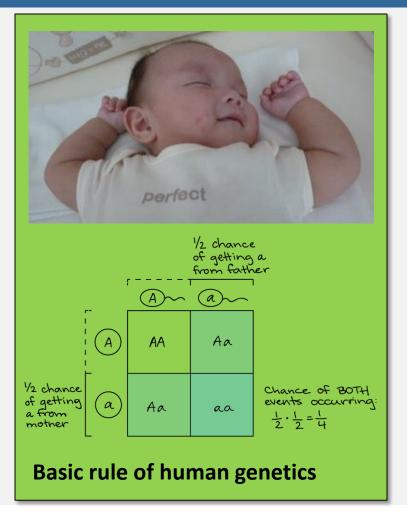
Data may be telling more than what you think

Assessing a prediction model *Reproducible? Meaningful?*

Am I testing this hypothesis correctly?

A seemingly obvious conclusion

Group							
SNP	Genotypes	Contr	ols [n(%)]	Cases	s [n(%)]	χ²	P value
rs123	AA	1	0.9%	0	0.0%		4.78E-21 ^b
	AG	38	35.2%	79	97.5%		
	GG	<mark>6</mark> 9	63.9%	2	2.5%		
Abbreviation: SNP, single nucleotide polymorphism.							

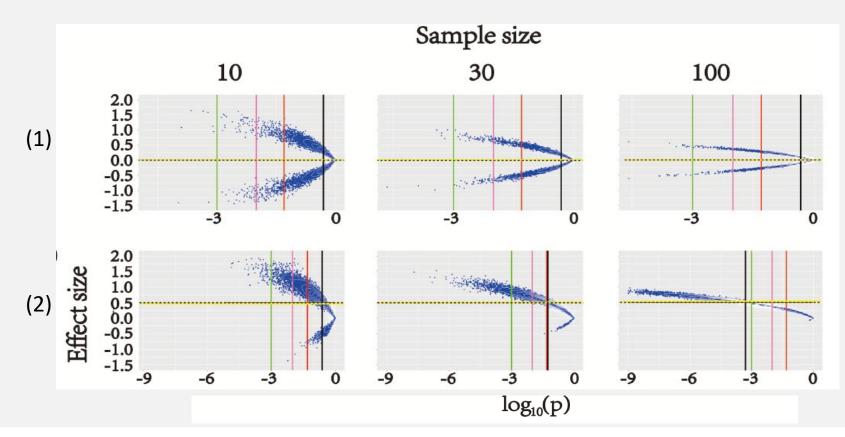

A scientist claims the SNP rs123 is a great biomarker for a disease

If rs123 is AA or GG, unlikely to get the disease

If rs123 is AG, a 3:1 odd of getting the disease

A straightforward χ^2 test. Anything wrong?

Sample may not be fidel to real-world population



	Group						
SNP	Genotypes	Cont	rols [n(%)]	Cases	s [n(%)]	χ ²	P value
rs123	AA	1	0.9%	0	0.0%		4.78E-21 ^b
	AG	38	35.2%	79	97 <mark>.</mark> 5%		
	GG	69	63.9%	2	2.5%		

AG = 38 + 79 = 117, controls + cases = 189 \Rightarrow population is ~62% AG \Rightarrow population is >9% AA, unless AA is lethal

Sampling bias happens often

	Dis	tribution		Mean	Standard deviation				
Scenario	А	В	Α	В	А	В	Sample size		
(1)	Normal	Normal	0	0	1	1	10	30	100
(2)	Normal	Normal	0	0.5	1	1	10	30	100

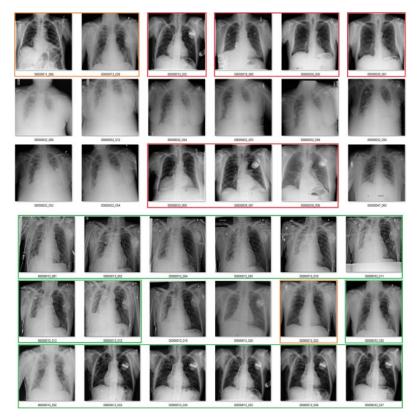
Copyright © 2019 by National University of Singapore. All Rights Reserved.

Wang, Sue, & Goh. Drug Discovery Today, 22(6):912-918, 2017

An old story

"Dewey Defeats

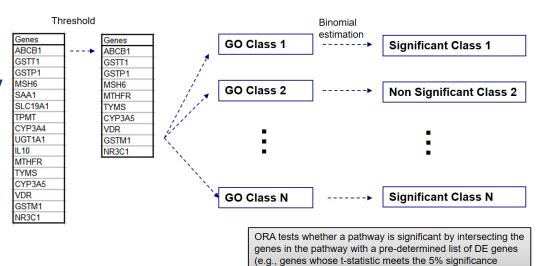
Truman" was a famously incorrect banner headline on the front page of the Chicago Tribune on November 3, 1948, the day after incumbent United States President Harry S. Truman won an upset victory over Republican challenger and Governor of New York Thomas E. Dewey in the 1948 presidential election.


"That ain't the way I heard it!"

The reason the Tribune was mistaken is that their editor trusted the results of a phone survey... Telephones were not yet widespread, and those who had them tended to be prosperous and have stable addresses.

A very recent story

	Disease MetaMap			Our Method				
	Disease	Precision / I	Recall / F	1-score	Precision / F	Recall / FI	-score	
			Op	enI				
	Atelectasis	87.37	96.57	91.7	88.7 /	96.57	92.4	
	Cardiomegaly	100.0 /	85.5/	92.2	100.0 /	85.5/	92.2	
	Effusion	90.3 /	87.57	88.9	96.6/	87.57	91.8	
	Infiltration	68.0 /	100.0 /	81.0	81.0 /	100.0 /	89.5	
	Mass	100.0 /	66.7 /	80.0	100.0 /	66.7 /	80.0	
	Nodule	86.77	65.0/	74.3	82.4/	70.0 /	75.7	
	Pneumonia	40.0 /	80.0 /	53.3	44.4 /	80.0 /	57.1	
	Pneumothorax	80.0/	57,1/	28.3	80.0 /	57.1/	66.7	
	Consolidation		.2751		77.87		82.4	
	Edema	04.1/ 64	.0/	76.2	94	.1/0/6	483.3	
OSIS	10	0.0 / 100	.0/	100.0	100	.0/10	0.07	100
PT	10	0.0/ 75	.0/	85.7	100	.0/ 7	5.0/	85.7
Hernia	10	0.0 / 100	.0/	100.0	100	.0 / 10	0.0/	100.0
Total	7	7.2/ 84	.61	80.7	89	.8/ 8	5.0/	87.3
		С	hestX-	ray14				
Atelectasis	s 8	88.6/ 98	.1/	93.1	96	.6/ 9	7.31	96.9
diomeg	galy 9	94.1 / 95	.71	94.9	96	.7/ 9	5.7/	96
100			.61	93.3	94	.8/ 9	92.5	
	Nodule 4	69.7 / 9 0	0/	78.6	05	02/31 0	88.2	
	Pneumonia	73.81	87.31	80.0	88.97	87.3/	88.1	
	Pneumothorax	87.4/	100.0 /	93.3	94.37	98.8/	96.5	
	Consolidation	72.8/	98.3/	83.7	95.2/	98.3/	96.7	
	Edema	72.1/	93.9/	81.6	96.97	93.9/	95.43	
	Emphysema	97.67	93.2/	95.3	100.0 /	90.97	95.2	
	Fibrosis	84.67	100.0 /	91.7	91.7/	100.0 /	95.7	
	PT	85.1/	97.67	90.9	97.6/	97.67	97.6	
	Hernia	66.7 /	100.0 /	80.0	100.0 /	100.0 /	100.0	
	Total	82.8/	95.5/	88.7	94.4 /	94.47	94.4	


Really good results from a study published in CVPR 2017

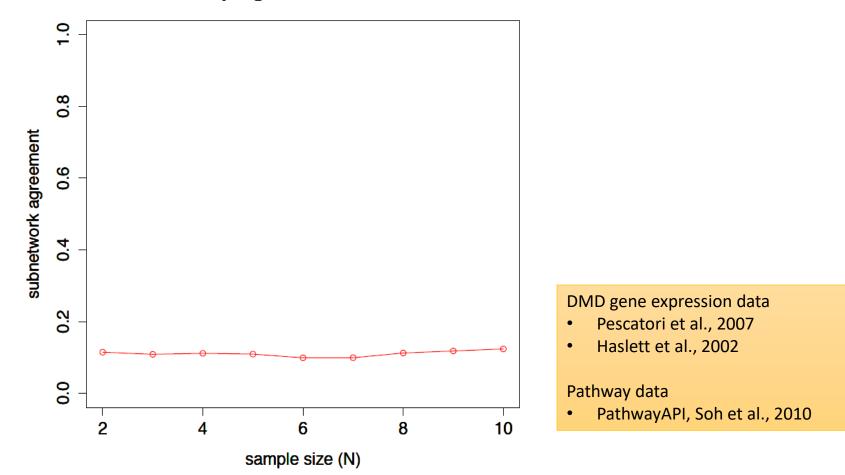
Actually the dataset contained many mis-labeled data

Biased data – many pneumo-thorax cases were patients treated with chest drain

A seemingly obvious conclusion

threshold of t-test), and checking the significance of the size

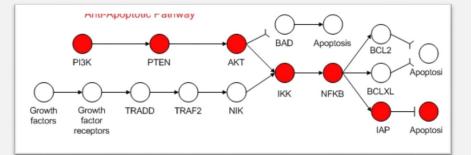
of the intersection using the hypergeometric test


A biological pathway is claimed as an explanation for a disease phenotype as it is enriched with differentially expressed genes

ORA p-value << 0.05

A straightforward hypergeometric test. Anything wrong?

Disappointing performance


upregulated in DMD

Null hypothesis may be inappropriate

The null hypothesis underlying ORA basically says "Genes in the given pathway behaves no differently from randomly chosen gene sets of the same size"

This null hypothesis is obviously false

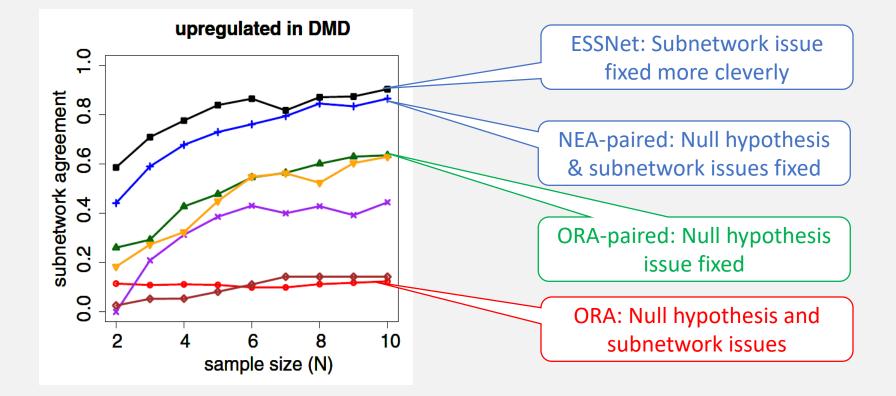
A biological pathway is a series of actions among molecules in a cell that leads to a certain product or a change in a cell. Thus necessarily the behavour of genes in a pathway is more coordinated than random ones

ORA-Paired: New null hypothesis

Let g_i be genes in a given pathway P

Let p_j be a patient Let q_k be a normal

Let $\Delta_{i,j,k} = Expr(g_i, p_j) - Expr(g_i, q_k)$


Test whether $\Delta_{i,j,k}$ is a distribution with mean 0

Null hypothesis is now much more reasonable...

"Pathway P is irrelevant to the difference between patients and normals, &

Thus genes in P behave similarly in patients and normals"

After fixing the null hypothesis and one other issue...

Lim, et al. JBCB, 13(4):1550018, 2015

Not so fast...

How to test $\Delta_{i,j,k} = \sim 0$?

ORA-Paired: New null hypothesis

Let g_i be genes in a given pathway P Let p_j be a patient Let q_k be a normal

 $Let \Delta_{i,j,k} = Expr(g_i, p_j) - Expr(g_i, q_k)$

Test whether $\Delta_{i,j,k}$ is a distribution with mean 0

Copyright @ 2019 by National University of Singapore. All Rights Reserved

Null hypothesis is now much more reasonable...

"Pathway P is irrelevant to the difference between patients and normals, &

Thus genes in P behave similarly in patients and normals"

Test statistic is t-statistic, t = $\mu_{\Delta} / (\sigma_{\Delta} / \text{sqrt}(n))$ Null distribution is t-distribution Degrees of freedom is |patients| * |normal| * |P|

What do you think?

t-statistic is test statistic ≠ t-distribution is null distribution

Testing the null hypothesis

"Pathway P is irrelevant to the difference between patients and normals and so, the genes in P behave similarly in patients and normals"

- Method #1
 - T-test w/ a conservative degree of freedom
 - E.g., | normal | + | patients |
- Method #2
 - By the null hypothesis, a dataset and any of its class-label permutations are exchangeable
 - \Rightarrow Get null distribution by class-label permutations
 - Only for large-size sample

• Method #3

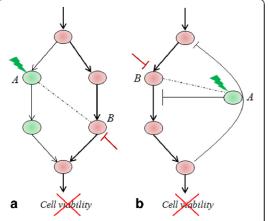
- Modified null hypothesis
 - "Pathway P induces genegene correlations, and genes in P behave according to these genegene correlations;
 - P is irrelevant to the diff betw patients and normals and so, genes in P behave similarly in patients and normals"
- ⇒ Get null distribution using datasets that conserve gene-gene correlations in the original dataset
 - E.g., array rotation

A little more biology background for the next example ...

Copyright © 2019 by National University of Singapore. All Rights Reserved

Synthetic lethal pairs

Fact/postulate


When a pair of genes is synthetic lethal, their mutations avoid each other

Observation

Mutations in genes (A,B) are seldom observed in the same subjects

Conclusion by abduction

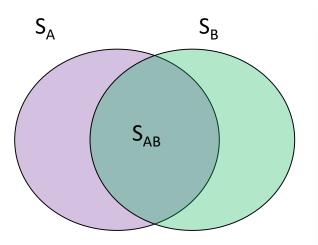
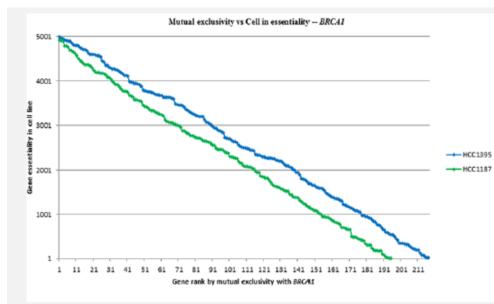

Genes (A,B) are synthetic lethal

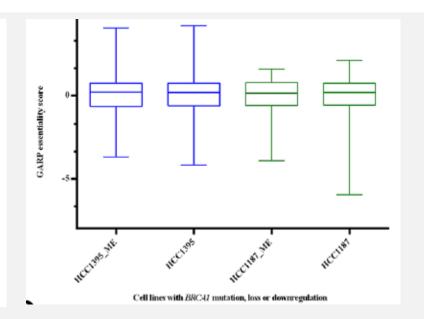
Fig. 7 Two models for pathway-based targeting of synthetic lethal genes *B* in conjunction with deleted/downregulated genes *A*: **a** parallel pathways model where targeting *B* results in disruption of both survival pathways, and **b** negative feedback-loop model where targeting *B* shunts of (forward) signals for cell survival

Why interested in synthetic lethality? They are good cancer treatment targets

A seemingly obvious approach based on hypergeometric test

 $P[X \le |S_{AB}|] = 1 - P[X > |S_{AB}|], \tag{1}$


where $P[X > |S_{AB}|]$ is computed using the hypergeometric probability mass function for $X = k > |S_{AB}|$:


$$P[X > |S_{AB}|] = \sum_{k=|S_{AB}|+1}^{|S_B|} \frac{\binom{|S_A|}{k}\binom{|S|-|S_A|}{|S_B|-k}}{\binom{|S|}{|S_B|}}$$

Mutations of genes (A,B) avoid each other if $P[X \le S_{AB}] \le 0.05$

Anything wrong with this?

What is happening?

Among top ME-genes, GARP score ranks seems to correlate with mutual exclusion ranks GARP scores of MEgenes (viz. significantly mutually exclusive mutations to BRCA1) are similar to other genes

Hypergeometric distribution does not reflect real-world mutations

(1)

$$P[X \le |S_{AB}|] = 1 - P[X > |S_{AB}|],$$

where $P[X > |S_{AB}|]$ is computed using the hypergeometric probability mass function for $X = k > |S_{AB}|$:

$$P[X > |S_{AB}|] = \sum_{k=|S_{AB}|+1}^{|S_{B}|} \frac{\binom{|S_{A}|}{k} \binom{|S|-|S_{A}|}{|S_{B}|-k}}{\binom{|S|}{|S_{B}|}}$$

Hypergeometric distribution assumes

- Mutations are independent
- Mutations have equal chance to appear in a subject

Real-life mutations

Inherited in blocks; those close to each other are correlated

Some subjects have more mutations than others, e.g. those with defective DNArepair genes

Null distribution is not hypergeometric, binomial, etc.

An engineer's solution

Group genes into genomic clusters

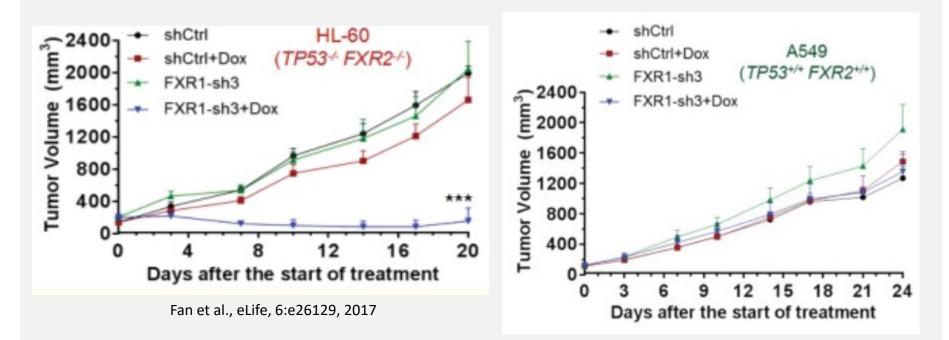
Test genes in far-apart genomic clusters for mutually exclusive mutations

Mutually exclusive clusters should contain syntheticlethal & collateral-lethal gene pairs

Copyright © 2019 by National University of Singapore. All Rights Reserved

Illustrative example

FXR2 is located near TP53


FXR1 & 2 are paralogs that buffer each other's function

TCGA pro	CGA prostate							
Altered in 1	Altered in 159 (32%) of 498 sequenced cases/patients (498 total)							
TP53	:	13%						
FXR2	0 0	23%						
FXR1	0 0	12%						
Genetic Alte	eration		Amplification Deep Deletion Inframe Mutation (unknown significance) Missense Mutation (unknown significance) mRNA Downregulation mRNA Upregulation No alterations Truncating Mutation (unknown significance)					

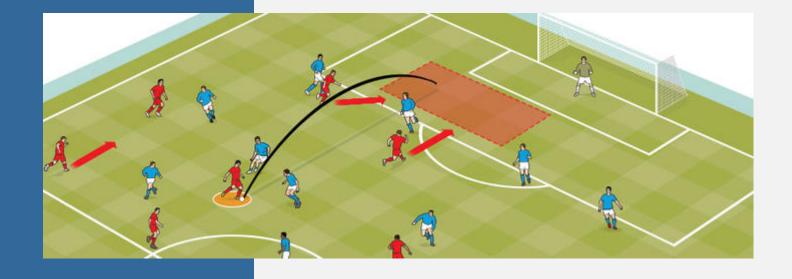
Is FXR1 synthetic lethal to TP53?

Does inhibiting FXR1 lead to cell death for TP53-deleted cell lines?

Collateral lethality

Tumour bearing homozygous TP53/FXR2 co-deletion shrinks upon doxycycline-induced FXR1 knock down

Learning points


Sample fidelity to population

Right null hypothesis

Right null distribution

Note that using a test statistic does not mean you must use its nominal null distribution

How do I find deeper insight from data?

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Getting lost in data

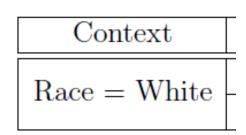
The Australian adult dataset from UCI machine learning repository contains demographic data of 32k adults

If a freq-pattern mining method is run on this dataset, thousand of patterns like these are produced

- {Race = White, Occupation = Adm-clerical, Income>50K}: 439,
- {Race = White, Occupation = Adm-clerical, Income < 50K}: 2,645,
- {Race = White, Occupation = Craft-repair, Income>50K}: 844, and
- {Race = White, Occupation = Craft-repair, Income < 50K}: 2,850,

A lay analyst will be quite lost...

Think in terms of a contingency table helps


Occupation	Income>50K	Income<50K
Adm-clerical	439(14%)	2,645~(86%)
Craft-repair	844~(23%)	2,850(77%)

Race = White

Related patterns can be put into the form of contingency tables

These tables may be more palatable for compare-andcontrast analysis

A seemingly obvious conclusion

Occupation	Income>50K	Income<50K
Adm-clerical	439 (14%)	2,645~(86%)
Craft-repair	844 (23%)	2,850(77%)

The data shows that, in Australia, craft repairers tend to earn more than administrative clerks 23% of the former vs 14% of the latter has high income

A straightforward $\chi 2$ test. Anything wrong?

Contradictions as deeper insight

 $\begin{array}{l} \text{Context} \\ \text{Race} = \text{White}, \\ \text{Workclass} = \text{Self-emp-not-inc} \end{array}$

Occupation	Income>50K	Income<50K
Adm-clerical	16 (35%)	30~(65%)
Craft-repair	90 (18%)	409 (82%)

The "unincorporated self-employed" work class is a contradiction to the conclusion that "craft repairers tend to earn more than administrative clerks"

Exceptions as deeper insight

Context	Occupation	Income>50K	Income < 50 K
Race = White,	Adm-clerical	251 (24%)	787~(76%)
Sex = Male	Craft-repair	829 (24%)	2,695(76%)

Context	Occupation	Income > 50K	Income < 50 K
Race = White,	Adm-clerical	188 (9%)	1,858 (91%)
Sex = Female	Craft-repair	15 (9%)	155 (91%)

The conclusion "craft repairers tend to earn more than administrative clerks" holds for neither male nor female

The conclusion is an artefact of male earning more than female

A seemingly obvious conclusion

Type of vaccines	Had flu	Avoided flu	total
I.	43	237	280
II	52	198	250
III	25	245	270
IV	48	212	260
V	57	233	290
Total	225	1125	1350

Vaccines I-V are not equal in efficacy $0.001 < \chi 2$ test p-value < 0.01 is significant

A straightforward $\chi 2$ test. Anything wrong?

Trend-strengthening subpopulation as deeper insight

Computation of the $\chi 2$

Type of vaccines	Had flu	(O-E) ² /E	Avoided flu	(O-E) ² /E
Ι	43 (46.7)	0.293	237 (233.3)	0.059
II	52 (41.7)	2.544	198 (208.3)	0.509
III	25 (45.0)	8.889	245 (225.0)	1.778
IV	48 (43.3)	0.510	212 (216.7)	0.102
V	57 (48.3)	1.567	233 (241.7)	0.313
Total	225	13.803	1125	2.761

 Vaccine III contributes to the overall χ2= (8.889+1.778)/16.564 = 64.4%

Vaccine III vs. rest Had flu Type of Avoided total vaccines flu ш 25 245 270 I, II, IV, V 200 880 1080 Total 225 1125 1350

- χ2 =12.7 with 1 d.f.
- P < 0.001

χ 2 with Vaccine III removed

Type of vaccines	Had flu	Avoided flu	total
1	43	237	280
П	52	198	250
IV	48	212	260
V	57	233	290

- χ2 =2.983 with 3 d.f.
- 0.1<p<0.5, not statistically significant

Vaccine III is different from / better than the rest

Can these tactics be automated?

Formulation of a hypothesis

"For Chinese, is drug A better than drug B?"

Three components of a hypothesis

Context (under which the hypothesis is tested), e.g. Race = Chinese

Comparing attribute, e.g. Drug = A or B

Target attribute/target value, e.g. Response = positive

{{Race=Chinese}, Drug=A|B, Response=positive}

Algo for rough hypothesis analysis

- Given a hypothesis H
- Add values of an extra attribute A to context of H
- Re-calculate test statistic
- Test statistic is reversed → Contradiction?
- *Test statistic becomes insignificant → Exception?*
- Test statistic is strengthened → Better explanation?

Brute-force on small datasets

Freq-pattern mining on big datasets & immediate superset search on freq patterns

A frequent pattern \approx a population

A superset of a frequent pattern ~ a subpopulation

Copyright © 2019 by National University of Singapore. All Rights Reserved

Excelah! - Hypothesis

	A	В	С	DI	F	G	н	1	1	К	L	M	N	0	Р	
	Target Attribute			Cons	traints			Observed	Values			Statistics Summary			Follow-up Analysis Report	
	Target Attribute:	Income	-	Race :	White	E	ducation	>50K	<=50K	Total		Chi-square Statistic	909.02		Trend Enhancements	
			I	Sex =	= Male			<u> </u>	1622 (48.4%)	3349		P-Value	1.074E-199		There are subpopulations for which the trend is enhanced;	
_	Preliminary Analysi	s				1	HS-grad	1335 (21.4%)	4893 (78.6%)	6228		Odds Ratio (Bachelors / HS-grad)	3.902432841		specifically: {WorkClass: Private}, {Marital-Status: Never-	
							Total	3062	6515	9577					married}, {Marital-Status: Married-civ-spouse}, {Marital-	
	Delete Preliminary Ana	lysis				_									Status: Divorced}, {Marital-Status: Married-spouse-	
			Expected Values Implication Analysis Report				Implication Analysis Rep	port	absent}, {Marital-Status: Separated}, {Marital-Statu							
	Initial Hypothesis Test Para	ameters				E	ducation	>50K	<=50K	Total		In the context of {Race: White, S	ex: Male},		Widowed}, {Occupation: Protective-serv}, {Relationship:	
h	umber of context variables:	2				В	achelors	1070.8	2278.2	3349		{Education: Bachelors} is 3.902 t	imes more		Not-in-family}, {Relationship: Husband}, {Relationship:	
	Choose statistic:	Odds ratio				1	HS-grad	1991.2	4236.8	6228		likely than {Education: HS-grad}	to be		Trend Supporters	
							Total	3062	6515	9577		{Income: >50K}			There are subpopulations which support this trend;	
	Perform Initial Hypothes	is Test													specifically: {WorkClass: State-gov}, {WorkClass: Self-emp-	
								Chi-Square	Values						not-inc}, {WorkClass: Federal-gov}, {WorkClass: Local-gov},	
						E	ducation	>50K	<=50K	Total					{WorkClass: Self-emp-inc}, {Occupation: Adm-clerical},	
	Follow-up Analysis Parar	neters				В	achelors	402.13	189.01	909.02					{Occupation: Exec-managerial}, {Occupation: Handlers-	
	Min. Population:	20					HS-grad	216.25	101.63	509.02					cleaners}, {Occupation: Prof-specialty}, {Occupation: Other-	
	Min. % Change:	1													service}, {Occupation: Sales}, {Occupation: Craft-repair},	
	Significance Level (a):	0.05													Trend Reversals	
											-				There are no subpopulations for which this trend is	
	Follow-up Analysis No trend-reversing					reversed.										
									10 01011						_	
	Delete Follow-up Anal	ysis						subpo	opulatio	on, H	vnc	othesis is				
								00000	•		•••					
									very l	ikely	tru	ie /				
															Trend Exceptions	
															There are subpopulations which are exceptions to this	
															trend; specifically: {Occupation: Transport-moving},	
		Int	ere	sting	subp	opula	ations	s for fur	ther inve	estiga	tior	n. E.g. the			{Occupation: Tech-support}, {Native-Country: England},	
				-	•	•				•					{Native-Country: Canada}, {Native-Country: Italy}, {Native-	
		hypothesis is insignificant for the European immigrant								Country: Poland}						
				subr	opula	itions	s; per	haps the	ey all ha	ve de	gree	es?				
				1	1		71-24	1.1.2.1	,		5-1					

Download this excel plug-in at https://github.com/dblux/excelah

Learning points

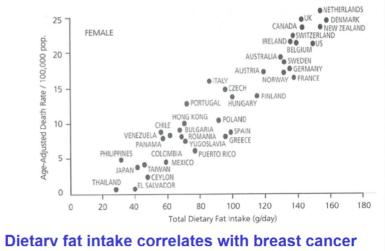
Exceptions

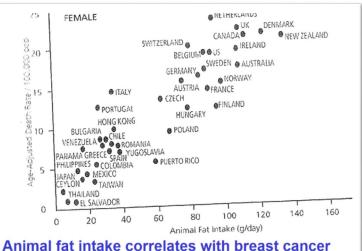
Trend reversals

Trend enhancements

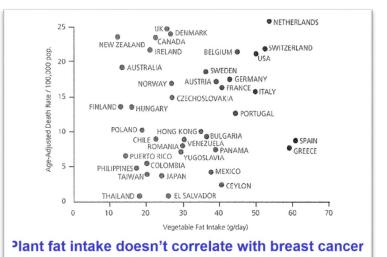
Sometimes the little bits (that you want to discard) are more informative than what you think

We tend to ignore nonassociations


Many technologies for association and correlation mining *Frequent patterns, association rules, ...*


But ignore non-associations Not interesting Too many of them

Is this a good thing?



We love to find correlations like these...

But not noncorrelations like this...

There is much to be gained when we take both into our analysis

A: Dietary fat intake correlates with breast cancer

B: Animal fat intake correlates with breast cancer Given C, we can eliminate A from consideration, and focus on B!

C: Plant fat intake doesn't correlate with breast cancer

We tend to ignore context!

We have many technologies to look for associations and correlations

Frequent patterns, association rules, ...

We tend to assume the same context for all patterns and set the same global threshold

This works for a focused dataset

But for big data where you union many things, this spells trouble

The right context is crucial

{{Race=Chinese}, Drug=A|B, Response=positive}

Context	Comparing attribute	response= positive	response= negative
{Race=Chinese}	Drug=A	N ^A _{pos}	$N^A - N^A_{pos}$
	Drug=B	N ^B _{pos}	$N^B - N^B_{pos}$

If A/B treat the same single disease, it is ok

If B treats two diseases, but A one, it is not sensible

The disease has to go into the context

In PCA, lower PCs account for minute amounts of variance; these PCs are often ignored. Should they?

A quick reminder about PCA

PCA, in modern English ©

PC1

■ Technique quite old: Pearson (1901) and Hotelling (1933), but still one of the most used multivariate techniques today

Main idea:

- Start with variables X_1, \ldots, X_p
- Find a *rotation* of these variables, say Y_1, \ldots, Y_p (called principal components), so that:
 - Y_1, \ldots, Y_p are uncorrelated. Idea: they measure different dimensions of the data.
 - $Var(Y_1) \ge Var(Y_2) \ge \dots$ $Var(Y_p)$. Idea: Y_1 is most important, then Y_2 , etc.

9 / 33

Definition of PCA

- Given $X = (X_1, \ldots, X_p)'$
- We call a'X a standard linear combination (SLC) if $\sum a_i^2 = 1$
- Find the SLC $a'_{(1)} = (a_{11}, \ldots, a_{p1})$ so that $Y_1 = a'_{(1)}X$ has maximal variance
- Find the SLC $a'_{(2)} = (a_{12}, \ldots, a_{p2})$ so that $Y_2 = a'_{(2)}X$ has maximal variance, subject to the constraint that Y_2 is uncorrelated to Y_1 .
- Find the SLC $a'_{(3)} = (a_{13}, \ldots, a_{p3})$ so that $Y_3 = a'_{(3)}X$ has maximal variance, subject to the constraint that Y_3 is uncorrelated to Y_1 and Y_2
- Etc...

X

10 / 33

PC2

Madrid and Warsaw are at almost the same distance to Latium cities

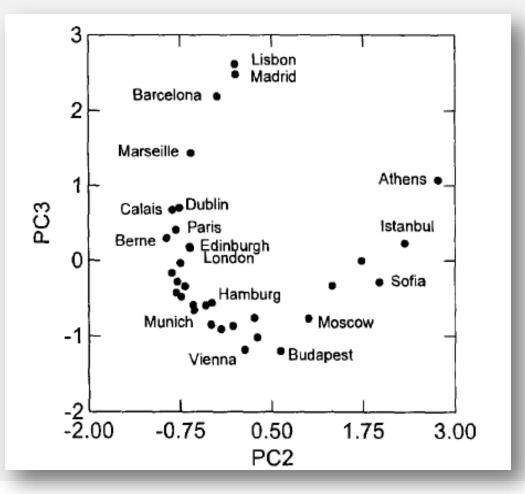
Are Madrid and Warsaw near each other?

Giuliani et al., Physics Letters A, 247:47-52, 1998

	Rome	Latina	Frosinone	Viterbo	Rieti
Amsterdam	430	447	449	415	409
Athens	347	321	331	346	364
Barcelona	283	305	293	292	271
Beograd	227	222	236	220	238
Berlin	393	400	409	374	373
Bern	227	249	247	220	205
Bonn	353	370	372	339	330
Bruselles	388	406	406	371	365
Bucharest	364	355	368	359	378
Budapest	268	261	274	246	259
Calais	418	448	446	418	405
Copenhagen	510	522	527	492	491
Dublin	622	645	641	615	600
Edinburgh	637	655	655	625	615
Frankfurt	318	333	336	302	295
Hamburg	435	448	453	417	414
Helsinki	727	729	739	706	713
Istanbul	452	430	443	443	464
Lisbon	615	637	622	624	604
London	474	494	493	464	456
Luxembourg	325	346	346	315	307
Madrid	449	470	458	460	440
Marseille	200	223	213	202	183
Moscow	782	773	785	759	774
Munich	230	245	250	216	213
Oslo	664	675	682	646	645
Paris	365	386	383	357	343
Prague	305	313	320	286	290
Sofia	294	273	286	280	301
Stockholm	653	658	668	632	636
Warsaw	435	433	444	413	421
Vienna	255	254	265	233	240
Zurich	227	246	246	214	205

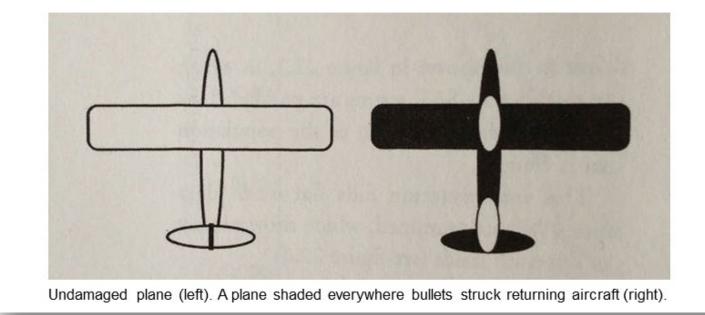
PCA of distance matrix of European cities to Latium cities

Factor loadings and proportions of explained variance


Variables	Components	Components						
	PCI	PC2	PC3	PC4	PC5			
Rome	0.9997	0.0137	-0.0184	-0.0120	0.0001			
Frosinone	0.9973	-0.0715	0.0132	0.0011	0.0029			
Latina	0.9987	-0.0420	-0.0272	0.0058	-0.0024			
Rieti	0.9909	0.0162	0.0393	-0.0009	-0.0023			
Viterbo	0.9964	0.0837	-0.0070	0.0060	0.0017			
Explained variance	0.9965	0.0029	0.000569	0.000043	0.000005			

PC1 correlates with distance of European cities to Latium cities

PC2, PC3, ... account for < 1% of variance


Are PC2, PC3, ... useless / non-informative?

PC2 & PC3 are angular orientation of European cities centered on Latium!

Another old story

Learning points

Mechanically applying data mining, statistical testing, etc. can only take you so far

"It is so easy to make bad inference with data... there's a creative part of understanding quantitative data that requires a sort of artistic or creative approach to research." ---Nate Bolt Have I constructed a "meaningful" model?

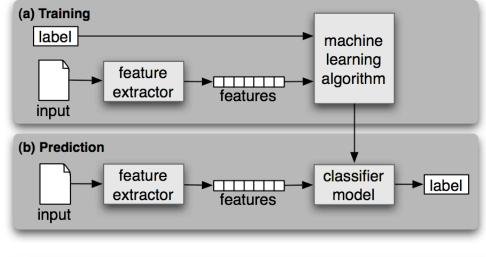
EXCELLENT. WE CAN USE NON-LINEAR MATH AND DATA MINING TECHNOLOGY TO OPTIMIZE OUR RETAIL CHANNELS!

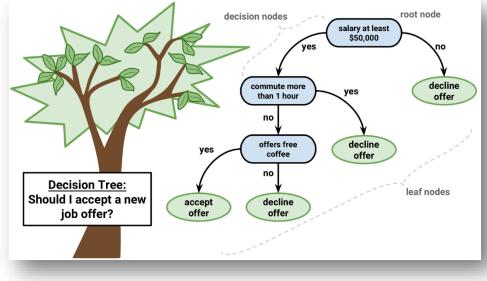
Prediction models are often evaluated for accuracy etc. on some test sets

	predicted	predicted
	as positive	as negative
positive	TP	FN
negative	FP	TN

Accuracy = $\frac{\text{No. of correct predictions}}{\text{No. of predictions}}$ $= \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$

Is this too simple minded? Sensitivity = TP / (TP + FN)


Specificity = TN / (TN + FP)


Precision = TP / (TP + FP)

Accuracy does not correlate with classifier similarity

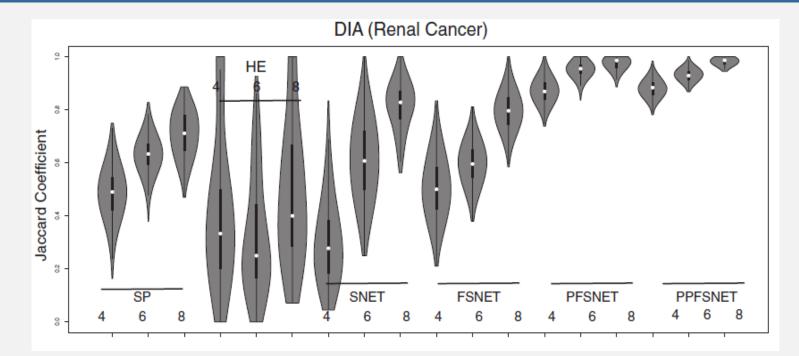
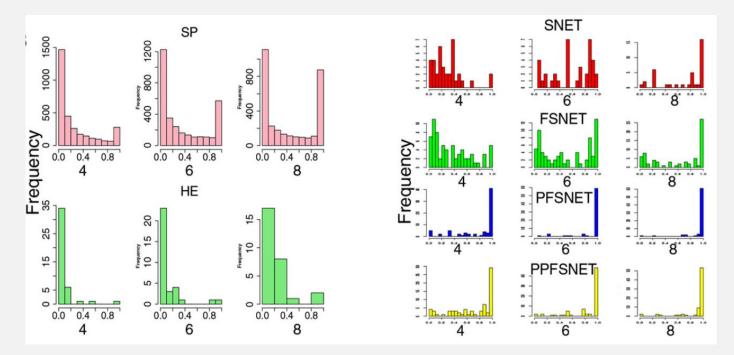

NN	NN Acc. (%)	Acc. t_1 -sparse (%)	Acc. t ₂ -sparse (%)	NPAQ r for t_1 -sparse (%)	NPAQ r for t ₂ -sparse (%)
ARCH_1	74.00	78.00	81.00	20.31	62.50
ARCH ₂	62.00	73.00	78.00	12.50	65.62
ARCH ₃	76.00	82.00	83.00	4 Although t2	2-sparse and ARCH7 are b
ARCH ₄	50.00	64.00	72.00		rate on the test set, they
ARCH5	78.00	82.00	83.00	7 disagree	e on ~80% of future cases
ARCH ₆	80.00	11.00	87.00	37.50	55.4
ARCH ₇	87.00	89.00	89.00	6.25	79.69

Table 2: First and second column refer to the baseline model where we use BNNs with 7 different architectures. The third and fourth represent the accuracies of sparsified models with $t_1 = 0.03, t_2 = 0.05$ sparsification thresholds. The last 2 columns show NPAQ estimates for the difference between each sparsified model and the orignal model. Features used by a prediction model are crucial for understanding the model and assessing its soundness


High accuracy does not imply features used are reproducible

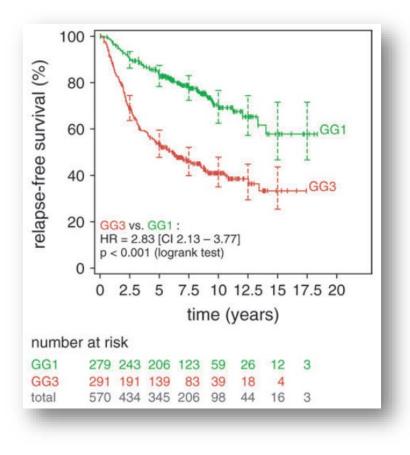
Agreement of feature sets selected from different samples of the same population is much poorer for methods that use no or "wrong" domain knowledge (SP, HE)

Goh & Wong. JBCB, 14(5):1650029, 2016.

High accuracy does not imply features used are "meaningful"

Features selected from different samples of the same population is much more unstable for methods that use no or "wrong" domain knowledge (SP, HE)

High accuracy does not imply features used are better than random


	ET/FSNET/PFSNET/PFSNET uses h features (complexes) but features (complexes) but correct hypothesis/distribution		CV p-val 0.91	CV accuracy/pval 1.08
HE	162	0.98	0.91	1.08
SNET	21	0.84	0.06	14.00
FSNET	36	0.96	0.06	16.00
PFSNET	65	0.92	0.06	15.33
PPFSNET	66	0.96	0.06	16.00

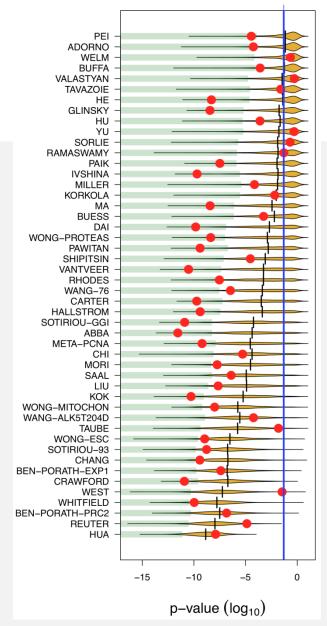
Classifiers trained on feature sets selected by SP, HE, etc. all have high accuracy

But they (SP/HE) may be confounded and result in classifiers not better than classifiers trained on comparable random feature sets of the same size

Goh, & Wong. Proteomics, 17(10):1700093, 2017

A seemingly obvious conclusion

A multi-gene signature is claimed as a good biomarker for breast cancer survival *Cox's survival p-value << 0.05*


A straightforward Cox's proportional hazard analysis. Anything wrong?

 $\log_{10}(0.05)$

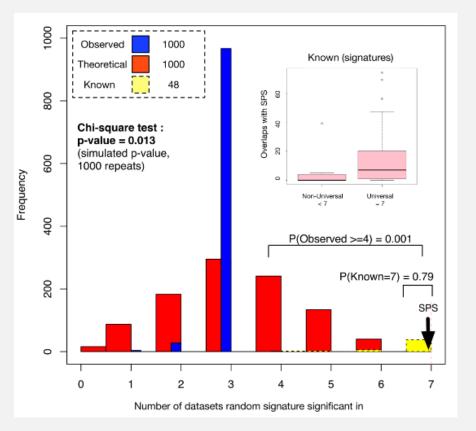
Are significant signatures meaningful?

40-50% of random signatures also have pvalue << 0.05

Significant signatures may be confounded; they are no better than random ones!

An engineer's solution

For any independent dataset, a random signature has ~50% chance to be significant in it


How many independent datasets are needed to avoid reporting random signatures as significant?

n	(50%) ⁿ
1	50.00%
2	25.00%
3	12.50%
4	6.25%
5	3.13%
6	1.60%
7	0.78%

Test on 7 datasets

SPS & most known signatures are universally significant on 7 breast cancer datasets

Random signatures (same size as SPS) are hardly universal, even though they get better p-values than known signatures on some datasets


Goh & Wong. Drug Discovery Today, 24(1):31--36, 2019

A theory-practice gap

40-50% of random signatures are significant in 1 dataset

Red histogram is expected # of random signatures significant in 1 to 7 independent dataset

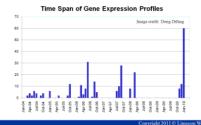
Blue histogram is observed distribution

Learning points

Accuracy etc. are too simple minded for assessing whether a prediction model is good *Reproducibility of features selected Consideration of confounding factors*

Validate on many datasets

Some independent datasets are not as independent as you think


Batch effects

This is an important issue in analyzing clinical and many other types of real-world data

Discuss another time....

Samples from diff batches are grouped together, regardless of subtypes and treatment response

Sometimes, a gene expression study may involve batches of data collected over a long period of time...

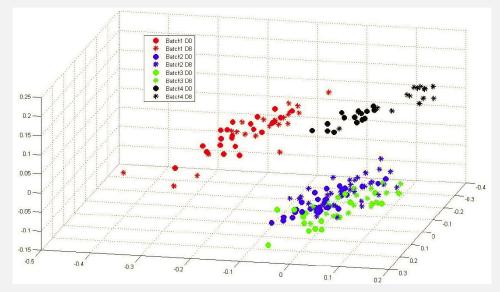


Image credit: Difeng Dong's PhD dissertation, 2011

Summary

Wong, **Big data and a bewildered lay analyst**, *Statistics & Probability Letters*, 136:73-77, 2018

Goh & Wong. **Dealing with confounders in omics analysis**. *Trends in Biotechnology*, 36(5):488-498, 2018.

Goh & Wong. Why breast cancer signatures are no better than random signatures explained. *Drug Discovery Today*, 23(11):1818-1823, 2018.

Goh & Wong. **Turning straw into gold: Building robustness into gene signature inference**. *Drug Discovery Today*, 24(1):31-36, 2019.

It is easy to make mistakes when analyzing data

Think in terms of contingency tables; i.e. compare & contrast

Look for subpopulations causing exception, contradiction, & trend strengthening

Mechanical use of data mining, statistical test, etc. can only take you so far

Copyright © 2019 by National University of Singapore. All Rights Reserved.