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Preliminaries  

• This tutorial assumes you already know a little about what biological 

networks are. If you don’t, Natasa Przulj’s lecture slides maybe helpful 

 

 http://www.doc.ic.ac.uk/~natasha/341_Lectures_2-3_notes.pdf 

 

• The ppt for this tutorial can be downloaded at 

 

 http://www.comp.nus.edu.sg/~wongls/talks/sstic2013.pdf 

 

• Brief notes for this tutorial can be downloaded at 

 

 http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorialnotes.pdf  

http://www.doc.ic.ac.uk/~natasha/341_Lectures_2-3_notes.pdf
http://www.doc.ic.ac.uk/~natasha/341_Lectures_2-3_notes.pdf
http://www.doc.ic.ac.uk/~natasha/341_Lectures_2-3_notes.pdf
http://www.doc.ic.ac.uk/~natasha/341_Lectures_2-3_notes.pdf
http://www.doc.ic.ac.uk/~natasha/341_Lectures_2-3_notes.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorial.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorial.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorial.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorialnotes.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorialnotes.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorialnotes.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorialnotes.pdf
http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorialnotes.pdf
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Outline 
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Diagnosis Using Microarray 
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Application: Disease Subtype Diagnosis 
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Application: Drug Action Detection 
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Which group of genes are the drug affecting on? 
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Typical Analysis Workflow 

• Gene expression 

data collection 

• DE gene selection 

by, e.g., t-statistic 

• Classifier training 

based on selected 

DE genes 

• Apply the classifier 

for diagnosis of 

future cases  

 

Image credit: Golub et al., Science, 286:531–537, 1999 

Terminology: DE gene = differentially expressed gene 
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PCA Plots 

Image credit: Yeoh et al, Cancer Cell, 1:133-143, 2002 
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Part 1: Delivering 

reproducible gene 

expression analysis 

• Some issues in gene 

expression analysis 

 

• Batch effect & 

normalization 

 

• Reproducibility 

– Law of large numbers 

– Use background info 

– Find more consistent 

disease subnetworks 

 



SSTiC 2013 Copyright 2013 © Limsoon Wong 

11 

Some Headaches 

• Natural fluctuations of gene expression in a 

person 

 

• Noise in experimental protocols 

– Numbers mean diff things in diff batches 

– Numbers mean diff things in data obtained from 

diff platforms 

 

Selected genes may not be meaningful 

– Diff genes get selected in diff expts 
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Natural Fluctuations 
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Batch Effects 

• Samples from diff batches are grouped together, 

regardless of subtypes and treatment response 
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Percentage of Overlapping Genes 

• Low % of overlapping 

genes from diff expt in 

general 

 

– Prostate cancer 

• Lapointe et al, 2004 

• Singh et al, 2002 

– Lung cancer 

• Garber et al, 2001 

• Bhattacharjee et al, 

2001 

– DMD 

• Haslett et al, 2002 

• Pescatori et al, 2007 

Datasets DEG POG 

Prostate 

Cancer 

Top 10 0.30 

Top 50 0.14 

Top100 0.15 

Lung 

Cancer 

Top 10 0.00 

Top 50 0.20 

Top100 0.31 

DMD 
Top 10 0.20 

Top 50 0.42 

Top100 0.54 

Zhang et al, Bioinformatics, 2009 
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“Most random gene 

expression 

signatures are 

significantly 

associated with 

breast cancer 

outcome” 

Venet et al., PLoS Comput Biol, 7(10):e1002240, 2011.  
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Part 1: Delivering 

reproducible gene 

expression analysis 

• Some issues in gene 

expression analysis 

 

• Batch effect & 

normalization 

 

• Reproducibility 

– Law of large numbers 

– Use background info 

– Find more consistent 

disease subnetworks 
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Approaches to Normalization 

• Aim of normalization:  

 Reduce variance w/o 

increasing bias 

 

• Scaling method 

– Intensities are scaled 

so that each array 

has same ave value 

– E.g., Affymetrix’s  

 

 

• Transform data so 

that distribution of 

probe intensities is 

same on all arrays 

– E.g., (x ) /  

 

• Quantile normalization 
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Quantile Normalization 

• Given n arrays of length p, 

form X of size p × n where 

each array is a column 

• Sort each column of X to 

give Xsort 

• Take means across rows 

of Xsort and assign this 

mean to each elem in the 

row to get X’sort 

• Get Xnormalized by arranging 

each column of X’sort to 

have same ordering as X 

• Implemented in some 

microarray s/w, e.g., 

EXPANDER 
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After quantile 

normalization 

GEP after removing batch effect by quantile normalization  
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Caution: “Over 

normalize” signals in 

cancer samples 

Wang et al. Molecular Biosystems, 8:818-827, 2012 

A gene normalized by quantile 

normalization (RMA) was detected as 

down-regulated DE gene, but the original 

probe intensities in cancer samples were 

higher than those in normal samples 

A gene was detected as an up-regulated 

DE gene in the non-normalized data, but 

was not identified as a DE gene in the 

quantile nornmalized data 

Genes are extensively upregulated in 

cancers. Normalizing them mislead 

them to be considered downregulated! 
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Part 1: Delivering 

reproducible gene 

expression analysis 

• Some issues in gene 

expression analysis 

 

• Batch effect & 

normalization 

 

• Reproducibility 

– Law of large numbers 

– Use background info 

– Find more consistent 

disease subnetworks 
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Law of Large Numbers 

• Suppose you are in a 

room with 365 other 

people 

 

• Q: What is prob that a 

specific person in the 

room  has the same 

birthday as you? 

• A: 1/365 = 0.3% 

 

• Q: What is prob that 

there is a person in 

the room having same 

birthday as you? 

• A: 1 – (364/365)365 = 

63%  

 

• Q: What is prob that 

there are two persons 

in the room having 

same birthday? 

• A: 100% 
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Individual Genes 

• Suppose  

– Each gene has 50% 

chance to be high 

– You have 3 disease 

and 3 normal 

samples 

 

• How many genes on a 

microarray are 

expected to perfectly 

correlate to these 

samples? 

• Prob(a gene is 

correlated) = 1/26 

• # of genes on array = 

100,000 

E(# of correlated 

genes) = 1,562 

 

Many false positives 

• These cannot be 

eliminated based on 

pure statistics! 
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Group of Genes 

• Suppose  

– Each gene has 50% 

chance to be high 

– You have 3 disease 

and 3 normal 

samples 

• What is the chance of 

a group of 5 genes 

being perfectly 

correlated to these 

samples? 

• Prob(group of genes 

correlated) = (1/26)5 

– Good, << 1/26 

• # of groups = 100000C5 

E(# of groups of genes 

correlated) = 100000C5* 

(1/26)5 = 2.6*1012 

 

Even more false 

positives? 

• Perhaps no need to 

consider every group 
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Regulatory Circuits – The Context 

• Each disease phenotype 

has some underlying 

cause 

 

• There is some unifying 

biological theme for genes 

that are truly associated 

with a disease subtype 

 

• Uncertainty  in selected 

genes can be reduced by 

considering biological 

processes of the genes 

 

• The unifying biological 

theme is basis for inferring 

the underlying cause of 

disease subtype 
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Taming false positives by 

considering pathways instead of 

all possible groups 

# of pathways = 

1000 

E(# of pathways 

correlated) = 

1000 * (1/26)5 = 

9.3*10-7 
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Towards More Meaningful Genes 

• ORA  

– Khatri et al 

– Genomics, 2002 

• FCS 

– Pavlidis & Noble 

– PSB 2002 

• GSEA 

– Subramanian et al 

– PNAS, 2005 

• SNet 

– Soh et al  

– BMC Genomics, 2011 

Overlap Analysis 

Direct-Group Analysis 

Network-Based Analysis 
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GO Class 1 

GO Class 2 

GO Class N 

…
 

Significant Class 1 

Non Significant Class 2 

…
 

Significant Class N 

Binomial 

estimation 

S Draghici et al. “Global functional profiling of gene expression”. Genomics, 81(2):98-104, 2003. 

Threshold 

Overlap Analysis: ORA 
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A problem w/ ORA 

• It is essentially testing whether A B is 

significant, where  

– A = the set of differentially expressed genes 

– B = the set of gene in a specified pathway 

 

• The set of differentially expressed genes is 

defined by an arbitrary threshold on, e.g., fold 

change, t-statistic, … 

 

• If you change that threshold, you can change A 

drastically. This has big impact on A B  
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GO Class 1 

GO Class 2 

GO Class N 

…
 

Score 1 

Score 2 

…
 

Score 3 

Permutation 

Test 

Significant Class 1 

Non Significant Class 2 

…
 

Significant Class N 

  


n

k kP
n 1

log
1

P Pavlidis et al. “Using the gene ontology for microarray data mining: A comparison of methods and application to 

age effects in human prefrontal cortex”. Neurochem Res., 29(6):1213-1222, 2004. 

Direct-Group Analysis: FCS 
Ave expression 

of the class 
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FCS: Key variations 

• “Correlation score” 

– Score of a class C = average pair-wise correlation 

of genes in the class C 

 

• “Experimental score” 

– Score of a class C = average of log-transformed p-

values of genes in the class C 

 

• Null distribution to estimate the p-value of the 

scores above is by repeated sampling of random 

sets of genes of the same size as C 

Pavlidis et al., PSB 2002 
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An example 

based on 

FCS 

 

Brain Data 

Pavlidis et al., PSB 2002 
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A problem w/ FCS 

as proposed by 

Pavlidis et al in 

PSB 2002 

• Its null hypothesis:  

– “genes in C are indepen-

dently expressed & not 

diff from other genes 

• But … 

– Genes in a pathway are 

not independent 

 Becomes over sensitive 

 

• Solution: generate null 

distribution by randomi-

zing patient class labels 

 

Goeman & Buhlmann. “Analyzing gene expression data in terms of gene 

sets: Methodological issues”. Bioinformatics, 23(8):980-987, 2007 
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FCS: Why do we 

estimate p-value 

using a null 

distribution based 

on repeated 

sampling of 

randomized gene 

sets / patient 

sets? 

Venet et al. “Most random gene expression signatures are 

significantly associated with breast cancer outcome”. 

PLoS Computational Biology, 7(10):e1002240, 2011.  
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An expt by a student on the nominal 

and empirical p-values for t-test 

• “I performed permutation test on the DMD dataset 

and obtained a null distribution. Then I computed 

two p-values (nominal and empirical) and took the 

genes at 5% threshold. 

 

• Out of 8,867 genes, 2,091 were significant under 

nominal and 482 were significant under empirical. 

The significant genes had 0.13 overlap between 

two methods (309 intersect and 2265 union).” 
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Rank Genes 

GO Class 1 

GO Class 2 

GO Class N 

…
 

Assign score to each 

class based on gene 

rank 

Significant Class 1 

Non Significant Class 2 

…
 

Significant Class N 

Permutation test 

Direct-Group Analysis: GSEA 

 iSPhit ,1
 iSPmiss ,1

    iSPiSP misshit ,,max 11 

 iSPhit ,2
 iSPmiss ,2

 iSP Nhit ,  iSP Nmiss ,

A Subramanian et al. “Gene set enrichment analysis: A knowledge-based approach for interpreting 

genome wide expression profiles”. PNAS, 102(43):15545-15550, 2005 
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GSEA: Key Points 

• “Enrichment score” 

– The degree that the 

genes in gene set C are 

enriched in the extremes 

of ranked list of all genes 

– Measured by 

Komogorov-Smirnov 

statistic 

• Null distribution to estimate the p-value of the 

scores above is by randomizing patient class 

labels 

 

Subramanian et al., PNAS, 102(43):15545-15550, 2005 
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A problem w/ 

GSEA 

• Its enrichment score 

considers all genes in C 

 

• But … 

– Not all branches of a 

large pathway have to 

“go wrong” 

 Cannot detect if only a 

small part of a pathway 

malfunctions 

 

• Solution: Break pathways 

into subnetworks  

 

Wong. “Using Biological Networks in Protein Function Prediction and 

Gene Expression Analysis”. Internet Mathematics, 7(4):274--298, 2011.  
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Network-Based Analysis: SNet 

• Group samples into type D and D 

• Extract & score subnetworks for type D 

– Get list of genes highly expressed in most D samples 

• These genes need not be differentially expressed! 

– Put these genes into pathways 

– Locate connected components (ie., candidate 

subnetworks) from these pathway graphs 

– Score subnetworks on D samples and on D samples 

• For each subnetwork, compute t-statistic on the two 

sets of scores  

• Determine significant subnetworks by permutations 

Soh et al.  “Finding Consistent Disease Subnetworks Across Microarray Datasets”. 

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. 
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SNet: Score Subnetworks 

Soh et al.  “Finding Consistent Disease Subnetworks Across Microarray Datasets”. 

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. 
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SNet: Significant Subnetworks 

• Randomize patient 

samples many times 

• Get t-score for 

subnetworks from the 

randomizations 

• Use these t-scores to 

establish null 

distribution 

• Filter for significant 

subnetworks from real 

samples 

Soh et al.  “Finding Consistent Disease Subnetworks Across Microarray Datasets”. 

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. 
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Genes A, B, C are high in 

phenotype D 

 

A is high in phenotype ~D but B 

and C are not 

A 

B 

C 

Conventional techniques: Gene 

B and Gene C are selected. 

Possible incorrect postulation 

of mutations in gene B and C 

Key Insight # 1 

• SNet does not require 

all the genes in subnet 

to be diff expressed 

 

• It only requires the 

subnet as a whole to 

be diff expressed 

 

• Able to capture entire 

relationship, 

postulating a mutation 

in gene A 
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A branch within pathway 

consisting of genes A, B, C, D and 

E are high in phenotype D 

 

Genes C, D and E not high in 

phenotype ~D 

 

30 other genes not diff expressed 

A 

B 

C 

Conventional techniques: Entire 

network is likely to be missed 

D 

E 

30 other genes 

Key Insight # 2 

• SNet: Able to capture the subnetwork branch 

within the pathway 
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Genes A, B and C are present in 

two separate pathways 

 

A, B and C are high in phenotype 

D, but not high in phenotype ~D 

Conventional techniques:  

 

Both pathways are scored equally. 

So both got selected, resulting in 

pathway 2 being a false positive 

A 

B 

C 

A 

B 

C 

Pathway 1 Pathway 2 

Key Insight # 3 

• SNet: Able to select only pathway 1, which has 

the relevant relationship 
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Let’s see whether SNet gives us 

subnetworks that are  

 

(i) more consistent between 

datasets of the same types of 

disease samples 

 

(ii) larger and more meaningful 
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Better Subnetwork Overlap 

• For each disease, take significant subnetworks 

from one dataset and see if it is also significant in 

the other dataset 

 

 

Soh et al.  “Finding Consistent Disease Subnetworks Across Microarray Datasets”. 

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. 

Overlap = |AB| / min(|A|,|B|) 



SSTiC 2013 Copyright 2013 © Limsoon Wong 

47 

Better Gene Overlaps 

• For each disease, take significant subnetworks 

extracted independently from both datasets and 

see how much their genes overlap 

 

Soh et al.  “Finding Consistent Disease Subnetworks Across Microarray Datasets”. 

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. 

Overlap = |AB| / min(|A|,|B|) 
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Larger Subnetworks 

Soh et al.  “Finding Consistent Disease Subnetworks Across Microarray Datasets”. 

BMC Bioinformatics, 12(Suppl. 13):S15, 2011. 
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Issue #1 with SNet 

• What if the real important genes are close to, but not 

in, the top % most highly expressed genes? 
 

• Blindly increasing  does not help, as this will bring in 

lots of false-positive genes 
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Issue #2 with SNet 

• SNet weighs genes & scores subnetworks only 

on the basis of phenotype D 
 

• Why not consider phenotype ~D as well? 
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PFSNet 

• Deal with issue #1 of SNet using “fuzzification” 

 

• Deal with issue #2 of SNet using paired t-test 

 

PFSNet – Paired Fuzzy SNet 
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Fuzzification 
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Paired 

T-Test 

• ScorePk
1(S) and ScorePk

2(S) are computed for the 

same sample Pk and subnetwork S  

Can do paired t-test 

– Null hypothesis: If S is irrelevant to D vs ~D, we 

expect ScorePk
1(S) – ScorePk

2(S) to be around 0 
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PSFNet vs SNet: 

Subnet 

Agreement 

Overlap = |AB| / |AB| 
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PSFNet vs SNet: 

Gene Agreement 

Overlap = |AB| / |AB| 
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PFSNet vs GSEA & GGEA:  

Pathway Agreement 

Overlap = |AB| / |AB| 
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PFSNet vs T-Test:  

Gene Agreement 

Overlap = |AB| / |AB| 
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Testing subnets from PFSNet  

using GSEA & GGEA 
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Top 5 Subnets 
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DMD: Striated Muscle Contraction 
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Leukemias: 

IL-4 

Signaling in 

ALL  
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What have we learned? 

• Common headaches in gene expression analysis 

– Natural fluctuation, protocol noise, batch effect 

 

• Use of biological background info to tame false 

positives 

 

• Overlap analysis  direct-group analysis  

network-based analysis 

 

• Subnetwork-based methods yield more 

consistent and larger disease subnetworks  
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From pathways to models, 

From static to dynamic:  
A couple of very recent papers that are worth your leisure reading… 

• Geistlinger et al. From sets to graphs: Towards a realistic 

enrichment analysis of transcriptomic systems. Bioinformatics, 

27(13):i366—i373, 2011 

• Zampieri et al.  A system-level approach for deciphering the 

transcriptional response to prion infection. Bioinformatics, 27(24): 

3407--3414, 2011 
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Still a major challenge 

• Suppose there are very few samples, so few that 

you cannot estimate the p-value by permuting 

class labels 

 

• What do you do? 
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Typical Proteomic MS Experiment 

Source: Steen & Mann. The ABC’s and XYZ’s of peptide sequencing. 

Nature Reviews Molecular Cell Biology, 5:699-711, 2004 
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Kall and Vitek, 2011 

Diagnosis Using Proteomics 
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Step 1:  

Protein Identification by Mass Spec 
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S#: 1708 RT: 54.47 AV: 1 NL: 5.27E6

T: + c d Full ms2 638.00 [ 165.00 - 1925.00]
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MS/MS instrument 

Database search 
• Sequest, Mascot, InSpect 

de Novo interpretation 
• Lutefisk, Peaks, PepNovo 

Source: Leong Hon Wai 
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Breaking Protein into Peptides,  

and Peptides into Fragment Ions 

• Proteases, e.g. trypsin, break protein into 

peptides 

• A Tandem Mass Spectrometer further breaks the 

peptides down into fragment ions and measures 

the mass of each piece 

• Mass Spectrometer accelerates the fragmented 

ions; heavier ions accelerate slower than lighter 

ones 

• Mass Spectrometer measures mass/charge ratio 

of an ion 

Source: Leong Hon Wai 
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A rather nice 

set of proteomic 

profiles of 

leukemia 

patients 

Source: Hegedus et al. Proteomic analysis of childhood leukemia. Leukemia, 19:1713-1718, 2005 
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Peptide Identification by Mass Spec 

S 
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u 
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e 

MS/MS instrument 

Database search 
• Sequest, Mascot, InSpect 

de Novo interpretation 
• Lutefisk, Peaks, PepNovo 

Step 2: 

Understanding an  

MS/MS Spectrum 

S#: 1708 RT: 54.47 AV: 1 NL: 5.27E6

T: + c d Full ms2 638.00 [ 165.00 - 1925.00]
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Peptide Fragmentation 

• Peptides tend to fragment along the backbone 

• Fragments can also loose neutral chemical 

groups like NH3 and H2O 

H...-HN-CH-CO    .  .   .   NH-CH-CO-NH-CH-CO-…OH 

Ri-1 Ri Ri+1 

H+ 

Prefix Fragment Suffix Fragment 

Collision Induced Dissociation 

Source: Leong Hon Wai 
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… and fragments due to neutral losses 

y3 

b2 

y2 y1 

b3 a2 a3 

                                       HO                  NH3
+ 

                                         |                       | 

                     R1       O              R2     O             R3       O             R4 

                |      ||                |      ||               |       ||              | 

H -- N --- C --- C --- N --- C --- C --- N --- C --- C --- N --- C -- COOH 

        |       |               |        |               |       |               | 

       H      H             H       H             H      H             H  

b2-H2O  

y3 -H2O 

b3- NH3 

y2 - NH3 

Source: Leong Hon Wai 
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Mass Spectra 

G V D L K 

mass 
0 

57 Da = ‘G’  99 Da = ‘V’ 
L K   D V G 

• The peaks in the mass spectrum: 

– Prefix  

– Fragments with neutral losses (-H2O, -NH3) 

– Noise and missing peaks 

and Suffix Fragments 

D 

H
2
O

 

Source: Leong Hon Wai 
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Example MS/MS Spectrum 

Bafna & Edwards. “On de novo interpretation of tandem mass 

spectra for peptide identification”. RECOMB 2003, pp. 9-18 
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Protein Identification with MS/MS 

G V D L K 

mass 

0 

In
te

n
s
it
y
 

mass 
0 

MS/MS 

Peptide 

Identification  
 

Source: Leong Hon Wai 
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Peptide Identification by Mass 

S 

e 

q 

u 

e 

n 

c 

e 

MS/MS instrument 

Database search 
•Sequest, Mascot 

de Novo interpretation 
•Lutefisk, Peaks 

Step 3: Computational Methods 
Database search 

     Sequest, Mascot 

de Novo interpretation 

     Lutefisk, Peaks, PepNovo 

S#: 1708 RT: 54.47 AV: 1 NL: 5.27E6

T: + c d Full ms2 638.00 [ 165.00 - 1925.00]
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Database Search Algorithms  

• Database search 

– Used for spectrum from known peptides 

– Rely on completeness of database 

 

• General Approach 

– Match given spectrum with known peptide 

– Enhanced with advanced statistical analysis and 

complex scoring functions 

 

• Methods 

– SEQUEST, MASCOT, InsPecT, Paragon 
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Theoretical Spectrum for a Peptide 

• Given this peptide 

 

 

 

• Its theoretical spectrum is 

 

 

• Theoretical spectrum is dependent on 

– Set of ion-types considered 

– Larger if multi-charge ions are considered 

 

 

 

 

G V D L K 

mass 
0 

Source: Leong Hon Wai 
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Database Search Algorithm  

Repeat for all the peptides in 

the Database 

S#: 1708 RT: 54.47 AV: 1 NL: 5.27E6

T: + c d Full ms2 638.00 [ 165.00 - 1925.00]
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Database 

Search 

Match 

Theoretical 

spectrum 
0 

Database of 

known peptides 

 
MDERHILNM,   KLQWVCSDL, 

PTYWASDL,   ENQIKRSACVM, 

TLACHGGEM,  NGALPQWRT, 

HLLERTKMNVV,   GGPASSDA,   

GGLITGMQSD,  MQPLMNWE, 

ALKIIMNVRT,  AVGELTK,  
HEWAILF,  GHNLWAMNAC, 

GVFGSVLRA,  EKLNKAATYIN.. 

Matching Score 

for this peptide 

Source: Leong Hon Wai 
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• There are also approaches for de novo peptide 

identification. .. 

 

• But I will omit these here 
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Protein Identification 

• After all the peptides have been identified, they 

are grouped into protein identifications 

• Peptide scores are added up to yield protein 

scores  

• Confidence of a particular peptide identification 

increases if other peptides identify the same 

protein and decreases if no other peptides do so 

• Protein identifications based on single peptides 

should only be allowed in exceptional cases 

Source: Steen & Mann. The ABC’s and XYZ’s of peptide sequencing. 

Nature Reviews Molecular Cell Biology, 5:699-711, 2004 
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Cf. Gene Expression Profile Analysis 

• Once the proteins are identified, the proteomic 

profile of a sample can be constructed 

– I.e., which protein is found in the sample and how 

abundant it is 
 

• Similar to gene expression profile. So gene 

expression profile analysis techs can be applied 
 

• Some key differences  

– Proteomic profile has much fewer features 

– Proteomic profiling study has much fewer samples 
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Part 2: Delivering 

more powerful 

proteomic profile 

analysis 

• Common issues in 

proteomic profile 

analysis 

 

• Improving consistency 

– PSP 

– PDS 

 

• Improving coverage 

– CEA 

– PEP 

– Max Link 
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Typical 

frequency 

distribution of 

proteins 

detected in 

proteomic 

profiles 

Only 25 out of 800+ proteins are 

common to all 5 mod-stage HCC 

patients! 



SSTiC 2013 Copyright 2013 © Limsoon Wong 

87 

Issues in Proteomic Profiling 

• Coverage 

• Consistency 

 

Thresholding 

– Somewhat arbitrary 

– Potentially wasteful 

• By raising threshold, 

some info disappears 

 

 

Detected  

protein 

Present but  

undetected  

protein 
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Part 2: Delivering 

more powerful 

proteomic profile 

analysis 

• Common issues in 

proteomic profile 

analysis 

 

• Improving consistency 

– PSP 

– PDS 

 

• Improving coverage 

– CEA 

– PEP 

– Max Link 

 



SSTiC 2013 Copyright 2013 © Limsoon Wong 

89 

An inspiration from gene expression 

profile analysis 
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Detected  

protein 

Present but  

undetected  

protein 

Intuitive Example 

• Suppose the failure to 

form a protein complex 

causes a disease 

– If any component 

protein is missing, the 

complex can’t form 

Diff patients suffering 

from the disease can 

have a diff protein 

component missing 

–  Construct a profile 

based on complexes? 
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We try an adaptation of SNet on 

proteomics profiles… 

 

“Proteomic Signature Profiling” (PSP) 



SSTiC 2013 Copyright 2013 © Limsoon Wong 

92 

“Threshold-free” Principle of PSP 

Hit rate in a 

ref complex 

Goh et al. Proteomics signature profiling (PSP): A novel contextualization approach for cancer 

proteomics. Journal of Proteome Research. accepted. 
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Applying PSP to a HCC Dataset 

Goh et al. Proteomics signature profiling (PSP): A novel contextualization 

approach for cancer proteomics. Journal of Proteome Research. accepted. 
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Consistency: Samples segregate by 

their classes with high confidence 

Goh et al. Proteomics signature profiling (PSP): A novel contextualization 

approach for cancer proteomics. Journal of Proteome Research. accepted. 
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Feature Selection 

Goh et al. Proteomics signature profiling (PSP): A novel contextualization 

approach for cancer proteomics. Journal of Proteome Research. accepted. 
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Top-Ranked Complexes 
Cluster_ID p_val mod_score poor_score cluster_name 

5179 0.000300541 0.513951977 3.159758312 
NCOA6-DNA-PK-Ku-

PARP1 complex 

5235 0.000300541 0.513951977 3.159758312 
WRN-Ku70-Ku80-PARP1 

complex 

1193 0.000300541 0.513951977 3.159758312 Rap1 complex 

159 0 0 2.810927655 
Condensin I-PARP-1-

XRCC1 complex 

2657 0.008815869 0 2.55616281 

ESR1-CDK7-CCNH-

MNAT1-MTA1-HDAC2 

complex 

3067 0.00911641 0 2.55616281 

RNA polymerase II 

complex, incomplete (CDK8 

complex), chromatin 

structure modifying 

1226 0.013323983 0.715352108 2.420592827 H2AX complex I 

5176 0 0.513951977 2.339059313 
MGC1-DNA-PKcs-Ku 

complex 

1189 0 0.513951977 2.339059313 
DNA double-strand break 

end-joining complex 

5251 0 0.513951977 2.339059313 Ku-ORC complex 

2766 0 0.513951977 2.339059313 TERF2-RAP1 complex 

Goh et al. Proteomics signature profiling (PSP): A novel contextualization 

approach for cancer proteomics. Journal of Proteome Research. accepted. 
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Top-Ranked GO Terms 

Goh et al. Proteomics signature profiling (PSP): A novel contextualization 

approach for cancer proteomics. Journal of Proteome Research. accepted. 
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False Positive Rate Analysis 

• Divide 7 poor patients into 2 

groups 

– Significant complexes produced 

by PSP here are false positives 

• Repeat many times to get dull 

distribution 

– Median = 40, mode = 6 

 

• Cf. 523 complexes in CORUM 

(size ≥4) used in PSP. At p ≤ 5%,  

523 * 5%   27 false positives 

expected 

Goh et al. Enhancing utility of proteomics signature profiling (PSP) with pathway derived 

subnets (PDSs), performance analysis and specialized ontologies. BMC Genomcs, to appear.  
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A Shortcoming of PSP 

• Protein complex databases are still relatively 

small & incomplete… 

 

Augment the set of protein complexes by protein 

clusters predicted from PPI networks! 

 

• Many protein complex prediction methods 

– CFinder, Adamcsek et al. Bioinformatics, 22:1021--1023, 2006 

– CMC, Liu et al. Bioinformatics, 25:1891--1897, 2009 

– CFA, Habibi et al. BMC Systems Biology, 4:129, 2010 

– … 
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Another Shortcoming of PSP 

• Protein complexes provided a biologically-rich 

feature set for PSP 

– But it  is only one aspect of biological function 

 

• The other aspect is biological pathways 

– But coverage issue of proteomic profiles create 

lots of “holes” 

 

• Can we extract and use subnets from pathways? 
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Another adaptation of SNet on 

proteomics profiles… 

 

“Pathway-Derived Subnets” (PDS) 
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Pathway-Derived Subnets (PDS) 

• Identify the set Si of proteins detected in more 

than 50% of samples having phenotype Pi 

– Do this for each phenotype P1, …, Pk 
 

• Overlay i Si to pathways 
 

• Remove nodes not covered by i Si  

This fragments pathways into subnets 
 

• Use these subnets to form “proteomic signature 

profiles” 

– The rest of the steps is same as PSP 
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PDS consistently segregates 

mod vs poor patients  
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What have we learned? 

• PSP / PDS can deal with consistency issues in 

proteomics 

 

• GO term analysis also indicates that PSP / PDS 

select clusters that play integral roles in cancer  

 

• PSP / PDS reveal many potential clusters and is 

not constrained by any prior arbitrary filtering 

which is a common first step in conventional 

analytical approaches 
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Part 2: Delivering 

more powerful 

proteomic profile 

analysis 

• Common issues in 

proteomic profile 

analysis 

 

• Improving consistency 

– PSP, PDS 

 

• Improving coverage 

– FCS, 

– CEA, PEP 

– Max Link 
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Peptide & protein identification by MS is 

still far from perfect 

• “… peptides with low scores are, nevertheless, 

often correct, so manual validation of such hits 

can often ‘rescue’ the identification of important 

proteins.” 

 Steen & Mann. The ABC’s and XYZ’s of peptide sequencing. 

Nature Reviews Molecular Cell Biology, 5:699-711, 2004 
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Detected  

protein 

Present but  

undetected  

protein 

Typical proteomic 

profiling misses 

many proteins 

 

Need to improve 

coverage! 
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FCS 

• Rescue undetected proteins from high-scoring 

protein complexes  

 

• Why?  

 

 

 

 

 

• Shortcoming: Databases of known complexes are 

still small 

Let A, B, C, D and E be the 5 proteins that function as a complex 

and thus are normally correlated in their expression. Suppose only 

A is not detected and all of B–E are detected. Suppose the screen 

has 50% reliability. Then, A’s chance of being false negative is 

50%, & the chance of B–E all being false positives is (50%)4=6%. 

Hence, it is almost 10x more likely that A is false negative than B–

E all being false positives. 
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CEA 

• Generate cliques from PPIN 

• Rescue undetected proteins from cliques with 

containing many high-confidence proteins  

 

• Reason: Cliques in a PPIN often correspond to 

proteins at the core of complexes 

 

• Shortcoming: Cliques are too strict 

Use more power complex prediction methods 

Li et al. Network-assisted protein identification and data interpretation 

in shotgun proteomics. Mol. Syst. Biol., 5:303, 2009. 
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PEP 

• Map high-confidence proteins to PPIN 

• Extract immediate neighbourhood & predict 

protein complexes using CFinder 

• Rescue undetected proteins from high-ranking 

predicted complexes 

 

• Reason: Exploit powerful protein complex 

prediction methods 

 

• Shortcoming: Hard to predict protein complexes 

– Do we need to know all the proteins a complex? 

Goh et al. A Network-based pipeline for analyzing MS data---An application 

towards liver cancer. Journal of Proteome Research, 10(5):2261--2272, May 2011 
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MaxLink 

• Map high-confidence proteins (“seeds”) to PPIN 

• Identify proteins that talk to many seeds but few 

non-seeds 

• Rescue these proteins 

 

• Reason: Proteins interacting with many seeds are 

likely to be part of the same complex as these 

seeds 

 

• Shortcoming: Likely to have more false-positives 

Goh et al. A Network-based maximum-link approach towards MS identifies potentially important 

roles for undetected ARRB1/2 and ACTB in liver cancer progression. IJBRA, 8(3/4):155-170, 2012 
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“Validation” of Rescued Proteins 

• Direct validation 

– Use the original mass spectra to verify the quality 

of the corresponding y- and b-ion assignments 

– Immunological assay, etc. 

 

• Indirect validation 

– Check whether recovered proteins have GO terms 

that are enriched in the list of seeds 

– Check whether recovered proteins show a pattern 

of differential expression betw disease vs normal 

samples that is similar to that shown by the seeds 
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An example using the PEP approach 

to recover undetected proteins … 
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Background 

• HCC (Hepatocellular carcinoma) 

– Classified into 3 phases: differentiated, moderately 

differentiated and poorly differentiated 

 

• Mass Spectrometry 

– iTRAQ (Isobaric Tag for Relative and Absolute 

Quantitation) 

– Coupled with 2D LC MS/MS 

– Popular because of ability to run 8 concurrent 

samples in one go 
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Poor and mod proteins are widely 

interspersed 

• In the subnet of 

reported proteins 

in mod and poor, 

poor and mod 

genes are well 

mixed 

 
Mod and Poor 

Poor only 
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PEP Workflow 

Identify the “seeds” 

Ratio < 0.8 and > 1.25 for Mod (min 3 patients) 

Ratio < 0.8 and > 1.25 for Poor (min 4 patients) 

Goh et al. A Network-based pipeline for 

analyzing MS data---An application towards 

liver cancer. Journal of Proteome Research, 

10(5):2261--2272, May 2011 
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Expansion to include neighbors 

greatly improves coverage 

W/o expansion, 

4 k3 cliques were returned 

After  expansion,  

~120 clusters were returned 

Goh et al. A Network-based pipeline for analyzing MS data---An application towards 

liver cancer. Journal of Proteome Research, 10(5):2261--2272, 2011 
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Returning to Mass Spectra 

• Test set: Several proteins (ACTR2, CDC42, 

GNB2L1, KIF5B, PPP2R1A, PKACA and TOP1) 

from top 34 clusters not detected by Paragon 

 

• The test: Examine their GPS and Mascot search 

results and their MS/MS-to-peptide assignments  

 

• Assessment of MS/MS spectra of their top ranked 

peptides revealed accurate y- and b-ion 

assignments and were of good quality (p < 0.05)  

 In silico expansion verified 

Goh et al. A Network-based pipeline for analyzing MS data---An application towards 

liver cancer. Journal of Proteome Research, 10(5):2261--2272, 2011 
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Successful Verification 
CDC42 ACTR2 

Goh et al. A Network-based pipeline for analyzing MS data---An application towards 

liver cancer. Journal of Proteome Research, 10(5):2261--2272, 2011 
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Another Experiment 

• Valporic acid (VPA)-treated mice vs control 

– VPA or vehicle injected every 12 hours into 

postnatal day-56 adult mice for 2 days 

– Role of VPA in epigenetic remodeling 

 

• MS was scanned against IPI rat db in round #1 

– 291 proteins identified 

• MS was scanned against UniProtkb in round #2 

– 498 additional proteins identified 

 

• All recovery methods ran on round #1 data and 

the recovered proteins checked against round #2 
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Moderate level of 

agreement of 

reported proteins 

between various 

recovery methods 
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Performance Comparison 

• Looks like running FCS on real complexes is able 

to recover more proteins and more accurately 
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Precision vs recall 

of running FCS on 

real complexes  
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From 

proteomics to 

metabolomics 

& lipidomics: 

Can the same 

network-based 

approach be 

applied? 
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Types of Biological Networks 

• Natural biological pathways 

– Metabolic pathway 

– Gene regulation network 

– Cell signaling network 

 

• Protein-protein interaction networks 
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Metabolic 

Pathway 

– Catalyzed by enzymes 

– Step-by-step modification of an initial molecule to 

form another product that can 

• be used /store in the cell 

• initiate another metabolic pathway 

Image credit: Wikipedia 

• A series of 

biochem 

reactions in 

a cell 
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Gene Regulation Network 

• Gene regulation is 

the process that 

turns info from genes 

into gene products 

 

• Gives a cell control 

over its structure & 

function 

– Cell differentiation 

– Morphogenesis 

– Adaptability, … 

Image credit: Genome to Life 

Image credit: Natasa Przulj 
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Cell Signaling Network 

• It is the entire set of changes induced 

by receptor activation 

– Governs basic cellular activities and 

coordinates cell actions 

 

• Cells communicate with each other 

– Direct contact (juxtacrine signaling) 

– Short distances (paracrine signaling) 

– Large distances (endocrine signaling) 

 

• Errors result in cancer, diabetes, ...  
Image credit: Wikipedia 
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Protein Interaction Network (PPIN) 

• PPI usual refers to 

physical binding 

between proteins 

– Stable interaction  

• Protein complex 

• ~70% of PPIs 

– Transient interaction, 

modifying a protein 

for further actions 

• Phosphorylation 

• Transportation 

• ~30% of PPIs 

• PPIN is usually a set 

of PPIs; it is not put 

into biological context 

Visualization of the human interactome. 

Image credit: Wikepedia 
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Sources 

of 

Biological 

Pathways 

Source: Goh et al. “How advancement in biological network analysis methods empowers proteomics”. Proteomics, accepted.  
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Sources of Protein Interactions  

• CORUM 

– http://mips.helmholtz-muenchen.de/genre/proj/corum 

– Ruepp et al, NAR, 2010 

and Protein Complexes 

Source: Goh et al. “How advancement in biological network analysis methods empowers proteomics”. Proteomics, accepted.  
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Gene Expression Profile Analysis 

Contextualization! 

Sivachenko et al. JBCB, 5(2b):429-546, 2007 
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Detected  

protein 

Present but  

undetected  

protein 

Proteomic Profile Analysis 

• Suppose the failure to 

form a protein complex 

causes a disease 

– If any component 

protein is missing, the 

complex can’t form 

Diff patients suffering 

from the disease can 

have a diff protein 

component missing 

–  Construct a profile 

based on complexes? 

 
Goh et al. How advancement in biological network analysis 

methods empowers proteomics. Proteomics, in press 
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Epistatic Interaction Mining 

• GWAS have linked many SNPs to diseases, but 

many genetic risk factors still unaccounted for 

• Proteins coded by genes interact in cell 

Some SNPs affect the phenotype in combination 

with other SNPs; i.e., epistasis  

• Exhaustive search for epistatic effects has to test 

many combinations (>100,0002) of SNPs 

– Hard to get statistical significance 

– Take long time to run on computers 

Use biological networks to narrow the search for 

two-locus epistasis 

 

Emily et al. European Journal of Human Genetics, 17(10):1231-1240, 2009.  



SSTiC 2013 Copyright 2013 © Limsoon Wong 

137 

Disease Causal Gene Prioritization 

• Genes causing the 

same or similar 

diseases tend to 

lie close to one 

another in PPIN 

 

• Given disease Q. 

Look for proteins 

in PPIN interacting 

with many causal 

genes of diseases 

similar to Q 

Vanunu et al. PLoS Computational Biology, 6(1):e1000641, 2010 
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Protein Complex Prediction 

• Nature of high-throughput 

PPI expts 

– Proteins are taken out of 

their natural context! 

 

 

 

 

 

 

 

• Can a protein interact with 

so many proteins 

simultaneously? 

 

• A big “hub” and its 

“spokes” should probably 

be decomposed into 

subclusters 

– Each subcluster is a set 

proteins that interact in 

the same space &time; 

viz., a protein complex 

 

• Many complexes have 

highly connected cores in 

PPIN  Find complexes 

by clustering 

• Issue: How to identify low 

edge density complexes? 

Liu et al. Bioinformatics, 25(15):1891-1897, 2009 
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Protein Function Prediction 

• Proteins with similar 

function are topolog-

ically close in PPIN 

– Direct functional 

association 

– Indirect functional 

association 

 

 

 

• Proteins with similar 

function have interac-

tion neighborhoods 

that are similar 

 

A pair of proteins that participate 

in the same cellular processes 

or localize to the same cellular 

compartment are many times 

more likely to interact than a 

random pair of proteins 

When proteins in the neighbor-

hood of a protein X have simi-

lar functions to proteins in the 

neighborhood of a protein Y, 

then proteins X & Y likely 

operate in similar environment 

Wong. Internet Mathematics, 7(4):274--298, 2011 



SSTiC 2013 Copyright 2013 © Limsoon Wong 

140 

Part 3: How good 

are available 

sources of pathway 

& PPI Network? 

• Sources of pathway & 

PPIN 

– Comprehensiveness 

– Consistency 

– Compatibility 

 

• Integration 

– Pathway matching 

 

• PPIN cleansing 

 

http://www.genome.ad.jp/kegg/docs/slides/tutorial1/pg01.html
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Major 

Sources 

of 

Biological 

Pathways 
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# of Genes 

Low Comprehensiveness  

of Human Pathway Sources 

Human  

pathways in 

Wikipathways, 

KEGG, & 

Ingenuity 

Soh et al. Consistency, Comprehensiveness, and Compatibility of 

Pathway Databases. BMC Bioinformatics, 11:449, 2010.  
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Gene Pair Overlap 

Wiki vs KEGG Wiki vs Ingenuity KEGG vs Ingenuity 

Gene Overlap 

Wiki vs KEGG Wiki vs Ingenuity KEGG vs Ingenuity 

Low Consistency 

of  Human Pathway Sources 

Soh et al. BMC Bioinformatics, 11:449, 2010.  
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Example: Human Apoptosis Pathway 

Soh et al. BMC Bioinformatics, 11:449, 2010.  
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The same low inter-database 

consistency (in gene overlap) is 

observed in pathways of other organisms 

Zhou et al. BMC Systems Biology,6(Suppl 2):S2, 2012 
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The same low inter-database 

consistency (in gene pair overlap) is 

observed in pathways of other organisms 

Zhou et al. BMC Systems Biology,6(Suppl 2):S2, 2012 
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Example: TCA Cycle Pathway 

Zhou et al. BMC Systems Biology,6(Suppl 2):S2, 2012 
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Incompatibility Issues 

• Data extraction method 

variations 

 

• Format variations 

 

• Data differences 

 

• Gene/GeneID name 

differences 

 

• Pathway name differences 

Pathway sources 

are curated. They 

are incomplete; 

but they have few 

errors.  Makes 

sense to combine 

them. But… 

Image credit: Donny Soh’s PhD dissertation, 2009 
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Part 2: How good 

are available 

sources of pathway 

information? 

• Sources of pathway 

info 

– Comprehensiveness 

– Consistency 

– Compatibility 

 

• Integration 

– Pathway matching 

 

• PPIN cleansing 
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Things to deal with 

• Any integration of incompatible pathway 

databases must deal with 

– Data extraction method variations 

– Format variations 

– Data differences 

– Gene name / gene id differences 

– Pathway name differences 

• We discuss only pathway name differences 

• For other issues, consult  
– Zhou et al. IntPath---an integrated pathway gene relationship 

database for model organisms and important pathogens, BMC 

Bioinformatics, 6(Suppl 2):S2, 2012 
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The same pathways in the different 

sources are often given different names.  

 

So how do we even know two pathways 

are the same and should be compared /  

merged? 
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Example of Pathway Name Differences 

Zhou et al. BMC Systems Biology,6(Suppl 2):S2, 2012 



SSTiC 2013 Copyright 2013 © Limsoon Wong 

153 

Possible Ways to Match Pathways 

• Match based on name (LCS) 

– Pathways w/ similar name should be the same 

pathway 

– But annotations are very noisy 

Likely to mismatch pathways? 

Likely to match too many pathways? 

 

• Are the followings good alternative approaches? 

– Match based on overlap of genes 

– Match based on overlap of gene pairs 
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LCS vs Gene-Agreement Matching 

• Accuracy 

– 94% of LCS matches 

are in top 3 gene 

agreement matches 

– 6% of LCS matches 

not in top 3 of gene 

agreement matches; 

but their gene-pair 

agreement levels are 

higher 

 

• Completeness 

– Let Pi be pathway in 

db A that LCS cannot 

find match in db B 

– Let Qi be pathway in 

db B with highest gene 

agreement to Pi 

– Gene-pair agreement 

of Pi-Qi is much lower 

than pathway pairs 

matched by LCS 

LCS is better than gene-agreement based matching! 
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LCS vs Gene-Agreement Matching 

• LCS consistently has higher gene-pair agreement 

LCS is better than gene-agreement based matching! 

 

gene overlap  

percentage 

Gene-pair overlap 

 percentage 

LCS match 

Gene-

agreement  

match 

Soh et al. BMC Bioinformatics, 11:449, 2010.  
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LCS vs Gene-Pair Agreement Matching 

8 

24 
16 

LCS 

Gene-Pair 

Overlap 

The 8 pathway pairs singled out by LCS 

The 24 pathway pairs singled out 

by maximal gene-pair overlap 

Note: We consider only pathway pairs that have at 

least 20 reaction overlap. 

Soh et al. BMC Bioinformatics, 11:449, 2010.  
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LCS vs Gene-Pair Agreement Matching 

• Gene-pair agreement match will miss when 

– Pathway P in db A has few overlap with pathway P in 

db B due to incompleteness of db, even if pathway 

name matches perfectly! 

 

– Example: wnt signaling pathway, VEGF signaling 

pathway, MAPK signaling pathway, etc. in KEGG 

don’t have largest gene-pair overlap w/ corresponding 

pathways in Wikipathways & Ingenuity 

 

Bad for getting a more complete unified pathway P 
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LCS vs Gene-Pair Agreement Matching 

• Pathways having large gene-pair overlap are not 

necessarily the same pathways 

 

• Examples 

– “Synaptic Long Term Potentiation” in Ingenuity vs 

“calcium signalling” in KEGG  

– “PPAR-alpha/RXR-alpha Signaling” in Ingenuity vs 

“TGF-beta signaling pathway” in KEGG 

 

Difficult to set correct gene-pair overlap threshold 

to balance against false positive matches 
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Further Improvement to LCS 

• Please read the reference below (esp. page 10) 

for some of the improvements made to LCS 

– Zhou et al. IntPath---an integrated pathway gene relationship 

database for model organisms and important pathogens, 

BMC Bioinformatics, 6(Suppl 2):S2, 2012.  
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An Interesting Question 

• If two pathways are merged, how do you choose 

the name of the resulting merged pathway? 

– Pick the longer of the two original names? 

– Pick the shorter? 

– Pick randomly? 

Zhou et al. BMC Systems Biology,6(Suppl 2):S2, 2012 
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The Answer 

• The general pathway name is chosen as the shortest pathway 

names from among the identified related pathways 

 This usually works well as the name of the integrated pathway 

• But in some cases, the shortest name contains “suffix” or 

“prefix”---like “I”, “II”---that causes the integrated pathway name 

to give the wrong idea of describing only a specific aspect of the 

integrated pathway 

 Remove such suffixes and prefixes when generating integrated 

pathway names 

• In a small number of cases, several similar pathways are 

included in one pathway name. In these cases, the shortest 

name is not appropriate as the name of the integrated pathway 

 Replace the keyword of the integrated pathway name to cover more 

pathway information 

Zhou et al. BMC Systems Biology,6(Suppl 2):S2, 2012 
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PathwayAPI 

= KEGG   

+ Wikipathways  

+ Ingenuity 

• Having found a good way to match up pathways 

in different datasources, we proceeded to build a 

big unified pathway db…. 

Donny Soh, Difeng Dong, Yike Guo, Limsoon Wong. Consistency, Comprehensiveness, and Compatibility of 

Pathway Databases. BMC Bioinformatics, 11:449, September 2010.  
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What have we learned? 

• Significant lack of concordance betw db’s 

– Level of consistency for genes is 0% to 88% 

– Level of consistency for genes pairs is 0%-61% 

– Most db contains less than half of the pathways in 

other db’s 

 

• Matching pathways by name is better than 

matching by gene overlap or gene-pair overlap 
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Part 3: How good 

are available 

sources of pathway 

& PPI Network? 

• Sources of pathway & 

PPIN 

– Comprehensiveness 

– Consistency 

– Compatibility 

 

• Integration 

– Pathway matching 

 

• PPIN cleansing 
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Sources of Protein Interactions  

• CORUM 

– http://mips.helmholtz-muenchen.de/genre/proj/corum 

– Ruepp et al, NAR, 2010 

and Protein Complexes 

Source: Goh et al. “How advancement in biological network analysis methods empowers proteomics”. Proteomics, accepted.  
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Growth of BioGrid 

PPI Detection Assays 

• Many high-throughput 

assays for PPIs 

– Y2H 

– TAP 

– Synthetic lethality 
• But … 

Generating large amounts 

of expt data on PPIs can be 

done with ease 
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Large disagreement betw methods 

Noise in PPI Networks 

• High level of noise 

 Need to clean up before making inference on PPI networks 

Sprinzak et al., JMB, 327:919-923, 2003 
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Dealing with noise 

in PPIN using 

Reproducibility 

• If a PPI is reported in a 

few independent expts, 

it is more reliable than 

those reported in only 

one expt 

 

 
Good idea. But you 

need to do more expts 

 More time & more $ 

has to be spent 
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Dealing with noise 

in PPIN using 

Functional 

Homogeneity 

• If two proteins in a PPI 

participate in the same 

function or pathway, it 

is more reliable than 

those whose proteins 

do not share function & 

pathway 

 

• Exercise 
– What fraction of yeast PPIs in 

BioGrid share  function? 

– What fraction of yeast protein 

pairs share function? 

 

Good idea. But the two 

proteins in the PPI you 

are looking at may not 

have functional 

annotation 
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Dealing with noise 

in PPIN using 

Localization 

Coherence 

• Two proteins should be 

in the same place to 

interact. Agree? 

 

 

 

• Exercise 
– What fraction of yeast PPIs in 

BioGrid are in the same 

cellular compartment? 

– What fraction of yeast protein 

pairs are in the same cellular 

compartment? 

 

Good idea. But the two 

proteins in the PPI you 

are looking at may not 

have localization 

annotation 
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Dealing with noise in PPIN using 

local topology around a PPI edge 

 

• Two proteins participating 
in same biological process 
are more likely to interact 

 

• Two proteins in the same 
cellular compartments are 
more likely to interact 

 

• CD-distance  

• FS-Weight 

CD-distance & FS-Weight: Based on concept that two proteins with 
many interaction partners in common are likely to be in same 
biological process & localize to the same compartment 

Chua & Wong. Increasing the Reliability of Protein Interactomes. 

Drug Discovery Today, 13(15/16):652--658, 2008 



SSTiC 2013 Copyright 2013 © Limsoon Wong 

172 

Topology of neighbourhood of real PPIs 

• Suppose 20% of putative PPIs 

are noise 

 ≥ 3 purple proteins are real 

partners of both A and B 

 A and B are likely localized to 

the same cellular 

compartment  (Why?) 

 

• Fact: Proteins in the same 

cellular compartment are 10x 

more likely to interact than 

other proteins 

 A and B are likely to interact 

A B 
? 
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Czekanowski-Dice Distance 

• Given a pair of proteins (u, v) in a PPI network 

– Nu = the set of neighbors of u 

– Nv = the set of neighbors of  v 

 

• CD(u,v) =  

 

 

• Consider relative intersection size of the two neighbor 

sets, not absolute intersection size 

– Case 1: |Nu| = 1, |Nv|= 1, |NuNv|=1, CD(u,v)=1 

– Case 2:  |Nu| = 10, |Nv|= 10, |NuNv|=10, CD(u,v)=1 

||||

||2

vu

vu

NN

NN





Brun, et al. Genome Biology, 5(1):R6, 2003 
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Adjusted CD-Distance 

• Variant of  CD-distance that penalizes proteins with 

few neighbors 

     

  wL(u,v) = 

 

  u = max{0,                    }, v = max{0,                     } 

 

 

• Suppose average degree is 4, then 

– Case 1: |Nu| = 1, |Nv|= 1, |NuNv|=1, wL(u,v)=0.25 

– Case 2:  |Nu| = 10, |Nv|= 10, |NuNv|=10, wL(u,v)=1 
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Liu et al. GIW2008, pp. 138-149 
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A thought… 

 

• Weight of interaction reflects its reliability 

 

Can we get better results if we use this weight to re-

calculate the score of other interactions?  
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Iterated CD-Distance 

• wL0(u,v) = 1 if (u,v)G, otherwise wL0(u,v)=0 

 

• wL1(u,v) = 

 

• wLk(u,v) = 

 

 

 

• k
u = max{0,                                                    }   

 

• k
v = max{0,                                                  } 
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Validation 

• DIP yeast dataset 

– Functional homogeneity is 32.6% for PPIs where 

both proteins have functional annotations and 

3.4% over all possible PPIs 

– Localization coherence is 54.7% for PPIs where 

both proteins have localization annotations and 

4.9% over all possible PPIs 

 

• Let’s see how much better iterated CD-distance  

is over the baseline above, as well as over the 

original CD-distance/FS-weight 
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How many iteration is enough? 

• Iterated CD-distance achieves best performance 

wrt functional homogeneity at k=2 

• Ditto wrt localization coherence (not shown) 

Cf. ave functional homogeneity of protein pairs in DIP < 4% 

      ave functional homogeneity of PPI in DIP < 33% 

Liu et al. GIW2008, pp. 138-149 
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How many iteration is enough? 

• Iterative CD-distance at diff k values on noisy network 

# of iterations depends on amt of noise 

Liu et al. GIW2008, pp. 138-149 
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AdjustCD (k=1) 

FSweight 

Identifying False Positive PPIs 

• Iterated CD-distance is an improvement over 

previous measures for assessing PPI reliability 

Cf. ave localization coherence of protein pairs in DIP < 5% 

      ave localization coherence of PPI in DIP < 55% 
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Identifying False Negative PPIs 

• Iterated CD-distance is an improvement over 

previous measures for predicting new PPIs 

Cf. ave localization coherence of protein pairs in DIP < 5% 

      ave localization coherence of PPI in DIP < 55% 

CD-distance 
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Combining multiple types of info to 

predict whether a PPI edge is real 

• Sometimes you do 

have additional 

independent info 

available 

– Several PPI expts 

– Functional 

annotations 

– Localization 

information 

• You can combine 

these pieces of info in 

the following standard 

way: 
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Another way 

to combine 

more types of 

info to predict 

if a PPI is real 

• Overlay literature co-

occurrence, gene co-

expression, etc. on PPIN 
 

• Machine learning to 

learn characteristic of 

real PPI 
Yong, et al. “Supervised maximum-likelihood weighting of composite protein 

networks for complex prediction”. BMC Systems Biology, 6(Suppl 2):S13, 2012 
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PPI Prediction Methods 

Shoemaker & Panchenko. PLoS Computational Biology, 3(4):e43, 2007 

You can also use our 

earlier topology scores, 

e.g, CD-distance to 

predict novel PPIs 
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PPI Prediction by Gene Clusters 

• Gene clusters or 

operons encoding co-

regulated genes are 

usually conserved, 

despite shuffling 

effects of evolution 

 

Find conserved gene 

clusters 

• Predict the genes to 

interact & form operons Image credit: Shoemaker & Panchenko. 

PLoS Comp Biol, 3(4):e43, 2007 

Dandekar et al. Trends Biochem Sci, 23:324–328, 1998 
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PPI Prediction by Phylogenetic Profiling 

• Components of com-

plexes and pathways 

should be present 

simultaneously in order 

to perform their 

functions 

• Functionally linked and 

interacting proteins co-

evolve and have ortho-

logs in the same subset 

of fully sequenced 

organisms Image credit: Shoemaker & Panchenko. 

PLoS Comp Biol, 3(4):e43, 2007 

Pellegrini et al. PNAS, 96:4285–4288, 1999 
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PPI Prediction by Rosetta Stone 

• Some interacting proteins have homologs in 

other genomes that are fused into one protein 

chain, a so-called Rosetta Stone protein  

• Gene fusion occurs to optimize co-expression of 

genes encoding for interacting proteins 

Predict A & B interact 

Image credit: Shoemaker & Panchenko. 

PLoS Comp Biol, 3(4):e43, 2007 

Enright et al. Nature, 402:86–90, 1999 
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PPI Prediction by Seq Co-Evolution 

• Interacting proteins 
co-evolve  

– Changes in one 
protein leading to 
loss of function are 
compensated by 
correlated changes 
in another protein  

• Co-evolution is 
quantified by correlation 
of distance matrices 
used to construct the 
trees 

Image credit: Shoemaker & Panchenko. 

PLoS Comp Biol, 3(4):e43, 2007 

See [Juan et al, PNAS, 105(3):934-939, 2008] for an impt further development to this idea 
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PPI Prediction by Iterated CD-Distance 

• Predict (u,v) interact if 

wLk(u,v) is large 

Cf. ave localization coherence of protein pairs in DIP < 5% 

      ave localization coherence of PPI in DIP < 55% 
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What have we learned? 

• It is possible to predict PPIs using a variety of 

information and methods 

– Gene cluster, gene fusion, phylogenetic profile, 

sequence co-evolution, …  

 

 

For those who are interested to go further: 

• How do you predict cross-species PPI’s between 

a host and a pathogen? 
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Must Read 

• Soh et al. Consistency, Comprehensiveness, and Compatibility of 

Pathway Databases. BMC Bioinformatics, 11:449, 2010 

• Zhou et al. IntPath---an integrated pathway gene relationship 

database for model organisms and important pathogens, BMC 

Systems Biology, 6(Suppl 2):S2, 2012 

• Ng & Tan. Discovering protein-protein interactions. JBCB, 1(4):711-

741, 2004 

• Chua & Wong. Increasing the Reliability of Protein Interactomes. 

Drug Discovery Today, 13(15/16):652-658, 2008 

• Shoemaker & Panchenko. Deciphering protein-protein Interactions. 

Part II. Computational methods to predict protein and domain 

interaction partners. PLoS Computational Biology, 3(4):e43, 2007  
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