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Preliminaries

« This tutorial assumes you already know a little about what biological
networks are. If you don’t, Natasa Przulj’s lecture slides maybe helpful

* The ppt for this tutorial can be downloaded at

* Brief notes for this tutorial can be downloaded at
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Common issues in
proteomic profile
analysis

Improving consistency
- PSP
- PDS

Improving coverage
- CEA

- PEP
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Some issues in gene
expression analysis

Batch effect &
normalization

Reproducibility
— Law of large numbers
— Use background info

— Find more consistent
disease subnetworks

Sources of pathway &
PPIN

- Comprehensiveness
- Consistency
- Compatibility

Integration
- Pathway matching

PPIN cleansing
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Diagnosis Using Microarray [ggNUS

of Singapore
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Application: Disease Subtype Diagno
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Application: Drug Action Detection

genes
>

000000000000 000000 D
000000000000 000000 L.
0000000000000 00000 D
0000000000000 00000 Dg
0000000000000 00000® 0l
0000000000000 00000 0=l
0000000000000 0000® \oimal
| 00000000000 0000000 0m:l

conditions

Which group of genes are the drug affecting on?
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Typical Analysis Workflow

 Gene expression
data collection Signal Selection Basic Idea

« Choose a signal w/ low intra-class distance
« Choose a signal w/ high inter-class distance

 DE gene selection
by, e.q., t-statistic

* Classifier training B fg Ep
based on selected - = :i,1
22 l’-.i 9;;"5‘,-,- = SE=S 2 2 5 B ::,-

Ciass 1 Class? Class 1 Class 2 Class 1 Class?2

 Apply the classifier
fo I d | ag nos | S Of Image credit: Golub et al., Science, 286:531-537, 1999
future cases

Terminology: DE gene = differentially expressed gene

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Image credit: Yeoh et al, Cancer Cell, 1:133-143, 2002
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Part 1: Delivering
reproducible gene
expression analysis

e Some issues in gene
expression analysis
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Some Headaches

« Natural fluctuations of gene expression in a
person

* Noise in experimental protocols
— Numbers mean diff things in diff batches

— Numbers mean diff things in data obtained from
diff platforms

— Selected genes may not be meaningful
— Diff genes get selected in diff expts

SSTiC 2013 Copyright 2013 © Limsoon Wong
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[ Batch Effects
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« Samples from diff batches are gro'upedmtogether,
regardless of subtypes and treatment response
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Percentage of Overlapping Gene"“'““"‘"e

« Low % of overlapping Datasets DEG POG
genes from diff expt in
general Prostate | Top 10 | 0.30

Cancer Top 50 0.14
— Prostate cancer Top100 0.15

« Lapointe et al, 2004
e Singh et al, 2002
— Lung cancer
« Garber et al, 2001
« Bhattacharjee et al,

Lung Top 10 0.00
Cancer | Top50 | 0.20
Top100 0.31

2001
— Top 10 0.20
DMD DMD P
« Haslett et al, 2002 Top 50 0.42
* Pescatori et al, 2007 Top100 0.54

Zhang et al, Bioinformatics, 2009

SSTiC 2013 Copyright 2013 © Limsoon Wong
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“Most random gene
expression
signatures are
significantly
associated with
breast cancer
outcome”

Venet et al., PLoS Comput Biol, 7(10):e1002240, 2011.
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Part 1: Delivering

reproducible gene
expression analysis

« Batch effect &

normalization

+ Samples from diff batches are grouped together,
regardless of subtypes and treatment response

SSTiC 2013 Copyright 2013 © Limsoon Wong



95 Vol
Approaches to Normalization

« Aim of normalization: e Transform data so

Reduce variance w/o that distribution of
increasing bias probe intensities is
same on all arrays
 Scaling method -Eg.,(x-n/o
— Intensities are scaled | o
so that each array * Quantile normalization

has same ave value
— E.g., Affymetrix’s

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Quantile Normalization

Density of PM probe intensities for Spikein chips

 Given n arrays of length p, | -
form X of size p x n where | .
each array is a column

e Sort each column of X to
give Xsort

« Take means across rows 5 | |
of X, and assign this T e
mean to each elem in the
row to get X’

sort
« Get X, ormaiizeg PY @rranging | ¢ Implemented in some
each column of X’ to microarray s/w, e.g.,
have same ordering as X EXPANDER

SSTiC 2013 Copyright 2013 © Limsoon Wong



E, .- After quantile
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. Need normalization to correct for batch effect ¥ : : T
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Caution: “Over
normalize” signals in
cancer samples

A gene normalized by quantile
normalization (RMA) was detected as
down-regulated DE gene, but the origin
probe intensities in cancer samples were
higher than those in normal samples

A gene was detected as an up-regulated
DE gene in the non-normalized data, but
was not identified as a DE gene in the
guantile nornmalized data

Genes are extensively upregulated in
cancers. Normalizing them mislead
them to be considered downregulated!

SSTIC 2013
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Wang et al. Molecular Biosystems, 8:818-827, 2012

Copyright 2013 © Limsoon Wong




BANUS
W National University
of Singapore

Part 1: Delivering

reproducible gene
expression analysis

»NUS
g T« Reproducibility
= ;:3:3 | 33:3’ — Law of large numbers
= — Use background info
- [ R — Find more consistent
disease subnetworks
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Law of Large Numbers

e Supposeyou arein a
room with 365 other
people

« Q: What is prob that a
specific person in the
room has the same
birthday as you?

* A:1/365 = 0.3%

SSTIC 2013

Q: What is prob that
there is a person in
the room having same
birthday as you?

A: 1 - (364/365)3%° =
63%

Q: What is prob that
there are two persons
In the room having
same birthday?

A: 100%

Copyright 2013 © Limsoon Wong
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Individual Genes 9 s
 Suppose  Prob(ageneis
— Each gene has 50% COrrelated) = 1/26
chance to be high  #of genes on array =
— You have 3 disease 100,000
and 3 normal — E(# of correlated
samples genes) = 1,562

« How many genes ona = Many false positives

microarray are + These cannot be
expected to perfectly eliminated based on
correlate to these pure statistics!
samples?

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Group of Genes s
 Suppose  Prob(group of genes
— Each gene has 50% correlated) = (1/2°°
chance to be high — Good, << 1/2°
— You have 3 disease « # of groups = 100000C,
and 3 normal — E(# of groups of genes
samples correlated) = 100000C
 What is the chance of (1/25)°> = 2.6*1012

a group of 5 genes
being perfectly
correlated to these
samples?

— Even more false
positives?

 Perhaps no need to
consider every group

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Reqgulatory Circuits — The Contex

of Singapore

Anti-Apoptotic Pathway : :

PI3K PTEN

Growth Growth TRADD TRAF2 NIK

factors factor
receptors |AP Apoplosis

« Uncertainty in selected
genes can be reduced by
considering biological
processes of the genes

« Each disease phenotype
has some underlying
cause

« Thereis some unifying
biological theme for genes
that are truly associated
with a disease subtype

 The unifying biological
theme is basis for inferring
the underlying cause of
disease subtype

SSTiC 2013 Copyright 2013 © Limsoon Wong




Taming false positives by
considering pathways instead of

all possible groups

2
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%

National University
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Group of Genes &

« Suppose

— Each gene has 50%
chance to be high

— You have 3 disease
and 3 normal
samples

 What is the chance of (
a group of 5 genes

* Prob(group of genes
correlated) = (1/25)5

— Good, << 1/28
© HFetgreotpe———i—~t-

bemgl per;ecth'g — Even more false
correlated to these positives?
samples?

* Perhaps no need to
consider every group

Microarray Workshop for Gene Expression Profiling, NUH, 23/9/2011

National Ursveruty
of Singaparw

# of pathways =
1000

E(# of pathways
correlated) =
1000 * (1/25)° =
9.3*10

Copynight 2011 © Limsoon Wong
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ORA

— Khatri et al

— Genomics, 2002
FCS

— Pavlidis & Noble
— PSB 2002
GSEA

— Subramanian et al
— PNAS, 2005
SNet

— Soh et al

— BMC Genomics, 2011

—

27

NUS

National University
of Singapore

B &

Towards More Meaningful Gene %

—

= QOverlap Analysis

= Direct-Group Analysis

= Network-Based Analysis

SSTIC 2013
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Threshold

Genes

ABCB1
G5TM
GSTP1
MSHE
SAA1
SLC19A1
TPMT
CYP3A4
UGT1A1
IL10
MTHFR
TYMS
CYP3AL
VDR
GSTM1
ME3CH

Overlap Analysis: ORA

Genes

ABCBA1
ST
GSTP1
MSHE
MTHFR
TYMS
CYP3AL
VDR
GSTM
MNE3C1

GO Class 1

' GO Class 2

*{ GO Class N

Binomial
estimation

=BNUS
W National University
of Singapore

Significant Class 1

Non Significant Class 2

Significant Class N

S Draghici et al. “Global functional profiling of gene expression”. Genomics, 81(2):98-104, 2003.

SSTIC 2013
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A problem w/ ORA

It is essentially testing whether AN B is
significant, where

— A =the set of differentially expressed genes
— B =the set of gene in a specified pathway

The set of differentially expressed genes is
defined by an arbitrary threshold on, e.qg., fold
change, t-statistic, ...

If you change that threshold, you can change A
drastically. This has big impact on AN B

Copyright 2013 © Limsoon Wong




Genes

ABCBA1
ST
GSTP1
MSHG
SAA1
SLC19A1
TPMT
CYP3A4
UGT1A1
IL10
MTHFR
TYMS
CYP3AL
VDR
GSTMA1
MNR3CH

Direct-Group Analysis: FCS

- Ave expression

BINUS

National University

Significant Class 1

Non Significant Class 2

of the class -1
— n ZH_ log(R,) Permutation
Test
GOClass1  |-------- Scorel |- >
n
/'l < GO CIaSS 2 “““““ Score 2 ________ >
u | |
u | |
u | |
W GOClassN | -------- Score3  |-------- >

Significant Class N

P Pavlidis et al. “Using the gene ontology for microarray data mining: A comparison of methods and application to
age effects in human prefrontal cortex”. Neurochem Res., 29(6):1213-1222, 2004.

SSTIC 2013
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FCS: Key variations

e “Correlation score”

— Score of a class C = average pair-wise correlation
of genes in the class C

« “Experimental score”

— Score of a class C = average of log-transformed p-
values of genes in the class C

* Null distribution to estimate the p-value of the
scores above is by repeated sampling of random
sets of genes of the same size as C

Pavlidis et al., PSB 2002

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Pavlidis et al., PSB 2002
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Goeman & Buhlmann. “Analyzing gene expression data in terms of gene =)
sets: Methodological issues”. Bioinformatics, 23(8):980-987, 2007 N US
@ National University

of Singapore

A problem w/ FCS
* Its null hypothesis:

as proposed by
— “genes in C are indepen-

Pavlidis et al In
dently expressed & not
PSB 2002 diff from other genes

- :}: . But " EE
BNUS
FCS: Key variations By == :
et b — Genes in a pathway are
« “Correlation score” :
- Scorletof a class C = average pair-wise correlation nOt Independent
of genes in the class C ..
—> Becomes over sensitive

+ “Experimental score”
— Score of a class C = average of log-transformed p-
values of genes in the class C

« Solution: generate null

@’ibuﬁon to estimate the p-value ofth>
scores above is by repeated sampling of random " I I -
e s oy distribution by randomi

e remz  7ing patient class labels

Copyright 2013 © Limsoon Wong
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FCS: Why do we
estimate p-value
using a null
distribution based
on repeated
sampling of
randomized gene
sets / patient
sets?

N US
%

Venet et al. “Most random gene expression signatures are
significantly associated with breast cancer outcome”.
PLoS Computational Biology, 7(10):e1002240, 2011.

Copyright 2013 © Limsoon Won




An expt by a student on the nominal 9s '

SSTIC 2013
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and empirical p-values for t-test

“I performed permutation test on the DMD dataset
and obtained a null distribution. Then | computed
two p-values (nominal and empirical) and took the
genes at 5% threshold.

Out of 8,867 genes, 2,091 were significant under

nominal and 482 were significant under empirical.
The significant genes had 0.13 overlap between
two methods (309 intersect and 2265 union).”

Copyright 2013 © Limsoon Wong
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Direct-Group Analysis: GSEA

Rank Genes Assign score to each Permutation test
class based on gene
rank
Mex(Ry (S, 1) Pris(S.,1))
Genes p-values
ABCB1 0.0040 GOClass1l | -------- > Significant Class 1
. |GSTTY 0.0051 % )
Rulsl) 5sT 0.0126 P (.1
gﬁ:f gg;g: ,4 GOClass2 | - > | Non Significant Class 2
SLC19A1 oodt0f 7 RSl Rl
TPMT 0.0423] . .
CYP3A4 0.0500) ~~.. "/ . .
UGT1A1 0.0610f </ . .
IL10 0.0626)
MTHFR 00756 _#%|GoOcClassN | - » | Significant Class N
TYMS 0.0871
CYP3A5 0.0879] -7 Pu(Swoi)  Puss(Sus)
VDR 0.0906]
GSTM1 0.0949] /
NR3C1 0.0991

A Subramanian et al. “Gene set enrichment analysis: A knowledge-based approach for interpreting
genome wide expression profiles”. PNAS, 102(43):15545-15550, 2005

SSTiC 2013 Copyright 2013 © Limsoon Wong
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GSEA: Key Points

° “Enrichment score” A Phenotype B 7 ‘Leadcn?edgesubset

Classes Gene set S

A B |
— The degree that the = R
genes in gene set C are ;| — ey
enriched in the extremes  §| g esf g
of ranked list of all genes & e i TR
enrichment score E S(S)

- M eaS u red by Fig. 1. A GSEA overview illustrating the method. (A) An expression data set

sorted by correlation with phenotype, the corresponding heat map, and the

KO m Og O rOV_S m i rn OV “gene tags,” i.e., location of genes from a set S within the sorted list. (B) Plot

of the running sum for Sin the data set, including the location of the maximum
t t. t. enrichment score (£5) and the leading-edge subset.

Subramanian et al., PNAS, 102(43):15545-15550, 2005

« Null distribution to estimate the p-value of the

scores above is by randomizing patient class
labels

SSTiC 2013 Copyright 2013 © Limsoon Wong



Wong. “Using Biological Networks in Protein Function Prediction and =)
Gene Expression Analysis”. Internet Mathematics, 7(4):274--298, 2011. N US

National University
of Singapore

A problem W/ e Its enrichment score
considers all genes in C
GSEA J

e But...
— Not all branches of a

£

GSEA: Key points NUS ‘I‘arge path},Nay have to
e o maEs go wrong
“Dnspmin o W — Cannot detect if only a
ot ranked st o il gones A [ o iomme— small part of a pathway
) Ko1or-Sm|rnov malfu nCtlonS

statistic

* Null distribution to estimate the p-value of the
scores above is by randomizing patient class

s Subramanian et al.. PNAS, 102(43).15545-15550. 2005 ¢ SO I u ti O n : B reak p at h Ways
T INnto subnetworks

SSTiC 2013 Copyright 2013 © Limsoon Wong



Soh et al. “Finding Consistent Disease Subnetworks Across Microarray Datasets”.

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. B & N US

Network-Based Analysis: SNet 9 s

 Group samples into type D and —D
« Extract & score subnetworks for type D

— Get list of genes highly expressed in most D samples
 These genes need not be differentially expressed!

— Put these genes into pathways

— Locate connected components (ie., candidate
subnetworks) from these pathway graphs

— Score subnetworks on D samples and on —D samples

 For each subnetwork, compute t-statistic on the two
sets of scores

 Determine significant subnetworks by permutations

SSTiC 2013 Copyright 2013 © Limsoon Wong




Soh et al. “Finding Consistent Disease Subnetworks Across Microarray Datasets”.
BMC Bioinformatics, 12(Suppl. 13):S15, 2011. B ® N US

SNet: Score Subnetworks 9 =

Step 2: Subnetwork Scoring We assign a score vector 5V -79°" with

sn,d
respect to phenotype d to each subnetwork s» within SN 2*** according to
Equation 1.

U_SaOTE isaore i_sacrs isaors
g = <SN n,l,d )S sr,2.d 0 )S } (1)

s ,d 5 sty d
Where + is the number of patients in phenotype d. The formula & Njfﬁ?f
for the ** patient (also the " element of this vector) is given by:

q
isaors Sa0 e
& sn,t,d E :Gsn,j,d (2
i=t
(F5eore

s, g, d
sv for phenotype d. (This score &

simply given by:

refers to the score of the %" gene (say, gene ) in the subnetwork

Sa0rs 3 3 ] 1
o 44 18 given by Equation 3) and is

smrgd = k7 (3)

Where % 1s the number of patients of phenotype o who has gene x highly
expressed (top %) and » is the total number of patients of phenotype d. The
entire Step 2 1s repeated for the other disease phenotype —d, giving us the
score vectors, SN:?;E;QWE and SN;‘ff;i‘f;E for the same set of connected
components. The t-test is finally calculated between these two wvectors,

creating a final t-score for each subnetwork s» within SNy ;¢

SSTiC 2013 Copyright 2013 © Limsoon Wong



Soh et al. “Finding Consistent Disease Subnetworks Across Microarray Datasets”.
BMC Bioinformatics, 12(Suppl. 13):S15, 2011. B ® N US

National University

SNet: Significant Subnetworks

« Randomize patient
samples many times

« (Get t-score for
subnetworks from the
randomizations

e Use these t-scores to
establish null
distribution

* Filter for significant
subnetworks from real
samples

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Key Insight # 1 9 s
/ « SNet does not require
@ all the genes in subnet

\@ to be diff expressed

Genes A, B, C are high in * It only requires the
phenotype D subnet as a whole to

be diff expressed
A is high in phenotype ~D but B

and C are not

 Able to capture entire
Conventional techniques: Gene relationship,

B and Gene C are selected. : :
Possible incorrect postulation postulating a mutation

of mutations in gene B and C In gene A

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Key Insight # 2 2?2:3;:&:: vvvvv v

@ A branch within pathway
consisting of genes A, B, C, D and

/: @ E are high in phenotype D

Genes C, D and E not high in
@ phenotype ~D

30 other genes not diff expressed

30 other genes

Conventional techniques: Entire
network is likely to be missed

 SNet: Able to capture the subnetwork branch
within the pathway

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Pathway 1 / Pathway 2

S 5

Genes A, B and C are present in Conventional techniques:
two separate pathways

Both pathways are scored equally.

A, B and C are high in phenotype | | So both got selected, resulting in
D, but not high in phenotype ~D pathway 2 being a false positive

« SNet: Able to select only pathway 1, which has
the relevant relationship

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Let’'s see whether SNet gives us
subnetworks that are

() more consistent between
datasets of the same types of
disease samples

(1) larger and more meaningful

SSTiC 2013 Copyright 2013 © Limsoon Wong



Soh et al. “Finding Consistent Disease Subnetworks Across Microarray Datasets”.
BMC Bioinformatics, 12(Suppl. 13):S15, 2011. B ® N US

National University

Better Subnetwork Overlap

Table 1. Table showing the percentage overlap significant subnetworlks
between the datasets. Each row refers to a separate dizeasze (as indicated
in the first column). Each dizeaze iz tested against two datasets depicted in
the second and third column. The overlap percentages refer to the pathway
overlaps obtained from running SMet {column 4) and GEEA {column 3) The
actual mimber of overlaps are parentheszized in the same columns.

Overlap = |A nB| / min(|A[,|B|)

Disease | Dataset 1 | Dataset 2 s INet GSEA
Leuk (3olub Armstrong | 83.3% 200 | 0.0% ()
subtype | Eoss Yeoh 47.6% (1 | 23.1% (6)

DMD Haslett Pescatori | 58.3% (' | 55.6% (10)
Lung Bhatt Garber 00.9% () | 0.0% ()

 For each disease, take significant subnetworks
from one dataset and see if it is also significant in
the other dataset

SSTiC 2013 Copyright 2013 © Limsoon Wong



Soh et al. “Finding Consistent Disease Subnetworks Across Microarray Datasets”.
EBNUS

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. ﬁ
Better Gene Overlaps 9

Table 2. Table showing the number and percentage of =ipgnificant
overlapping genes. -y refers to the mumber of genes compared against and
iz the mumber of unique genes within all the significant subnetworks of the
dizeasze datasets. The percentages refer to the percentage gene overlap for the

corresponding algorithms.
Overlap = |A nB| / min(|A[,|B|)
hsease | v | SNet | GSEA | SAM | t-test
Leuk 8d | 91.3% | 24% | 22.6% | 143%
subtype | 73 | 93.0% | 40% | 493% | 373%
DMD 45 | 69.2% | 28.9% | 42.2% | 200%
Lung 65 | 31.2% | 4.0% | M4.6% | 262%

 For each disease, take significant subnetworks
extracted independently from both datasets and
see how much their genes overlap

Copyright 2013 © Limsoon Wong

SSTIC 2013



Soh et al. “Finding Consistent Disease Subnetworks Across Microarray Datasets”.

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. B ® N US

Larger Subnetworks e

Table 3. Table comparing the size of the subnetworks obtained from the
t-test and from SNet. The first column shows the disease and the second
column shows the number of genes which comprizsed of the subnetworks,
The third and fourth column depicts the mumber of genes present within
each subnetwork for the t-test and SNet respectively. So for instance in the
lenkemia datazet, we have 8 subnetworks with size 2 genes, 1 subnetwork
with size 3 genes for the t-test. For SNet, we have 2 subnetworks with size
5 genes, 3 subnetworks with size 6 genes, 2 subnetworks with size 7 genes
and 1 subnetwork with a size of > 8 genes

Disease | - | Num (enes (t-testy | Num Genes (SNet)
2 3 4 5 5 6 T =8
Leuk 8418 1 0O 0 23 2 1
subtype | 73 (5 1 1 1 1 O 1 &
DMD 4513 1 0O 0 1 O O 35
Lung 65|13 2 1 0 5 3 0 1

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Issue #1 with SNet

A =

Fig. 2. In SNet, the top a% of genes of each sample in phenotype D is
highlighted in yellow. A subset of these genes that are thus highlighted in at
least 50% of the samples are then taken to induce subnetworks.

%

Quantie

« What if the real important genes are close to, but not
In, the top % most highly expressed genes?

* Blindly increasing o does not help, as this will bring in
lots of false-positive genes

SSTIC 2013
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Issue #2 with SNet 95 e

g
i_Faore saore
& s, t,d T E r sw,q,d (2)
a=1

(= gf;f”ad refers to the score of the 7*" gene (say, gene ») in the subnetwork

sn. for phenotype d. (This score 7 g;‘f;‘fd 15 given by Equation 3) and is
simply given by:

smidd = B/ 3)

Where % 1s the number of patients of phenotype < who has gene « highly
expressed (top «%) and = is the total number of patients of phenotype d.

« SNet weighs genes & scores subnetworks only
on the basis of phenotype D

« Why not consider phenotype ~D as well?

SSTiC 2013 Copyright 2013 © Limsoon Wong



PFSNet

« Deal with issue #1 of SNet using “fuzzification”

 Deal with issue #2 of SNet using paired t-test

— PFSNet — Paired Fuzzy SNet

SSTiC 2013 Copyright 2013 © Limsoon Wong
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0.

Quante

e | =P =D

Fuzzification

0, 04

Our goal in this step is to compute a gene list, which segregates the
pathways into smaller components. The voting criteria that determines
whether the gene g; is accepted into this gene list is given below:

S\ €, :
» fo{egi.p;) > (1)

pi€D DI

where D is the phenotype for which the subnetwork is generated. p; ranges
over the patients of phenotype D and fs is the fuzzy function which converts
the gene expression value eg; . to a value between 0 and 1.

SSTiC 2013 Copyright 2013 © Limsoon Wong



In PFSNet, instead of computing the gene scores with respect to
phenotype D, we also compute the gene scores with respect to phenotype B & N U S
—D. Hence, each node is given scores which we denote as 37 (g;) and @ Htional Unbrersty
85 (gi). computed as follows:

Bt (gi) = Z fS(C’-gian)‘ B3 (i) = Z fs(eg;.p;) 4)

p; €D D] p;€-D B

Accordingly, for every subnetwork S, each patient of phenotype D can be
scored under 37 and /33, as follows:

Scorel*(S) = fs(eq; pi) * B1(g:), (35) -
1 L Paired
Scorep*(S) = Z fs(eg; pr) * B2(g:) (6) T'TeSt
gi€S

« ScorePk,(S) and ScorePk,(S) are computed for the
same sample Pk and subnetwork S

— Can do paired t-test

— Null hypothesis: If S is irrelevant to D vs ~D, we
expect ScorePk, (S) — ScorePk,(S) to be around 0

SSTiC 2013 Copyright 2013 © Limsoon Wong




subnet agreement

subnet agreement
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Fig. 4: Consistency of subnetworks in Leukemia dataset
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Fig. 6: Consistency of subnetworks in DMD dataset
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PFSNet vs GSEA & GGEA:  #gNu>
Pathway Agreement

Dataset ‘ PFSNet ‘ FSNet | GSEA | GGEA
Leukemia 1.00 0.75 0.12 0.18
ALL (subtype) 0.56 0.38 0.34 0.37
DMD .82 0.79 0.57 0.51

For PFSNet and FSNet, threshold values of ¢; = 0.95,60, =
0.85 are used.

Overlap = |AnB| / |[AUB|

SSTiC 2013 Copyright 2013 © Limsoon Wong




PFSNet vs T-Test: 95 N>
Gene Agreement

of Singapore

Dataset PFSNet FSNet SNet (-test
D =D D =D D =D D =D

Leukemia .00 | 0.81 [ 0.64 [ 0.42 | 0.35 [ 0.58 | 0.21 | 0.20
ALL (subtype) | 0.54 [ 0.70 | 0.38 | 0.41 | 0.29 | 0.57 | 0.08 | 0.08
DMD 0.82 [ 0.72 | 0.88 | 0.75 | 0.76 | 0.54 | 0.36 | 0.14

For PFSNet and FSNet, threshold values of 81 = 0.95, 82 = 0.85 are used. D represents subnetworks
enriched in phenotype D and — D represents subnetworks enriched in phenotype —D.

Overlap = |AnB| / |[AUB|

SSTIC 2013

Copyright 2013 © Limsoon Wong



PFSNetvs GSEA & GGEA:

Pathway Agreement B2 & NUS
Dataset | PFSNet | FSNet | GSEA | GGEA W ofSingapore
Leukemia 1.00 0.75 0.12 0.18
ALL (subtype) | 0.56 0.38 0.34 0.37
DMD 082 | 079 | 057 | 051

Testing subnets from PFSNet
using GSEA & GGEA

PFSNet | FSNet | SNet

Leukemia (GSEA) 0.50 0.00 | 0.00
Leukemia (GGEA) 0.67 0.50 | 0.50
ALL subtype (GSEA) 1.00 0.15 | 0.11
ALL subtype (GGEA) 1.00 047 | 0.35
DMD (GSEA) 0.90 0.57 | 0.50
DMD (GGEA) 0.54 0.71 0.45

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Top 5 Subnets

Leukemia ALL subtype DMD

Proteasome Degradation Wnt Signaling*® Striated Muscle Contraction™®
IL-4 Signaling*® Antigen Processing Integrin Signaling

Antigen Processing* Jak-STAT Signaling® VEGF Signaling*

B-Cell Receptor Signaling T-Cell Receptor Signaling Tight Junction

Wnt Signaling*® Adherens Junction® Actin Cytoskeleton Signaling

The asterisk indicates subnetworks that were not found 1n SNet

SSTiC 2013 Copyright 2013 © Limsoon Wong
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DMD: Striated Muscle Contractior+” =

Z Disk M Disk Z Disk
Other Structural
sl Lk raRAA A Regulatory Proteins
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A‘l
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| N
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A Model of Trigg'ering of Striated Muscle Contraction by Ca++
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TPM1 Tropanin-C
TPM2 TNNC1
TPM3 THNC2 yain Head
TPM4 o4

Myosin Binding Site

. An example of a biologically relevant pathway for DMD. The nodes

from the induced subnetwork identified by PFSNet is highlighted with red
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What have we learned?

Common headaches in gene expression analysis
— Natural fluctuation, protocol noise, batch effect

Use of biological background info to tame false
positives

Overlap analysis => direct-group analysis -
network-based analysis

Subnetwork-based methods yield more
consistent and larger disease subnetworks

Copyright 2013 © Limsoon Wong
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From pathways to models,
From static to dynamic:

A couple of very recent papers that are worth your leisure reading...

« Geistlinger et al. From sets to graphs: Towards a realistic
enrichment analysis of transcriptomic systems. Bioinformatics,
27(13):1366—i373, 2011

« Zampieri et al. A system-level approach for deciphering the
transcriptional response to prion infection. Bioinformatics, 27(24):
3407--3414, 2011

Fig. 1. System response inference: a toy genctic network consisting of six
genes exemplifies the advantages of using a system-level datn comparison
(), Standard suistical tests (1. -test) unvel significant fold change in
gene expression varations for each traascript individually (h), neglecting
the underlying regulatory network. Such statistical test can sdentify whether
the expression level of a transcript is significantly changed with respect to
a reference. Putative gene expression changes age reported in panel (¢), In
this specific example, two genes are identified to be overexpressed [red/+
nodes] and one downregulated (green/- node), while the remaining three do
nol show any changes {grey nodes). By knowing the corresponding genetic
regulatory network (d), we can discriminate the coberent variations from the
unexpected ones. As shown in the example, two of the geénes that showed
a significant expression viriations are consistent with model pradictions i.¢
the expression changes of genes x and v can be explained by the variation of
gene 2. This s reflected by a skew distribution of discrepancies (i.e. residues),
between model predictions and observed data, centered around O (). At the
same tme, one transcript, w, 15 not responding coberently 1o the il model.
The fact that its expression is unchanged, when it should have been increased.
might relate 1o an anomalous direct elfect of the pathology, preventing a
synergistic response between all the genes in (he system, Hence, the kst of
‘perturbed genes’ can be seasibly different from the standard DEGs identified
from individunl fold change analysis (bie).

Statistical

Fold changes

I

genez W Differently expressed genes (DEGs) 0 1M

test

(f) Fitting residues

.| Perturbed genes
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Still a major challenge

« Suppose there are very few samples, so few that
you cannot estimate the p-value by permuting
class labels

« What do you do?

Copyright 2013 © Limsoon Wong
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Typical Proteomic MS Experimen

Sample ,LF’eptjde
preparation/ Protein ~ Peptide ,| Sample Mass Mass spectrum Data
g@ fractionation digestion fJ\ separation / AJ_ ionization spectrometry 2 analysis
® ®. SDS-PAGE * Trypsin * HPLC * Electrospray  'Peptide * Quadrupole E ol * PeptideSearch
Cell culture * 2D-gel * Lys-C » lon exchange ionization ions » Time of flight * Sequest -4
electrophoresis * Asp-N * MALDI » Quadrupole ion traps » Mascot ——a
* Glu-C * FTICR

Figure 1 | The mass-spectrometry/proteomic experiment. A protein population is prepared from a biological source — for
example, a cell culture — and the last step in protein purification is often SDS-PAGE. The gel lane that is obtained is cut into several
slices, which are then in-gel digested. Numerous different enzymes and/or chemicals are available for this step. The generated
peptide mixture is separated on- or off-line using single or multiple dimensions of peptide separation. Peptides are then ionized by
electrospray ionization (depicted) or matrix-assisted laser desorption/ionization (MALDI) and can be analysed by various different
mass spectrometers. Finally, the peptide-sequencing data that are obtained from the mass spectra are searched against protein
databases using one of a number of database-searching programmes. Examples of the reagents or technigues that can be used at
each step of this type of experiment are shown beneath each arrow. 2D, two-dimensional; FTICR, Fourier-transform ion cyclotron
resonance; HPLC, high-performance kquid chromatography.

Source: Steen & Mann. The ABC’s and XYZ'’s of peptide sequencing.
Nature Reviews Molecular Cell Biology, 5:699-711, 2004
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Diagnosis Using Proteomics

Technology-dependent Technology-independent

a) peptide and protein
identification from PSMs

c) peptide significance analysis e) class discovery g) data integration

A
= ! \ peptide spectrum protein <
g | | \ malches names {_ ‘0
(5 | ' ) o
| \ 2 oy 4 | 4
massicharge » HALPNFKK =3 Axx1 g NS S light e % e
s 2 ge o P c {7:!&?
.“———] /x IDDSETWR =3 Bxx2 E & r,@-V. E n ‘D .:,345}.:
1 / o A 2 S . o=t
u':"'"u I LQMCDDE —» Cxx3 % ,—l’fgbﬁg““"; haavy {l § A 5
2 o—reptided o 2|’
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o e L 3 L 8 g / & o .f:.-’

~__- -.4(‘; 3 Sy PR iR -— :'.3 \__‘ d

\ 2 log fold change > N i : ] 2
leng; [~ ] AR —
“on lima \ ™ (practical significance) 1-specificity

b) feature detection, quantification, C . - .
annotation, and alignment d) protein significance analysis f) class prediction h) pathway analysis

Kall and Vitek, 2011
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Protein lIdentification by Mass Spec

[ ] \ S#:1708 RT:54.47 AV:1 NL:5.27E6
T: +cdFullms2 638.00 [ 165.00 - 1925.00]
u
100
95

MS/MS Instrument

Database search . ] e
« Sequest, Mascot, InSpect = ‘

de Novo interpretation
* Lutefisk, Peaks, PepNovo

s

1048

Source: Leong Hon Wai
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Breaking Protein into Peptides, NUS
and Peptides into Fragment lons

 Proteases, e.g. trypsin, break protein into
peptides
« A Tandem Mass Spectrometer further breaks the

peptides down into fragment ions and measures
the mass of each piece

« Mass Spectrometer accelerates the fragmented
lons; heavier ions accelerate slower than lighter
ones

« Mass Spectrometer measures mass/charge ratio
of an ion

Source: Leong Hon Wai
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Figure 1 ":]:IH'JM frgm SELDETOF S amabysisof REH, 697, M4 11, and Kasumi cell lines. Protein {4 gg) from each ol b was anabyred on
5AK2 Prodend. |'||]:l Agraya, ALL cal] lines shown are REH and 697, the MLL cell line is MVa:11, and the AML cell line is Kxomi. The agersk
indicates the differentially expresed protein at 53 da.

Source: Hegedus et al. Proteomic analysis of childhood leukemia. Leukemia, 19:1713-1718, 2005
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Peptide Identification by Mass Sp
g D

MS/MS instrument el &
nderstandmg an

ZZ: S/MS Spectrum
— /

655
é 60—:
I 3
ERaE 425.0 _851.4
949.4

Database search

- Sequest, Mascot, InSpect = )

de Novo interpretation = = |*w| |
- Lutefisk, Peaks, PepNovo = ‘ l il 1 r |

Source: Leong Hon Wai
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Peptide Fragmentation B ™
Collision Induced Dissociation
H...-HN-CH-CO "~
|
N\ Ri-lj \_ _J
Y Y
Prefix Fragment Suffix Fragment

* Peptides tend to fragment along the backbone

 Fragments can also loose neutral chemical
groups like NH; and H,O

Source: Leong Hon Wai
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NS
. and fragments due to neutral losses™
b,-H,0O b,- NH;
a, : b a; : bg
1 9 n
[ HQ NH,F
| j |
R, | O R, O Rgp O R,
|y | | Wl |
H--N---C-=—C--N-—-C-:—-C- N—--C-i-C--N---C--COOH
. | | | | | |
H H H H H H H
| | |
Y3 Yo Y1
Y5 -H,0 Yo -

Source: Leong Hon Wai
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« The peaks in the mass spectrum:

— Prefix  and Suffix Fragments
— Fragments with (-H,0, -NH,)
— Noise and missing peaks

Source: Leong Hon Wai

SSTiC 2013 Copyright 2013 © Limsoon Wong




Bafna & Edwards. “On de novo interpretation of tandem mass
spectra for peptide identification”. RECOMB 2003, pp. 9-18 BE & N US

Example MS/MS Spectrum 95 oo

a8 145 292 405 534 663 778 924 b-ions
S G F L E E D K
024 837 780 633 520 391 262 141 y-ions
100 — %
| P28}
£ b ¥
z Y F .
-
= % b,
X :
=
% bs b,
> b e e ol il gl
200 400 600 300
m/z

Figure 2: MS/MS spectrum for peptide SGFLEEDK.
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SSTIC 2013

Protein Identification with MS/M Q;?

Peptide
MS/MS |dentification

» Mass
()

Source: Leong Hon Wai
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aNUS

National University

Peptide Identification by Mass

[
S#:1708 RT:54.47 AV:1 NL:5.27E6
T: +cdFullms2 638.00 [ 165.00 - 1925.00]
1

/Step 3: Computational M%ethogs )
Database search
Sequest, Mascot B
de Novo interpretation ‘ l H ‘ T
Lutefisk, Peaks, PepNovo e --';c.,;l-- s s

Source: Leong Hon Wai
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Database Search Algorithms

 Database search
— Used for spectrum from known peptides
— Rely on completeness of database

 General Approach
— Match given spectrum with known peptide

— Enhanced with advanced statistical analysis and
complex scoring functions

* Methods
— SEQUEST, MASCOT, InsPecT, Paragon

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Theoretical Spectrum for a Peptld

« Given this peptide

« Its theoretical spectrum is

| | | 1 I

I & & & & & & >

0
 Theoretical spectrum is dependent on

— Set of ion-types considered
— Larger if multi-charge ions are considered

Source: Leong Hon Wai

SSTiC 2013 Copyright 2013 © Limsoon Wong
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BINUS

National University

Database Search Algorithm

Database i

Database of Match
known peptides ’ 1

MDERHILNM, KLQWVCSDL, I I I I I I
PTYWASDL, ENQIKRSACVM,

TLACHGGEM, NGALPQWRT, - .
HLLERTKMNVV, GGPASSDA, / 0  Theoretical Matching Score
GGLITGMQSD, MOPLMNWE, spectrum for this peptide

ALKIIMNVRTL AVGELTK, V/
HEWAILFE, GHNEWANNAE:
GVEGSVLRA, EKLNKAATYIN..

Repeat for all the peptides in
the Database

Source: Leong Hon Wai

Copyright 2013 © Limsoon Wong
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 There are also approaches for de novo peptide
Identification. ..

« Butlwill omit these here

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Protein Identification

After all the peptides have been identified, they
are grouped into protein identifications

Peptide scores are added up to yield protein
scores

Confidence of a particular peptide identification
Increases if other peptides identify the same
protein and decreases if no other peptides do so

Protein identifications based on single peptides
should only be allowed in exceptional cases

Source: Steen & Mann. The ABC’s and XYZ’s of peptide sequencing.
Nature Reviews Molecular Cell Biology, 5:699-711, 2004

Copyright 2013 © Limsoon Wong



Cf. Gene Expression Profile Analy

 Once the proteins are identified, the proteomic
profile of a sample can be constructed

— l.e., which protein is found in the sample and how
abundant it is

« Similar to gene expression profile. So gene
expression profile analysis techs can be applied

« Some key differences
— Proteomic profile has much fewer features
— Proteomic profiling study has much fewer samples

SSTiC 2013 Copyright 2013 © Limsoon Wong
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National University
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Part 2: Delivering
more powerful « Common issues in
proteomic profile proteomic profile
- analysis
analysis

Distribution of counts in mod Distribution of counts in poor

250

1

200

150

Frequency
Frequency

100 150 200 250 300
1 1 ]

1

50
1
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National University
of Singapore

Typical ;-
frequency
distribution of _ #- i
proteins S I :
detected in .
proteomic N
profiles CTIRLA i

mod$Counts poor$Counts

Only 25 out of 800+ proteins are
common to all 5 mod-stage HCC
patients!

SSTiC 2013 Copyright 2013 © Limsoon Wong
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BAINUS

National University

Issues in Proteomic Profiling

 Coverage — Thresholding
« Consistency — Somewhat arbitrary
| — Potentially wasteful
it OO _+ By raising threshold,
' some info disappears

Moderate Threshold

_____________________

Detected
protein

Present but
undetected
protein

SSTiC 2013 Copyright 2013 © Limsoon Wong



Part 2: Delivering
more powerful
proteomic profile
analysis

* Improving consistency
— PSP
— PDS

8 il 82 8 o o?lg oBllE o

SSTiC 2013 Copyright 2013 © Limsoon Wong
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An inspiration from gene expression NUS

profile analysis

1"
NUS
Gene Regulatory Circuits g
o0 O = —
. - . . .’_ .4 -. a _-
==~ - ° e :
Taming false positives by NUS
- Eachdiseasephenotype ~ * Uncertainty in selected considering pathways instead of ==
has some underlying genes can be reduced by gras i s
cause considering biological all [_'O.‘:blt_rie aroups
processes of the genes .
a5 NUS

+ There is some unifying

biological theme for genes * The unifying biological . " .
theme is basis for inferring * Suppose * Prob{group of genes

that are truly associated Eack mans hae &0 correlated) = (1/2%)°
with a disease subtype the underlying cause of - :: 9“‘““:“": o Soeet 23 Ei# of pathwa
: chance to be high - Good, << 1/2°
disease sub ' v orrelated ) =
hrpe — You have 3 disease e Gax
. Copmgh01i OLmooaV and 3 normal .

samples

« What is the chance of
a group of 5 genes

being perfectl:w - Even more faise
correlated to these positives?
samples?

« Perhaps no need to
consider every group

SSTiC 2013 Copyright 2013 © Limsoon Wong
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of Singapore

EBINUS
Intuitive Example %

Patient1  Patient2  Patient 3 * Suppose the failure to
form a protein complex
. ‘ ‘ causes a disease
— If any component
protein is missing, the
. ’ ’ have a diff protein
eesCOMpPONENt missing
‘ . ‘ : o — Construct a profile

complex can’t form
from the disease can
Present but

= Diff patients suffering
ot based on complexes?

SSTiC 2013 Copyright 2013 © Limsoon Wong
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We try an adaptation of SNet on
proteomics profiles...

“Proteomic Signature Profiling” (PSP)

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Goh et al. Proteomics signature profiling (PSP): A novel contextualization approach for cancer
proteomics. Journal of Proteome Research. accepted. B & N US

National University

“Threshold-free” Principle of PSP

____________________ .
Hit rate in a !

ref complex

Cluster dendrogram with AU/BP values (%)

1.0

ey

Hagt
as
A

| | 1] .
B 5[z /{8 8 ¥ 5([g gl =
- - o~ ~N - ~ v - - o~ - -
Distance: ewclidean
Cluster mehod: ward
MS-Detected proteins Proteomics Signature Profile Functional Analysis

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Goh et al. Proteomics signature profiling (PSP): A novel contextualization

approach for cancer proteomics. Journal of Proteome Research. accepted. %@ N US

Applying PSP to a HCC Dataset~ "

of Singapore

SSTiC 2013 Copyright 2013 © Limsoon Wong



Goh et al. Proteomics signature profiling (PSP): A novel contextualization
. B & S
approach for cancer proteomics. Journal of Proteome Research. accepted. N U
@ National University
of Singapore

Consistency:. Samples segregate by
their classes with high confidence

Cluster dendrogram with AU/BP values (%)

i:‘ —
=
«© N0
B <
£
i N
< 100 1 10 100 | @0 100 100 100 |10 101 100
[ U I R B I
B B B Bllg &8 8B &8 8B B 8 &8
=) de] i | = = = = = = 2
£ = 8 gl B B8 8 =8 ﬁ 5 £

Distance: euclidean
Cluster method: ward

Copyright 2013 © Limsoon Wong
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Goh et al. Proteomics signature profiling (PSP): A novel contextualization =)

approach for cancer proteomics. Journal of Proteome Research. accepted. @ N US
- National University
Feature Selection

of Singapore
Patient 1 Patient 2 Patient 3

Mod Cancer

Poor Cancer

Protein t_score= — where g _ (m =08y, +(n =Sy
Undetected SwimmJ—+— 58 U m+n —2
Protein ’ nom

SSTiC 2013 Copyright 2013 © Limsoon Wong



Goh et al. Proteomics signature profiling (PSP): A novel contextualization
approach for cancer proteomics. Journal of Proteome Research. accepted.

Top-Ranked Complexes

=BNUS
W National University
of Singapore

Cluster ID mod score DOOr score cluster name

SSTIC 2013

5179

5235
1193

159

2657

3067
1226

5176

1189
5251
2766

0.000300541

0.000300541
0.000300541

0.008815869

0.00911641
0.013323983

0

0.513951977

0.513951977
0.513951977

0
0.715352108

0.513951977

0.513951977
0.513951977
0.513951977

3.159758312

3.159758312
3.159758312

2.810927655

2.55616281

2.55616281
2.420592827

2.339059313

2.339059313
2.339059313
2.339059313

NCOAG6-DNA-PK-Ku-
PARP1 complex
WRN-Ku70-Ku80-PARP1
complex

Rapl complex

Condensin I-PARP-1-
XRCC1 complex
ESR1-CDK7-CCNH-
MNAT1-MTA1-HDAC2
complex

RNA polymerase I
complex, incomplete (CDK8
complex), chromatin
structure modifying

H2AX complex |
MGC1-DNA-PKcs-Ku
complex

DNA double-strand break
end-joining complex

Ku-ORC complex
TERF2-RAP1 complex

Copyright 2013 © Limsoon Wong




Goh et al. Proteomics signature profiling (PSP): A novel contextualization =)

approach for cancer proteomics. Journal of Proteome Research. accepted. @ N US
Nati_onal University
Top-Ranked GO Terms e

No. of

GO ID Description clusters

G0:0016032 | viral reproduction 36
GO:0000398 | nuclear mRNA splicing, via spliceosome 34
GO:0000278 | mitotic cell cycle 28
G0O:0000084 | S phase of mitotic cell cycle 28
GO:0006366 | transcription from RNA polymerase 11 promoter 26
G0O:0006283 | transcription-coupled nucleotide-excision repair 22
GO:0006369 | termination of RNA polymerase II transcription 22
GO:0006284 | base-excision repair 23
GO:0000086 | G2/M transition of mitotic cell cycle 21

regulation of cyclin-dependent protein kinase
GO:0000079 | activity 20
GO0:0010833 | telomere maintenance via telomere lengthening 20
GO:0033044 | regulation of chromosome organization 19
GO:0006200 | ATP catabolic process 18
G0:0042475 | odontogenesis of dentine-containing tooth 18
G0O:0034138 | toll-like receptor 3 signaling pathway 17
GO:0006915 | apoptosis 17
DNA strand elongation involved in DNA
GO:0006271 | replication 17

SSTIC 2013
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Goh et al. Enhancing utility of proteomics signature profiling (PSP) with pathway derived
subnets (PDSs), performance analysis and specialized ontologies. BMC Genomcs, to appear. BE & N US

Fraguency
1500 2000 2500 3000 3500

500 1000

SSTIC 2013

Sig Clusters (Abs)

False Positive Rate Analysis

National University

Divide 7 poor patients into 2

groups

— Significant complexes produced
by PSP here are false positives

Repeat many times to get dull
distribution

— Median = 40, mode =6

Cf. 523 complexes in CORUM
(size 24) used in PSP. At p = 5%,
523 * 5% =~ 27 false positives
expected

Copyright 2013 © Limsoon Wong




o NUS
A Shortcoming of PSP~ &

 Protein complex databases are still relatively
small & incomplete...

= Augment the set of protein complexes by protein
clusters predicted from PPl networks!

 Many protein complex prediction methods
— CFinder, Adamcsek et al. Bioinformatics, 22:1021--1023, 2006
— CMC, Liu et al. Bioinformatics, 25:1891--1897, 2009

— CFA, Habibi et al. BMC Systems Biology, 4:129, 2010

SSTiC 2013 Copyright 2013 © Limsoon Wong



ZINUS
Another Shortcoming of PSP

 Protein complexes provided a biologically-rich
feature set for PSP

— But it is only one aspect of biological function

« The other aspect is biological pathways

— But coverage issue of proteomic profiles create
lots of “holes”

« Can we extract and use subnets from pathways?

SSTiC 2013 Copyright 2013 © Limsoon Wong




National University
of Singapore

Another adaptation of SNet on
proteomics profiles...

“Pathway-Derived Subnets™ (PDS)

SSTiC 2013 Copyright 2013 © Limsoon Wong
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aaaaaaaaaaaaaaaa

Pathway-Derived Subnets (PDS) o

* |dentify the set S; of proteins detected in more
than 50% of samples having phenotype P,

— Do this for each phenotype P, ..., P,
* Overlay u; S, to pathways

 Remove nodes not covered by U; S,
=This fragments pathways into subnets

« Use these subnets to form “proteomic signature
profiles”

— The rest of the steps Is same as PSP

SSTiC 2013 Copyright 2013 © Limsoon Wong
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National University
of Singapore

PDS consistently segregates
mod vs poor patients

C i regponse 1o toxin

W gluconeogenesis

w liver development
W response to lipid

& xenobiotic metabolic process

W activation of MAPKK activity

- - 1001100 g1y I 100 1101

i MyD88-dependent toll-like receptor
signaling pathway

W epidermal growth factor receptor
signaling pathway
blood vessel development

4T cell receptor signaling pathway

157_poor —'2
187_poor —l

131_mod —'=
199_mod —
126_poor —I=
120_poor ——
A215_poor —

1%"“—:

' organ regeneration

200_mod ——
155_poor ——-

reactive oxygen species metabolic
process

U ——

Distance. euclidean
1 Cluster method: ward
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What have we learned?

PSP / PDS can deal with consistency issues in
proteomics

GO term analysis also indicates that PSP / PDS
select clusters that play integral roles in cancer

PSP / PDS reveal many potential clusters and is
not constrained by any prior arbitrary filtering
which is a common first step in conventional
analytical approaches

Copyright 2013 © Limsoon Wong




Part 2: Delivering
more powerful
proteomic profile
analysis

‘

I ZDLC-MSIMS

resection 1

ap

SSTIC 2013

)

Integrated Analysis Pipeline

Improving coverage
— FCS,

— CEA, PEP

— Max Link

Copyright 2013 © Limsoon Wong



Peptide & protein identification by MS Is
still far from perfect

e

« ... peptides with low scores are, nevertheless, \
often correct, so manual validation of such hits
can often ‘rescue’ the identification of important
proteins.”

Steen & Mann. The ABC’s and XYZ’s of peptide sequencing.
\ Nature Reviews Molecular Cell Biology, 5:699-711, 2004 /

SSTiC 2013 Copyright 2013 © Limsoon Wong



Patient 1

Patient 2

Patient 3

ypical proteomic
profiling misses
many proteins

Need to improve
coverage!

Detected

. protein

Present but
undetected
protein

SSTIC 2013
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ﬁ National University
I ( : f ; of Singapore

 Rescue undetected proteins from high-scoring
protein complexes

« Why?

Let A, B, C, D and E be the 5 proteins that function as a complex
and thus are normally correlated in their expression. Suppose only
Ais not detected and all of B-E are detected. Suppose the screen
has 50% reliability. Then, A's chance of being false negative is
50%, & the chance of B—E all being false positives is (50%)*=6%.
Hence, it is almost 10x more likely that A is false negative than B—
E all being false positives.

 Shortcoming: Databases of known complexes are
still small

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Li et al. Network-assisted protein identification and data interpretation

in shotgun proteomics. Mol. Syst. Biol., 5:303, 2009. B ® N US
National University
C EA of Singapore

* Generate cligues from PPIN

 Rescue undetected proteins from cliques with
containing many high-confidence proteins

 Reason: Cliques in a PPIN often correspond to
proteins at the core of complexes

« Shortcoming: Cliques are too strict
— Use more power complex prediction methods

SSTiC 2013 Copyright 2013 © Limsoon Wong



Goh et al. A Network-based pipeline for analyzing MS data---An application

towards liver cancer. Journal of Proteome Research, 10(5):2261--2272, May 2011 B2 & N US
€ Map high-confidence proteins to PPIN O

« Extract immediate neighbourhood & predict
protein complexes using CFinder

 Rescue undetected proteins from high-ranking
\_ predicted complexes Y

 Reason: Exploit powerful protein complex
prediction methods

« Shortcoming: Hard to predict protein complexes
— Do we need to know all the proteins a complex?

SSTiC 2013 Copyright 2013 © Limsoon Wong



Goh et al. A Network-based maximum-link approach towards MS identifies potentially important
roles for undetected ARRB1/2 and ACTB in liver cancer progression. IJBRA, 8(3/4):155-170, 2012  E:R5) N US

- W National University
MaxLink e

‘. Map high-confidence proteins (“seeds”) to PPm

 Identify proteins that talk to many seeds but few
non-seeds

e Rescue these proteins
N ; Y

 Reason: Proteins interacting with many seeds are
likely to be part of the same complex as these
seeds

 Shortcoming: Likely to have more false-positives

SSTiC 2013 Copyright 2013 © Limsoon Wong
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National University

“Validation” of Rescued Proteins

 Direct validation

— Use the original mass spectra to verify the quality
of the corresponding y- and b-ion assignments

— Immunological assay, etc.

 |Indirect validation

— Check whether recovered proteins have GO terms
that are enriched in the list of seeds

— Check whether recovered proteins show a pattern
of differential expression betw disease vs normal
samples that is similar to that shown by the seeds

SSTiC 2013 Copyright 2013 © Limsoon Wong
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An example using the PEP approach
to recover undetected proteins ...

SSTiC 2013 Copyright 2013 © Limsoon Wong




Background

« HCC (Hepatocellular carcinoma)

— Classified into 3 phases: differentiated, moderately
differentiated and poorly differentiated

« Mass Spectrometry

— ITRAQ (Isobaric Tag for Relative and Absolute
Quantitation)

— Coupled with 2D LC MS/MS

— Popular because of ability to run 8 concurrent
samples in one go

SSTiC 2013 Copyright 2013 © Limsoon Wong



EAANUS
oor and mod proteins are widely  ENUS

Interspersed

* [In the subnet of
reported proteins
In mod and poor,
poor and mod *°
genes are well
mixed

Mod and Poor
® Poor only

Copyright 2013 © Limsoon Wong
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National University
of Singapore

Identify the “seeds”
Ratio < 0.8 and > 1.25 for Mod (min 3 patients)
Ratio < 0.8 and > 1.25 for Poor (min 4 patients)

PEP Workflow

Goh et al. A Network-based pipeline for
analyzing MS data---An application towards
liver cancer. Journal of Proteome Research,
10(5):2261--2272, May 2011

SSTiC 2013 Copyright 2013 © Limsoon Wong



Goh et al. A Network-based pipeline for analyzing MS data---An application towards

liver cancer. Journal of Proteome Research, 10(5):2261--2272, 2011 B ® N US
Expansion to include neighbors 95 e
greatly improves coverage
Mod Network
Expanded Network
Integrated
Analysis
Poor Network Pipeline
W/o expansion, - : After expansion,
4 k3 cligues were returned ~120 clusters were returned

SSTiC 2013 Copyright 2013 © Limsoon Wong



Goh et al. A Network-based pipeline for analyzing MS data---An application towards
liver cancer. Journal of Proteome Research, 10(5):2261--2272, 2011 BE & N US

National University

Returning to Mass Spectra

« Test set: Several proteins (ACTR2, CDC42,
GNB2L1, KIF5B, PPP2R1A, PKACA and TOP1)
from top 34 clusters not detected by Paragon

 The test: Examine their GPS and Mascot search
results and their MS/MS-to-peptide assignments

 Assessment of MS/MS spectra of their top ranked
peptides revealed accurate y- and b-ion
assignments and were of good quality (p < 0.05)

= In silico expansion verified

SSTiC 2013 Copyright 2013 © Limsoon Wong




Goh et al. A Network-based pipeline for analyzing MS data---An application towards
liver cancer. Journal of Proteome Research, 10(5):2261--2272, 2011 BE® N US
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Another Experiment

 Valporic acid (VPA)-treated mice vs control

— VPA or vehicle injected every 12 hours into
postnatal day-56 adult mice for 2 days

— Role of VPA in epigenetic remodeling

« MS was scanned against IPI rat db in round #1
— 291 proteins identified

« MS was scanned against UniProtkb in round #2
— 498 additional proteins identified

* All recovery methods ran on round #1 data and
the recovered proteins checked against round #2

SSTiC 2013 Copyright 2013 © Limsoon Wong




Moderate level of
agreement of
reported proteins
between various
recovery methods
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9 NUS
Performance Comparison
Method Movel Suggested Proteins  Recovered proteins Recall Precision
PEP 1037 158 0.317 0.152
Maxlink 822 226 0.454 0.275
FCs 638 224 0.450 0.351
(predicted)
Fes 895 477 0.958 0.533
(complexes)

 Looks like running FCS on real complexes is able
to recover more proteins and more accurately

SSTiC 2013 Copyright 2013 © Limsoon Wong
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National Universit
of Singapor

W_..r. HMG-COA ' &4 Mevalonic acid i g Mevalonate5-P ' g— Mevalonate-5-PP |
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Types of Biological Networks

« Natural biological pathways
— Metabolic pathway
— Gene regulation network
— Cell signaling network

* Protein-protein interaction networks

SSTiC 2013 Copyright 2013 © Limsoon Wong



Image credit: Wikipedia

Metabolic
Pathway

A series of
biochem
reactions in
a cell

— Catalyzed by enzymes

— Step-by-step modification of an initial molecule to
form another product that can

* be used /store in the cell

* initiate another metabolic pathway
SSTIC 2013
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Gene Regulation Network

A GENE REGULATORY NETWORK

 Generegulationis
the process that

INPUT INPUT
sgnol B

sgnrol A gnot B

turns info from genes ™™ =l T
Into gene products s = > ) s @ o
20 0.
paco o AU e () - v,
« Gives acell control % & OT0.

over its structure & —_—— rT——

. mq ANA polymarase
function S, L

— Cell differentiation

— Morphogenesis W ,\.‘\, —@
- oz

— Adaptability, ...

Image credit: Natasa Przulj
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EGF
Cell Signaling Network e ]
* Itis the entire set of changes induced & [T
by receptor activation e T
— Governs basic cellular activities and GD‘?”’A,
coordinates cell actions —~
o (5
y
* Cells communicate with each other ”E"t.
— Direct contact (juxtacrine signaling) | ;MAPK
| =P
— Short distances (paracrine signaling) | M"i‘ __l l

— Large distances (endocrine signaling) <§> ; |

P«#:»
 Errors result in cancer, diabetes, ... \/mmasm

Image credit: Wikipedia T
transcription nucleus
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Protein Interaction Network (PPIN) 99z

of Singapore

PPl usual refers to
physical binding
between proteins
— Stable interaction

* Protein complex
« ~70% of PPIs

— Transient interaction,
mOdlfylng a prOtEIr] Visualization of the human interactome.
for further act|on5 Image credit: Wikepedia

 Phosphorylation
 Transportation
« ~30% of PPIs

 PPIN is usually a set
of PPIs; it is not put
Into biological context

SSTiC 2013 Copyright 2013 © Limsoon Wong



Database Remarks - & N US
KEGG KEGG (http://www.genome. jp/kegg) is one of the best known @ gf;iizgz'p‘;‘;"e““y

pathway databases (Kanechisa et al., 2010). It consists of 16
main databases. comprising different levels of biological infor-
mation such as systems, genomic, etc. The data files are down-
loadable in XML format. At time of writing it has 392 path-

ways.
WikiPathways WikiPathways (http://www.wikipathways.org) is i S O U rC e S

Wikipedia-based  collaborative  effort among  various

labs (Kelder et al., 2009). It has 1,627 pathways of which 369 Of

are human. The content 1s downloadable in GPML format.

Reactome Reactome (http:://www.reactome.org) is also a collaborative B I O I Og I Cal
effort like WikiPathways (Vastrik et al., 2007). It is one of the
largest datasets, with over 4,166 human reactions organized into P a_t hways
1,131 pathways by December 2010. Reactome can be down-
loaded in BioPax and SBML among other formats.

Pathway Commons Pathway Commons (http://www.pathwaycommons.com) col-
lects information from various databases but does not unify the
data (Cerami et al., 2006). It contains 1,573 pathways across
564 organisms. The data is returned in BioPax format.

PathwayvAPI PathwayAPI (http://www.pathwayapi.com) contains over 450
unified human pathways obtained from a merge of KEGG,
WikiPathways and Ingenuity® Knowledge Base (Soh et al.,
2010). Data is downloadable as a SQL dump or as a csv file,

and 1s also interfaceable in JSON format.

Source: Goh et al. “How advancement in biological network analysis methods empowers proteomics”. Proteomics, accepted.
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Sources of Protein Interactions & ==

Database # nodes, URL Build Reference
# edges Focus
BioGRID 10k, 40k http://thebiogrid.org Literature (Stark et al., 2006)
DIP 2.6k, 3.3k http://dip.doe-mbi.ucla.edu Literature  (Xenarios et al., 2002)
HPRD 30k, 40k http://www.hprd.org Literature  (Prasad et al., 2009)
IntAct 56k, 267k  http://www.ebi.ac.uk/intact Literature  (Aranda et al., 2010)
MINT 30k, 90k http://mint.bio.uniroma2.it/mint Literature (Chatr-arvamontri et al., 2007)
STRING 5200k, ? http://string-db.org Literature, (Szklarczyk et al., 2011)
Prediction

Source: Goh et al. “How advancement in biological network analysis methods empowers proteomics”. Proteomics, accepted.

and Protein Complexes

« CORUM

— http://mips.helmholtz-muenchen.de/genre/proj/corum
— Ruepp et al, NAR, 2010

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Sivachenko et al. JIBCB, 5(2b):429-546, 2007
B &

Gene Expression Profile Analysi %

1
NUS
(Gene Regulatory Circuits -
. - . ‘, .’_ .4 -. a __.-
Rl ° o :
Taming false positives by ENUS
- Eachdiseasephenotype ~ * Uncertainty in selected considering pathways instead of XD ==
has some underlying genes can be reduced by N B ST W s
cause considering biological all [_'O.‘:blt_rie aroups
processes of the genes .
. . . ‘5‘ NUS = of patl
+ There is some unifying ez . ) NS
biological thems for genes, = - unffylng»blologlcaln * Suppose * Prob(group of genes
that are truly associated theme is basis for inferring S L correlated) = (125
with a disease subtype the underlying cause of ;;;,ﬂ“,‘_‘jb;“;;; — Bond << A Fi# of pathwx
disease subtype ’ : “"1 v S K correlated ) =
— You have 3 diseass S
and 3 normal ‘ vl
samples

« What is the chance of
a group of 5 genes

ConteXtuaJ |Zat| on! ::&i’;izﬂt:wse - Even more false

RIS positives?
P « Perhaps no need to
consider every group
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Proteomic Profile Analysis

Patient 1 Patient 2 Patient 3

« Suppose the failure to
. ’ ‘ form a protein complex
causes a disease
— If any component
protein is missing, the

complex can’t form

= Diff patients suffering
from the disease can
. have a diff protein
Petein— component missing

Present but

et — CoNStruct a profile
based on complexes?

Goh et al. How advancement in biological network analysis
methods empowers proteomics. Proteomics, in press

SSTiC 2013 Copyright 2013 © Limsoon Wong




Emily et al. European Journal of Human Genetics, 17(10):1231-1240, 2009.

Epistatic Interaction Mining

« GWAS have linked many SNPs to diseases, but
many genetic risk factors still unaccounted for

* Proteins coded by genes interact in cell

— Some SNPs affect the phenotype in combination
with other SNPs; i.e., epistasis

 Exhaustive search for epistatic effects has to test
many combinations (>100,000%) of SNPs

— Hard to get statistical significance
— Take long time to run on computers

— Use biological networks to narrow the search for
two-locus epistasis

SSTiC 2013 Copyright 2013 © Limsoon Wong



Vanunu et al. PLoS Computational Biology, 6(1):e1000641, 2010

National University
of Singapore

« Genes causing the &
same or similar
diseases tend to
lie close to one
another in PPIN

 Given disease Q.
LOOk for prOteI nS Figure 1. lllustration of the PRINCE algorithm. A query disease,

denoted @, has varying degrees of phenotypic similarity with other

i N PPI N | nteraCtl N g diseases, denoted d I-d5 (marked with maroon lines, where thicker lines

represent higher similarity). Known causal genes for these similar diseases

Wlth many Causal are connected by dashed blue lines and used as the prior information.

) p1-pl1 comprise the protein set of a protein-protein intemction network,

g enes Of d ISeases where interactions are marked with black lines and thicker lines denote
. . edges with higher confidence. A scoring function that is smooth over the
network is computed using an itermtive network propagation method. At

Simi I ar to Q every iteration of the algorithm, each protein pumps flow to its neighbors
and receives flow from them. Protein colors comespond to the flow they

receive in a specific iteation, the darker the color the higher the flow. (A}:

SSTiC 2013 Copyright 2013 © Limsoon Wong




Liu et al. Bioinformatics, 25(15):1891-1897, 2009

Protein Complex Prediction

 Nature of high-throughput
PPI expts

— Proteins are taken out of
their natural context!

« Can a protein interact with
SO many proteins
simultaneously?

SSTIC 2013
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A big “hub” and its
“spokes” should probably
be decomposed into
subclusters

— Each subcluster is a set
proteins that interact in
the same space &time;
viz., a protein complex

Many complexes have
highly connected cores in
PPIN = Find complexes
by clustering

Issue: How to identify low
edge density complexes?

Copyright 2013 © Limsoon Wong
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Wong. Internet Mathematics, 7(4):274--298, 2011

Protein Function Prediction

* Proteins with similar * Proteins with similar
function are topolog- function have interac-
ically close in PPIN tion neighborhoods

— Direct functional that are similar
association
— Indirect functional
association
A pair of proteins that participate When proteins in the neighbor-
In the same cellular processes hood of a protein X have simi-
or localize to the same cellular lar functions to proteins in the
compartment are many times neighborhood of a protein Y,
more likely to interact than a then proteins X & Y likely
random pair of proteins operate in similar environment

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Part 3: How good
are available + Sources of pathway &
sources of pathway  PPIN
& PPl Network? — Comprehensiveness
— Consistency
E:;ia"J — Compatibility
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“1 [ | —
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http://www.genome.ad.jp/kegg/docs/slides/tutorial1/pg01.html

Database Remarks ke N US
KEGG KEGG (http://www.genome. jp/kegg) is one of the best known @ E?;‘i?,g:;‘;?;“e’Si‘y

pathway databases (Kanechisa et al., 2010). It consists of 16
main databases. comprising different levels of biological infor-
mation such as systems, genomic, etc. The data files are down-
loadable in XML format. At time of writing it has 392 path-

Major
WikiPathways WikiPathways (http://www.wikipathways.org) is i

Wikipedia-based  collaborative  effort among  various S O u rce S

labs (Kelder et al., 2009). It has 1,627 pathways of which 369

are human. The content is downloadable in GPML format. Of

Reactome Reactome (http:://www.reactome.org) is also a collaborative . .
effort like WikiPathways (Vastrik et al., 2007). It is one of the B I Olog I Cal

largest datasets, with over 4,166 human reactions organized into

1,131 pathways by December 2010. Reactome can be down- Pathways

loaded in BioPax and SBML among other formats.

Pathway Commons Pathway Commons (http://www.pathwaycommons.com) col-
lects information from various databases but does not unify the
data (Cerami et al., 2006). It contains 1,573 pathways across
564 organisms. The data is returned in BioPax format.

PathwayvAPI PathwayAPI (http://www.pathwayapi.com) contains over 450
unified human pathways obtained from a merge of KEGG,
WikiPathways and Ingenuity® Knowledge Base (Soh et al.,
2010). Data is downloadable as a SQL dump or as a csv file,
and is also interfaceable in JSON format.

SSTiC 2013 Copyright 2013 © Limsoon Wong




Low Comprehensiveness NUS
of Human Pathway Sources

of Singapore

W&ipathway_s\_,_;: o - . KEGG .
e = 70000 # of Genes Pairs
s 60000 -
V 50000
Human n;' 40000 -
pathways in
o 30000 -
Wikipathways,
20000 -
KEGG, & )
Ingenuit o
g y 0 T T T -_\
Unified KEGG Ingenuity Wiki
Ingenuity . 2F
500 1 # of Pathways 25000 1 # of Genes
450 -
400 - 20000 -
350 -
300 - 15000 -
250 -
200 10000 -
150 -
100 A l 5000 - l
50 -
; . . ; . -
Unified KEGG Ingenuity Wiki Unified KEGG Ingenuity Wiki

Soh et al. Consistency, Comprehensiveness, and Compatibility of
Pathway Databases. BMC Bioinformatics, 11:449, 2010.
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Low Consistency NUS
of Human Pathway Sources

of Singapore
Gene Pair Overlap

Unigue —————

Wiki vs KEGG Wiki vs Ingenuity KEGG vs Ingenuity

Gene Overlap

verlap ——————

Wiki vs KEGG Wiki vs Ingenuity KEGG vs Ingenuity

Soh et al. BMC Bioinformatics, 11:449, 2010.
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Example: Human Apoptosis Pathw

Apoptosis Pathway

Wiki x KEGG | Wiki x Ingenuity | KEGG x Ingenuity
Gene Pair Count: 144 vs 172 144 vs 3557 172 vs 3557
Gene Count: 85 vs 80 85 vs 176 80 vs 176
Gene Overlap: 38 28 30
Gene % Overlap: 48% 33% 38%
Gene Pair Overlap: 23 14 24
Gene Pair % Overlap: 16% 10% 14%

Soh et al. BMC Bioinformatics, 11:449, 2010.
SSTiC 2013 Copyright 2013 © Limsoon Wong




EEANUS
95

National University
of Singapore

The same low inter-database
consistency (in gene overlap) Is
observed in pathways of other organisms

KEGG vs WikiPathways vs  MouseCyc vs

M. musculus WikiPathways MouseCyc KEGG
Overlap Genes 2,611 532 919
Unique Genes 5,168 4,214 5,662
Jaccard Coefficient 0.336 0.112 0.140
KEGG vs WikiPathways vs YeastCye vs
S. cerevisiae WikiPathways YeastCyc KEGG
Overlap Genes K01 402 480
Unique Genes 0996 601 1,317
Jaccard Coefficient 0.446 0.400 0.267
KEGG vs WikiPathways vs  MTBRvCye vs
M. tuberculosis H3TRv ~ WikiPathways MTBRvCye KEGG
Overlap Genes 141 60 432
Unique Genes 048 525 707
Jaccard Coefficient 0.129 0.103 0.379

Zhou et al. BMC Systems Biology,6(Suppl 2):S2, 2012

SSTiC 2013 Copyright 2013 © Limsoon Wong
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The same low inter-database
consistency (In gene pair overlap) Is
observed in pathways of other organisms

KEGG vs WikiPathways vs ~ MouseCye vs

M. musculus WikiPathways MouseCye KEGG
Overlap Gene Pairs 875 1,242 2,068
Unique Gene Pairs 55,489 33,312 38,801
Jaccard Coefficient 0.016 0.036 0.050
KEGG vs WikiPathways vs YeastCyc vs
S. cerevisiae WikiPathways YeastCyc KEGG
Overlap Gene Pairs 35 9 419
Unique Gene Pairs 2,909 1,479 3,524
Jaccard Coefficient 0.012 0.006 0.106
KEGG vs WikiPathways vs  MTBRvCyc vs
M. tuberculosis H37TRv ~ WikiPathways MTBRvCyc KEGG
Overlap Gene Pairs 9 8 358
Unique Gene Pairs 3,819 2,810 5,823
Jaccard Coefficient 0.002 0.003 0.058

Zhou et al. BMC Systems Biology,6(Suppl 2):S2, 2012

SSTiC 2013 Copyright 2013 © Limsoon Wong




Example: TCA Cycle Pathway
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KEGG vs

KEGG vs

MouseCye vs

M. musculus TCA cycle pathway WikiPathways MouseCye WikiPathways
Gene Count 31 vs 30 31 vs 13 13 vs 30
Overlap 24 13 11
Jacecard Coefficient 0.65 0.42 0.34

Gene Pair

Count
Overlap
Jacecard Coefficient

100 vs 30
10
0.083

100 vs 24
9
0.078

24 vs 30

{

0.149

KEGG wvs

KEGG vs

HumanCye vs

H. sapiens Fatty Acid Bicsynthesis  WikiPathways HumanCye  WikiPathways
Gene Count 6 vs 22 6 wvs 2 2 vs 22
Overlap 3 2 |
Jaccard Coefficient 0.12 0.33 0.04
Gene Pair Count 12 v= 20 12 vs 2 2vs 29
Overlap 1 1 0
Jacecard Coefficient 0.025 0.077 0.0

KEGG vs

KEGG vs

MTBRvCye vs

M. tuberculosie H3TRv  TCA cycle pathway WikiPathways MTBRvCye WikiPathways
Gene Count IBvesMH 35 vs 10 10 vs 34
Overlsp 34 10 10
Jaccard Coefficient 0.97 0.29 0.29

Gene Pair

Count.
Overlap
Jaccard Coefficient

107 vs 37
9

0.021

107 vs 19
9
0.077

19 vs 37
5
0.098

SSTIC 2013

Zhou et al. BMC Systems Biology,6(Suppl 2):S2, 2012
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Pathway sources
are curated. They
are incomplete;
but they have few
errors. =» Makes
sense to combine
them. But...

)ata Format Variations

- | API Call SOAP Data Format

V mealhwéy

+ ParseGPML | ———  GPML Data Format

Ingenuity

hManual Graphical Format

Extraction

Image credit: Donny Soh’s PhD dissertation, 2009

BINUS

National University

Incompatiblility Issues

Data extraction method
variations

Format variations

Data differences

Gene/GenelD name
differences

Pathway name differences

SSTIC 2013

Copyright 2013 © Limsoon Wong



Part 2: How good
are avallable
sources of pathway
Information?

* Integration
— Pathway matching

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Things to deal with

 Any integration of incompatible pathway
databases must deal with

— Data extraction method variations
— Format variations
— Data differences
— Gene name / gene id differences
— Pathway name differences
 We discuss only pathway name differences

e For other issues, consult

— Zhou et al. IntPath---an integrated pathway gene relationship
database for model organisms and important pathogens, BMC
Bioinformatics, 6(Suppl 2):52, 2012

SSTiC 2013 Copyright 2013 © Limsoon Wong
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The same pathways in the different
sources are often given different names.

So how do we even know two pathways

are the same and should be compared /
merged?

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Example of Pathway Name Differenc&s™

IntPath KEGG WikiPathways MouseCyc

Fatty Acid Fatty acid Fatty Acid 1. fatty acid biosynthesis initiation I
Biosynthesis biosynthesis Biosynthesis 2. very long chain fatty acid biosynthesis

3. fatty acid biosynthesis initiation Il
Cholesterol Cholesterol 1. cholesterol biosynthesis Il (via desmosterol)
Biosynthesis Biosynthesis 2. cholesterol biosynthesis Il (via 24,25-

dihydrolanosterol)
3. cholesterol biosynthesis |
4. superpathway of cholesterol biosynthesis

TCA cycle Citrate cycle (TCA cycle) TCA cycle TCA Cycle
Glycolysis and Glycolysis/ Glycolysis and 1. glycolysis | 2. glycolysis |l
Gluconeogenesis Gluconeogenesis Gluconeogenesis

The table shows several examples of the same pathways with inconsistent referrals to pathway names in different databases.

Zhou et al. BMC Systems Biology,6(Suppl 2):S2, 2012

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Possible Ways to Match Pathway

 Match based on name (LCS)

— Pathways w/ similar name should be the same
pathway

— But annotations are very noisy
—=Likely to mismatch pathways?
—=Likely to match too many pathways?

 Arethe followings good alternative approaches?
— Match based on overlap of genes
— Match based on overlap of gene pairs

SSTiC 2013 Copyright 2013 © Limsoon Wong
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LCS vs Gene-Agreement Matching ==

« Accuracy « Completeness

— 94% of LCS matches — Let Pi be pathway In
are in top 3 gene db A that LCS cannot
agreement matches find match in db B

— 6% of LCS matches — Let QI be pathway Iin
not in top 3 of gene db B with highest gene
agreement matches; agreement to Pi
but their gene-pair — Gene-pair agreement
agreement levels are of Pi-Qi is much lower
higher than pathway pairs

matched by LCS

LCS Is better than gene-agreement based matching!

SSTiC 2013 Copyright 2013 © Limsoon Wong
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LCS vs Gene-Agreement Matching ==

Soh et al. BMC Bioinformatics, 11:449, 2010.

Gene-pair overlap

ercentage
P 1 g
+
05 - .
e o * .
04 - .
TS g *
0.3 1 .
e o
02 - » o - *
& 2 H ¢ ng
0.1 - ‘a ‘ap s 8
. I 5 G * ] 3
0 8 . - T —8—F T geﬂe Overlap
0 0.2 0.4 06 0.8 1 percentage

 LCS consistently has higher gene-pair agreement
= LCS is better than gene-agreement based matching!

SSTiC 2013 Copyright 2013 © Limsoon Wong




Soh et al. BMC Bioinformatics, 11:449, 2010.
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LCS vs Gene-Pair Agreement Match#ig

ErbB signaling pathway JAK/Stat Signaling
. Calcium signaling pathway Synaptic Leng Term Potentiation
G ene- P alr Apoptosis Tolk-like receptor signaling pathway
VEGF signaling pathway | Axonal Guidance Signaling
O I Gap junction PPAR-alpha/RXR-alpha Signaling
L CS V er ap Natural killer cell mediated cytotoxicity | Fc Epsilon Rl Signaling
T cell receptor signaling pathway | Axonal Guidance Signaling
B cell receptor signaling pathway Axonal Guidance Signaling
Olfactory transduction cAMP-mediated Signaling
GnRH signaling pathway | B Cell Receptor Signaling
Melancgenesis "Wnt Slgnalmg Pathway and Pluripotency
Type || diabetes mellitus Insulin Recpetor Signaling
Colorectal cancer | Toll-like receptor signaling pathway
Renal cell carcinoma | Axonal Guidance Signaling
Pancreatic cancer PTEN Signaling
Endometrial cancer | PTEN Signaling
Glioma | "ERK/MAPK Signaling
Prostate cancer JAK/Stat Signaling
Basal cell carcinoma | Wnt Signaling Pathway and Pluripotency
Melanoma FGF Signaling
Chronic myeloid leukemia GM-CSF Signaling
_Acute myeloid leukemia | PTENSignaling
Small cell lung cancer | Toll-like receptor sngnalmg pathway
Non-small cell lung cancer GM-CSF Signaling
Regulation of actin cytoskeleton Regulation of Actin Cytoskeleton The 24 pathway pal Is Si ngled OUt
Wnt signaling pathway Wnt Signaling Pathway H _ i
T cell receptor signaling t cell receptor Signaling by maXImaI gene palr Overlap
VEGF signaling VEGF Signaling
MAPK signaling MAPK Cascade | . )
Apoptosis Apoptosis Note: We consider only pathway pairs that have at
Apoptosis Apoptosis Signaling least 20 reaction overlap.
Toll-like receptor Toll-like receptor signaling pathway
The 8 pathway pairs singled out by LCS

SSTiC 2013 Copyright 2013 © Limsoon Wong




LCS vs Gene-Pair Agreement Matc

 Gene-pair agreement match will miss when

— Pathway P in db A has few overlap with pathway P in
db B due to incompleteness of db, even if pathway
name matches perfectly!

— Example: wnt signaling pathway, VEGF signaling
pathway, MAPK signaling pathway, etc. in KEGG
don’t have largest gene-pair overlap w/ corresponding
pathways in Wikipathways & Ingenuity

— Bad for getting a more complete unified pathway P

SSTiC 2013 Copyright 2013 © Limsoon Wong




LCS vs Gene-Pair Agreement Matc

« Pathways having large gene-pair overlap are not
necessarily the same pathways

« Examples

— “Synaptic Long Term Potentiation” in Ingenuity vs
“calcium signalling” in KEGG

— "PPAR-alpha/RXR-alpha Signaling” in Ingenuity vs
“TGF-beta signaling pathway” in KEGG

= Difficult to set correct gene-pair overlap threshold
to balance against false positive matches

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Further Improvement to LCS

 Please read the reference below (esp. page 10)
for some of the improvements made to LCS

— Zhou et al. IntPath---an integrated pathway gene relationship
database for model organisms and important pathogens,
BMC Bioinformatics, 6(Suppl 2):52, 2012.

SSTiC 2013 Copyright 2013 © Limsoon Wong
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An Interesting Question

« If two pathways are merged, how do you choose
the name of the resulting merged pathway?

— Pick the longer of the two original names?
— Pick the shorter?
— Pick randomly?

IntPath KEGG WikiPathways MouseCyc

Fatty Acid Fatty acid Fatty Acid 1. fatty acid biosynthesis initiation |l
Biosynthesis biosynthesis Biosynthesis 2. very long chain fatty acid biosynthesis

3. fatty acid biosynthesis initiation Il
Cholesterol Cholesterol 1. cholesterol biosynthesis Ill (via desmosterol)
Biosynthesis Biosynthesis 2. cholesterol biosynthesis Il (via 24,25-

dihydrolanosterol)
3. cholesterol biosynthesis |
4. superpathway of cholesterol biosynthesis

TCA cycle Citrate cycle (TCA cycle) TCA cycle TCA Cycle
Glycolysis and Glycolysis/ Glycolysis and 1. glycolysis | 2. glycolysis I
Gluconeogenesis Gluconecgenesis Gluconeogenesis

The table shows several examples of the same pathways with inconsistent referrals to pathway names in different databases.

Zhou et al. BMC Systems Biology,6(Suppl 2):S2, 2012
SSTiC 2013 Copyright 2013 © Limsoon Wong
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The Answer

« The general pathway name is chosen as the shortest pathway
names from among the identified related pathways

= This usually works well as the name of the integrated pathway

« Butin some cases, the shortest name contains “suffix” or
“prefix”’---like “I”’, “lI”’---that causes the integrated pathway name
to give the wrong idea of describing only a specific aspect of the
Integrated pathway

= Remove such suffixes and prefixes when generating integrated
pathway names

 |n asmall number of cases, several similar pathways are
Included in one pathway name. In these cases, the shortest
name is not appropriate as the name of the integrated pathway

= Replace the keyword of the integrated pathway name to cover more
pathway information

Zhou et al. BMC Systems Biology,6(Suppl 2):S2, 2012
SSTiC 2013 Copyright 2013 © Limsoon Wong
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 Having found a good way to match up pathways
In different datasources, we proceeded to build a
big unified pathway db....

PathwayAPI
= KEGG
+ Wikipathways
+ Ingenuity

Donny Soh, Difeng Dong, Yike Guo, Limsoon Wong. Consistency, Comprehensiveness, and Compatibility of
Pathway Databases. BMC Bioinformatics, 11:449, September 2010.
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What have we learned?

« Significant lack of concordance betw db’s
— Level of consistency for genes is 0% to 88%
— Level of consistency for genes pairs is 0%-61%

— Most db contains less than half of the pathways in
other db’s

« Matching pathways by name is better than
matching by gene overlap or gene-pair overlap

SSTiC 2013 Copyright 2013 © Limsoon Wong




Part 3: How good
are availlable
sources of pathway
& PPl Network?

@
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* PPIN cleansing
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Sources of Protein Interactions & ==

Database # nodes, URL Build Reference
# edges Focus
BioGRID 10k, 40k http://thebiogrid.org Literature (Stark et al., 2006)
DIP 2.6k, 3.3k http://dip.doe-mbi.ucla.edu Literature  (Xenarios et al., 2002)
HPRD 30k, 40k http://www.hprd.org Literature  (Prasad et al., 2009)
IntAct 56k, 267k  http://www.ebi.ac.uk/intact Literature  (Aranda et al., 2010)
MINT 30k, 90k http://mint.bio.uniroma2.it/mint Literature (Chatr-arvamontri et al., 2007)
STRING 5200k, ? http://string-db.org Literature, (Szklarczyk et al., 2011)
Prediction

Source: Goh et al. “How advancement in biological network analysis methods empowers proteomics”. Proteomics, accepted.

and Protein Complexes

« CORUM

— http://mips.helmholtz-muenchen.de/genre/proj/corum
— Ruepp et al, NAR, 2010

SSTiC 2013 Copyright 2013 © Limsoon Wong
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PPl Detection Assays

 Many high-throughput

Generating large amounts
assays for PPIs

of expt data on PPIs can be

- Yeh done with ease
— TAP
— Synthetic lethality . But.
400000 -
30000 - Growth of BioGrid throy h
il 9hput
- Crifice . Proaches
i | -‘:u Edgo: b I,m,ted q al'ty fOr quant
N I i i Or biasey cor. ity
- o (b) z? Negatives g 9%
i 9N error rates.
o ! , , , , | false p, i ess.
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Noise In PPl Networks

Experimental method category* Number of interacting pairs Co-localization” (%) Co-cellular-role® (%)
All: All methods Q347 fd 49
A Small scale Y2H 1861 73 62
Al GYZH Uetz et al. {published results) 956 66 45
Al: GYZH Uetz et al. (unpublished results) 516 53 33
AZ GYZH lto et al. (core) J98 64 40
A3 GYZH lto et al. (all) 3655 41 15
B: Physical methods 71 98 95
C: Genetic methods 1052 i o
D1: Biochemical, in vitro 14 87 79
D2: Biochemical, chromatography 648 93 85
El: Immunological, direct 1025 Qi a0
E2: Immunological, indirect ! 100 93
2M: Two different methods 2346 87 85
AM: Three different methods 1212 92 94
4M: Four different methods 570 95 93

Sprinzak et al., IMB, 327:919-923, 2003 .
Large disagreement betw methods

« High level of noise
= Need to clean up before making inference on PPI networks

SSTiC 2013 Copyright 2013 © Limsoon Wong
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« If aPPlis reported in a

Dealing with noise oy
_ _ ew independent expts,
In PPIN using it is more reliable than
Reproducibility those reported in only
one expt
r,=1=] Ja-r)
iek,

“u.v

Good idea. But you
* 1,1s reliability of expt
need to do more expts source i,

= [IRUS LIS & (e - o ncbeniica
haS tO be Spent interaction betwuand v is

observed

Copyright 2013 © Limsoon Wong
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Dealing with noise

in PPIN using - If two proteins in a PP
Functional participate in the same

_ function or pathway, it
Homogeneit is more reliable than

those whose proteins
do not share function &
pathway

GodQU idea. But the two
proteins in the PPI you
are looking at may not . N
have functional Xercise
annotation ‘ — What fraction of yeast PPIs in

BioGrid share function?

— What fraction of yeast protein
pairs share function? )

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Dealing with noise |
in PPIN using * Two proteins should be
In the same place to

Localization interact. Agree?
Coheren

GodU idea. But the two

proteins in the PPl you xercise N

are looking at may not — What fraction of yeast PPIs in

have localization BioGrid are in the same
annotation cellular compartment?

— What fraction of yeast protein
pairs are in the same cellular

k compartment? /

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Chua & Wong. Increasing the Reliability of Protein Interactomes.
Drug Discovery Today, 13(15/16):652--658, 2008 B ® N U S

Dealing with noise in PPIN using % sz
local topology around a PPI edge

« Two proteins participating
In same biological process
are more likely to interact

« CD-distance

« Two proteins in the same  FS-Weight
cellular compartments are

more likely to interact

CD-distance & FS-Weight: Based on concept that two proteins with
many interaction partners in common are likely to be in same
biological process & localize to the same compartment

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Topology of neighbourhood of real PP1§*

« Suppose 20% of putative PPIs
are noise

= 2 3 purple proteins are real
partners of both A and B

— A and B are likely localized to
the same cellular
compartment (Why?)

« Fact: Proteins in the same
cellular compartment are 10x
more likely to interact than
other proteins

— A and B are likely to interact

SSTiC 2013 Copyright 2013 © Limsoon Wong




Brun, et al. Genome Biology, 5(1):R6, 2003

Czekanowski-Dice Distance

« Given a pair of proteins (u, v) in a PPl network
— N, = the set of neighbors of u
— N, = the set of neighbors of v

2‘ Nu ™ Ny
‘Nu‘-l-‘ Nv

« CD(u,v) =

 Consider relative intersection size of the two neighbor
sets, not absolute intersection size

— Case 1: N, = 1, [N,|= 1, [N,~N,|=1, CD(u,v)=1
— Case 2: [N, = 10, |N,|= 10, [N,~N,|=10, CD(u,v)=1

SSTiC 2013 Copyright 2013 © Limsoon Wong



Liu et al. GIW2008, pp. 138-149

Adjusted CD-Distance

« Variant of CD-distance that penalizes proteins with
few neighbors

2|NuﬁNv|
WEOYE NG A [ N[+
A, = max{0, ZC;“\M_'N |},7»\,—max{ ,;l NX|_| |}
v v

« Suppose average degree is 4, then
— Case 1: [N | = 1, [IN,|= 1, IN,~N,|=1, wL(u,v)=0.25
— Case 2: |IN,| =10, IN,|= 10, [IN,nN,|=10, wL(u,v)=1

SSTiC 2013 Copyright 2013 © Limsoon Wong



EBINUS
A J[hOugh’[_ B ?:f;iz;z*p ''''''' v
2 | ¢\Tu () *\1
wL(u,v) = | Ny | 44,4+ | N+ 4,

« Weight of interaction reflects its reliability

— Can we get better results if we use this weight to re-
calculate the score of other interactions?

SSTiC 2013 Copyright 2013 © Limsoon Wong



Liu et al. GIW2008, pp. 138-149

lterated CD-Distance

« wLO%u,v)=1Iif (u,v)eG, otherwise wL°u,v)=0
| Nuval-l—l NuﬂNvl

° 1 —
wil (U,V) | Nu|+ﬂu+| Nvl-l—ﬂ,v
k— k—

Cwliuy)= 20T 2

D WU ) + A+ D W (v X) + A

xeNu xeNv

D 2w (x,y)
« AK,=max{0, * yENX|V| - > wtu,x) )
xeNu
W (X, y)

« AK, = max{0, %’:VEZN:X = > WiV, X) j

SSTiC 2013 Copyright 2013 © Limsoon Wong



Validation

 DIP yeast dataset

— Functional homogeneity is 32.6% for PPIs where
both proteins have functional annotations and
3.4% over all possible PPIs

— Localization coherence is 54.7% for PPIs where
both proteins have localization annotations and
4.9% over all possible PPIs

 Let’s see how much better iterated CD-distance
IS over the baseline above, as well as over the
original CD-distance/FS-weight

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Liu et al. GIW2008, pp. 138-149

How many Iteration is enough?

Cf. ave functional homogeneity of protein pairs in DIP < 4%
ave functional homogeneity of PPI in DIP < 33%

1 .
1 k=1 ——
k=2 %o
Z o} z 0.2 'r'% k=10 &
B S 0sf k=50 ---i3---
% 0.3 % t
i 0.7 r -
5 5 b
3 = 08} Ry
g g 05} WhiGgg ]
5 05t 5 e SN ﬂh"-ﬂ-lum
L Li o4 | —|--.|__|_,__|_+___
|:|5 1 1 1 1 =] D_3 1 1 1 1
0 0.1 0.2 0.2 0.4 0s 0.& 0 1000 2000 3000 4000 2000
Coverage #predicted interactions

« lterated CD-distance achieves best performance
wrt functional homogeneity at k=2

« Ditto wrt localization coherence (not shown)

SSTiC 2013 Copyright 2013 © Limsoon Wong
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How many iteration Is enough?

Liu et al. GIW2008, pp. 138-149

noise level| k |7common PPIs | avg_rank_diff | avg_score_diff

100% 1 53669 540.21 0.10
2 5870 144 86 0.02

20 53849 67.00 0.01

300% 1 5322 881.77 0.18
2 5664 36745 0.08

20 3007 240 83 0.02

300% 1 5081 101314 0.23
2 5502 62546 0.12

20 5008 31733 (.05

1000% | k=1 4472 1187.10 (.28
k=2 3101 1021.68 0.27

k=20 3264 614.66 0.13

« lterative CD-distance at diff k values on noisy network
—# of iterations depends on amt of noise

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Identifying False Positive PPIs

Cf. ave localization coherence of protein pairs in DIP < 5%
ave localization coherence of PPI in DIP < 55%

> AdjustCD (k=2) BN AdiustCD (k=2)
£ 09 AdjustCD (k=1) B A @ 0.95 K AdjustCD (k=1) BF—
c i
8 FSweight S o9 SRk, FSweight
2 08/ CD-distance — v - % - X, CD-distance — v —
(@) R
c 0.7 S =] M
= 2 o8 .
5 06 8

- 075 - 1

0.5 L L L

:‘::‘ 0-7 L L L L L
0 1000 2000. 3009 4000 5000 6000 0 500 1000 1500 2000 2500 3000
#interactions

#interactions

« lterated CD-distance is an improvement over
previous measures for assessing PPI reliability

Liu et al. GIW2008, pp. 138-149
SSTiC 2013 Copyright 2013 © Limsoon Wong




SEINUS
ldentifying False Negative PPIs

of Singapore

Cf. ave localization coherence of protein pairs in DIP < 5%

ave localization coherence of PPl in DIP < 55%
> 17 AdjustCD (k=2) — » | 1?2 AdUSICD (k=2) ¥
= AdjustCD (k=1) = § AdjustCD (k=1) =
c A\
L\ K : 16 ,
%0-8 e . FSweight % K%y FSweight
g o Ca@-dls;y@nc%fzg— 5 B B o C%)-dlsé@ncgg,ﬁg_} ’
< 06 e 2 = x 208 1 B
I e
5 So6 .
= \ 4 =" \ T
8 0.4 8 \\ - NN\ o T Ve
=) \ N (@) \ — ~— ——
L — < =04 \
02 . ///// \\\
. I Wiv// . . 0 2 \ | L | |
0 200 400 600 800 1000 " ¢ 200 400 600 800 1000
#predicted interactions

SSTIC 2013

#predicted interactions
« lterated CD-distance is an improvement over

previous measures for predicting new PPIs

Liu et al. GIW2008, pp. 138-149

Copyright 2013 © Limsoon Wong
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Combining multiple types of info to ¥ sz
predict whether a PPI edge Is real
« Sometimes you do  You can combine
have additional these pieces of info in
Independent info the following standard
available way':
— Several PPI expts
r.o=1- -7
— Functional o I!:[( )
annOtatlonS . Ill.-lt‘llll;lﬂ‘lt of expt
_ Locallzatlon . (E)‘...,)L.Hl(tzetllllv set of expt
if]f()rrT]EitiC)r] sources in which

interaction betw uand v is

observed

SSTiC 2013 Copyright 2013 © Limsoon Wong




Another way -
to combine B s
” .

more types of g @"",... - ook _
i n fo to p re d I Ct O protein from compl;ax -—; extraneous t;c;ge | — literature co-occurrence

— PPI — gene co-expression

if a P P I iS re al ": /’ Jroteih cutside:conp e — functional assoc — SWC weighted edge

(thickness scaled with weight)

« QOverlay literature co-
occurrence, gene co-

expression, etc. on PPIN = (et complfi=fi.F2 = Jz...)
P(Fy = f,F5 = fo,...|e is comp)P(e is comp)

weightraw(€)

: : P(Fy = fi.Fo=fs,...)
« Machine |eam|ng to _II; P(F; = file is comp)P(e is comp)
learn characteristic of [T, P(F; = fi)

real PPI

Yong, et al. “Supervised maximume-likelihood weighting of composite protein
networks for complex prediction”. BMC Systems Biology, 6(Suppl 2):S13, 2012

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Shoemaker & Panchenko. PLoS Computational Biology, 3(4):e43, 2007
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PPI Prediction Methods & ==

Method Name Protein/Domain Physical Interaction/

Interaction Functional Association
Gene co-expression P F
Synthetic lethality P F
Gene duster and gene neighbor P F
Phylogenetic profile P, D F / \
Rosetta Stone P F You can also use our
Sequence co-evolution P,D F .
P b D 5 earlier topology scores,
Integrative P, D p e.g, CD-distance to
Lonyan ssocaron 2 3 predict novel PPIs
Bayesian networks P,D F, P
Domain pair exclusion D P
p-Value D P

Second column shows if method is designed to predict protein (P) or domain (D)
interactions (note that predicted domains can also be used for verifying protein
interactions).

Third column shows if the method can be used to infer direct physical interaction (P} or
indirect functional association (F).

SSTiC 2013 Copyright 2013 © Limsoon Wong



Dandekar et al. Trends Biochem Sci, 23:324-328, 1998
ERANUS

National University

PPI Prediction by Gene Clusters

 Gene clusters or
operons encoding co- B .
regulated genes are j—“—“—ﬂ

usually conserved,

despite shuffling Gene neighborhood
effects of evolution
/:> Find conserved gene - NN
clusters s — 0 N —
* Predict the genes to
5 interact & form operons o o o st s

SSTiC 2013 Copyright 2013 © Limsoon Wong



Pellegrini et al. PNAS, 96:4285-4288, 1999

PPI Prediction by Phylogenetic Profi

« Components of com-
plexes and pathways
should be present

simultaneously in order

to perform their
functions

K Functionally linked and
Interacting proteins co-
evolve and have ortho-
logs in the same subset
of fully sequenced

\ organisms

~

/
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Genomes

Proteins| EC HI BS

P1 [ 1 ]
F1 and P4

P2 ( 0 1 +arefunctinnal:.-'
linked

P3 1 1] 0

P4 0 1 ]

Image credit: Shoemaker & Panchenko.
PL0oS Comp Biol, 3(4):e43, 2007

SSTIC 2013
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Enright et al. Nature, 402:86—-90, 1999 =) N US
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PPl Prediction by Rosetta Stone

« Some interacting proteins have homologs in
other genomes that are fused into one protein
chain, a so-called Rosetta Stone protein

« Gene fusion occurs to optimize co-expression of
genes encoding for interacting proteins

Genome 1 Domain A

Genome 2 r PrediCt A&B intel‘act

-
Rosetta Stone protein

Image credit: Shoemaker & Panchenko.
PLoS Comp Biol, 3(4):e43, 2007
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See [Juan et al, PNAS, 105(3):934-939, 2008] for an impt further development to this idea

» EENUS
PPI Prediction by Seq Co-Evolutio®” =
* Interacting proteins { '{

co-evolve
L Sirndarity

—

— Changes in one
protein leading to —
loss of function are —
compensated by
correlated changes
In another protein

_'|_
0 Co-evolution is N
guantified by correlation
of distance matrices sy

used to construct the
trees
\ / Image credit: Shoemaker & Panchenko.

PLoS Comp Biol, 3(4):e43, 2007
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PPI Prediction by Iterated CD-Distarge™

Cf. ave localization coherence of protein pairs in DIP < 5%
ave localization coherence of PPI in DIP < 55%

Liu et al. GIW2008, pp. 138-149

L2 AdjustCD (k=2) — * |
3 AdjustCD (k=1) =
& 1% -
o |k . . FSweight
< & .~ Cb-distance, —
S 08 N R X
C \\
Q
IS
N 06 ro\ 7
= \ — N o
§ \ _— WN\ N o V/W NV— <
- 04 - .

0.2 | | | |

0 200 400 600 800 1000
#predicted interactions
whkuy)= 2w @+ Y wl vy * Predict (u,v) interact if
xe NuNy xe Nu Ny
Z\w* Y, x)+ A+ Zn.':."" Yv,x)+ A5 WLk(U,V) IS |arge
xeNu xe Ny
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What have we learned?

« Itis possible to predict PPIs using a variety of
Information and methods

— Gene cluster, gene fusion, phylogenetic profile,
seguence co-evolution, ...

For those who are interested to go further: h

« How do you predict cross-species PPI’s between

a host and a pathogen?
(& )

SSTiC 2013 Copyright 2013 © Limsoon Wong
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Must Read

« Soh et al. Consistency, Comprehensiveness, and Compatibility of
Pathway Databases. BMC Bioinformatics, 11:449, 2010

« Zhou et al. IntPath---an integrated pathway gene relationship
database for model organisms and important pathogens, BMC
Systems Biology, 6(Suppl 2):S2, 2012

« Ng & Tan. Discovering protein-protein interactions. JBCB, 1(4):711-
741, 2004

« Chua & Wong. Increasing the Reliability of Protein Interactomes.
Drug Discovery Today, 13(15/16):652-658, 2008

« Shoemaker & Panchenko. Deciphering protein-protein Interactions.
Part Il. Computational methods to predict protein and domain
interaction partners. PLoS Computational Biology, 3(4):e43, 2007
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