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Abstract. Whenever a programmer writes a loop, or a mathematician
does a proof by induction, an invariant is involved. The discovery and
understanding of invariants often underlies problem solving in many do-
mains. I discuss in this tutorial powerful invariants in some problems
relevant to biology and medicine. In the process, we learn several ma-
jor paradigms (invariants, emerging patterns, guilt by association), some
important applications (active sites, key mutations, origin of species, pro-
tein functions, disease diagnosis), some interesting technologies (sequence
comparison, multiple alignment, machine learning, signal processing, mi-
croarrays), and the economics of bioinformatics.

1 Introduction

The frontier of biological and medical sciences is exciting and full of opportu-
nities today, due to the accumulation of huge amount of biomedical data and
the imminent need to turn such data into useful knowledge [31]. There are nu-
merous techniques for dealing with each of the broad spectrum of bioinformatics
problems that have emerged, and more are being proposed everyday. There have
been a number of useful reviews and tutorials written on various bioinformat-
ics problems. In general, these reviews and tutorials are focused on a specific
bioinformatics problem [5], or on a specific technology [19], or both [16].

In this tutorial, I do not focus on a single problem or a single technology. In-
stead, I present a large varieties of problems and techniques, and try to highlight
a fundamental property that is common to all of them. Specifically, I observe
that these problems are characterized by invariants that emerge naturally from
the causes and/or effects of these problems, and show that the techniques for
their solutions are essentially exploitation of these invariants.

Before I provide more detail, let me first use an example to illustrate the
concept of invariants. We are given a bag of x red beans and y green beans.
We are to repeatedly remove two beans from the bag. If both beans are red, we
discard both of them. If both beans are green, we discard one and return the
other one to the bag. If one is green and one is red, we discard the green bean
and return the red bean to the bag. Suppose there is a single bean left in the
bag at the end of this process. Can we predict the color of this last remaining
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bean? The solution is simple: This last remaining bean is red if and only if x is
odd. The simplicity of this solution arises from a property of the process: The
parity of the red beans is preserved—i.e., invariant—at each step of the process.
We thus see that invariants are fundamental properties of a problem and can be
exploited to provide surprisingly simple solutions to the problem.

As mentioned earlier, the problems presented in this tutorial are all manifes-
tations of invariants. Specifically,

– Section 2 and Section 3 look at the problems of recognizing the active sites
of an enzyme, finding the mutations that reduces the efficiency of a pro-
tein function, and determining the origin of Polynesians. These problems
are manifestations of invariants in the process of Evolution—in particular,
sequence features that are conserved during evolution.

– Section 4 looks at the problem of protein function prediction. The process
of Evolution has also preserved and/or imposed a number of invariant char-
acteristics on proteins with different functions. The invariant characteristics
of a protein is naturally useful for prediction of its function.

– Section 5 looks at the problem of disease subtype diagnosis. Each disease
and its various subtypes have their underlying causes. The causes are of-
ten difficult to decipher due to the complexity of molecular circuitries and
gene-environment interactions. Nevertheless, different causes have different
invariant down-stream effects that are useful as diagnostic indicators.

I also show that the techniques for their solutions are essentially exploitation of
these invariants.

2 Invariants in Evolution

Let me begin with the problem of finding active sites of an enzyme. An “active
site” is a region of an enzyme that a substrate binds to, so that a biochemical
reaction can occur. Such sites must be conserved through the evolution process,
because the function of the enzyme would be disabled, severely reduced, or
completely changed if the physico-chemical properties of the amino acid sequence
at these sites were changed. That is, the physico-chemical properties of the amino
acid sequence required at these sites are the invariants of the enzyme that must
be preserved during the evolution process in order for the protein to retain its
specific enzyme function.

Figure 1 illustrates the evolution of a hypothetical enzyme. The function f of
ancestor enzyme #1 is characterized by active site “A”. Enzyme #2 is evolved
from enzyme #1 by having a different physico-chemical property “a1” at the site
“A”; thus it no longer has function f . Enzyme #3 is also evolved from enzyme
#1, but by having a different physico-chemical property at site “B”; thus it may
have a new function g in additional to f . Enzymes #4, #5, #6, and #7 are
similarly evolved. It is clear that “A” is the only property common between all
enzymes that have function f . Similarly, “A” and “B” are the only properties
common between all proteins that have both functions f and g.
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Fig. 1. The evolution of a hypothetical enzyme.

The effect of this type of requirement is that the amino acid sequence at these
sites is also under pressure to be invariant. This invariant is an indirect and im-
perfect one, because a limited amount of changes at the amino acid level is per-
missible as different amino acid sequences can result in very compatible physico-
chemical properties. In spite of its indirectness and imperfect conservation, it
gives rise to the simplest computational solution—multiple alignment [29]—to
the problem of finding the active sites of an enzyme.

A multiple alignment can be thought of as a way of writing two or more se-
quences across the page. Some gaps may be inserted into the sequences in such
a way that the number of columns having characters that are identical or that
are representing similar physico-chemical properties is maximized. The positions
corresponding to these columns are called “conserved positions”. The most con-
served positions in a multiple alignment are good candidates of active sites of
the enzyme, provided the sequences used in the multiple alignment are from
suitably diverged species. That is, the sequences should be sufficiently diverged
so that enough mutations have accumulated in positions that do not correspond
to active sites. At the same time, the sequences should not be so wildly diverged
that they no longer have the required enzyme function. Figure 2 shows a multi-
ple alignment of several protein tyrosine phosphatase sequences. The candidate
active sites are the conserved consecutive positions indicated by “*” and “.”.

3 A Couple of Interesting Twists

An interesting twist in the tale of active sites is the problem of finding key
mutations that cause a protein to reduce the efficiency of its function. Here, one
of the ancestor proteins with a function f has a mutation in one of its active
sites for function f . This mutation reduces the efficiency of the protein. The
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Fig. 2. A snapshot of a multiple alignment of several protein sequences.

mutation is passed to a group of descendant proteins with function f at a lower
efficiency, and becomes an invariant of this group.

Thus, to find key mutations that reduce the efficiency of a protein for function
f , we proceed as illustrated in Figure 3. We first identify a group D1 of proteins
having function f at the normal level of efficiency. Then we identify a group
D2 of proteins having function f at the reduced level of efficiency. Then we
identify a common active site in two groups of proteins so that two different
invariants—one for each of the groups—are observed at the site. That is, the
change in efficiency is traced to mutations in specific active sites in the first
group which are inherited and conserved in the second group. This takes us
from the concept of invariants to the concept of emerging patterns—patterns
which are invariant in one group and are changed in a contrast group [12, 8]. A
beautiful illustration of this logical solution can be found in the study of protein
tyrosine phosphatases [15].

Fig. 3. The site “B” is consistently conserved in the D1 group of sequences, but is not
consistently mutated in the D2 group. It is thus not a likely cause of D2’s reduced
efficiency; otherwise, the second sequence in the D2 group which has an unmutated
site “B” should have normal efficiency. The site “A” is consistently conserved in the
D1 group, and is consistently mutated in the D2 group. Thus it is a possible cause of
D2’s reduced efficiency.

An important invariant of mutations underlies the twist in the tale of active
sites above: Mutations are cumulative. That is, a mutation is passed on to future
generations unless there is another mutation at the same site that replaces it.
This invariant can be exploited in problems concerning the origin of species. The
human mitochondrial control region accumulates about 1 mutation every 10,000
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years [27]. Given the short length of human history, the length of the mitochon-
drial control region, and each position in it has an equal chance to mutate, it
is reasonable to assume that any position has a negligible likelihood of being
mutated twice. In other words, a mutation in the mitochondrial control region
that is observed in all instances of the ancestor species must also be observed
in descendant species. Thus a link from an ancestor species to its descendant
species can be traced.

A beautiful illustration of this idea can be found in the story of the origin
of Polynesians [27], depicted in Figure 4. All indigenous Taiwanese have two
mutations referred to as #189 and #217 in their mitochondrial control region.
Indigenous Solomon Islanders have mutations #189, #217, and #261. Thus, we
conclude that an indigenous Taiwanese or his descendant with the #261 muta-
tion somehow travelled to the Solomon Islands, and all indigenous Solomon Is-
landers are his descendants. All Rarotongans have mutations #189, #217, #261,
and #247. Similarly, we infer that a Solomon Islander or his descendant with
the #247 mutation somehow reached Rarotonga, and present-day Rarotongans
are his descendents.

Fig. 4. Origin of Polynesian. Image credit: Sykes [27].

4 Invariants in Protein Function

There are two main invariants that determine the function of a protein: The
three-dimensional conformation of the protein and the environment the protein
is in. These invariants impose important constraints on the amino acid sequence
of protein. For example, mutations in the sequence may completely change the
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three-dimensional conformation of the sequence. Thus the sequence of the pro-
tein is also under pressure to be invariant. However, this invariant is indirect and
does not have to be perfect. For example, a limited amount of changes at the
amino acid level is permissible without severely affecting the three-dimensional
conformation of the protein. Nevertheless, one can perform an abductive infer-
ence to predict that two proteins that exhibit a high level of sequence similarity
are likely to have the same or similar function. This is the so-called “guilt by as-
sociation” of similarity of sequences, exemplified by the classic paper of Doolittle
and others [9].

The procedure of “guilt by association” is depicted in Figure 5. We compare
the sequence of the unknown protein T with a database of protein sequences
with known functions. Those proteins in the database that have high sequence
identities or sequence alignment scores when compared to T are predicted to be
homologs of T ; and T is predicted to have functions identical or similar to those
of these homologous proteins. A pairwise alignment algorithm [20, 25] should
be used for sensitive search of homologs. Due to the rapid increase in sequence
database sizes, it is also common to sacrifice some amount of sensitivity in favour
of significantly increased speed by first using short perfect matches to select likely
candidate sequences before performing pairwise alignments [1].

Fig. 5. Protein function prediction using “guilt by association” of sequence similarity.
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However, there are many protein sequences that have very low sequence sim-
ilarity to all proteins of known functions. In such a situation, we have to appeal
to additional consequences of the two invariants of three-dimensional conforma-
tion and operating environment required for a protein function. I describe one
such consequence below.

The invariant on a protein sequence, though indirect and imperfect, has an
interesting and subtle consequence. Proteins exhibiting a function f , proteins ex-
hibiting a different function g, and proteins exhibiting a function h have different
three-dimensional conformations and possibly operate in different environments.
So the sequences of these three groups of proteins have distinct invariant compo-
sitional characteristics. However, the differences of the invariant compositional
characteristics of any two proteins of functions f and g are very likely to be very
similar to the differences of the invariant compositional characteristics of any
other two proteins of functions f and g! On the other hand, these differences are
very likely to be very different from the differences of the invariant compositional
characteristics of two proteins of functions f and h, or of functions g and h.

In short, the differences of the invariant characteristics of one group of pro-
teins compared to another group are also invariant, and are emerging patterns
when contrasted with the differences compared to a third group. This logic is
best illustrated by the comparison of apples to oranges and bananas in Figure 6,
where the fruit X is deduced as an apple because its differences with orange1,
banana1, and other fruits are identical to that of apple1.

orange1 banana1 · · ·
apple1 color=red vs orange color=red vs yellow · · ·

skin =smooth vs rough skin=smooth vs smooth · · ·
shape=round vs round shape=round vs oblong · · ·

orange2 color=orange vs orange color=orange vs yellow · · ·
skin =rough vs rough skin=rough vs smooth · · ·
shape=round vs round shape=round vs oblong · · ·

fruit X color=red vs orange color=red vs yellow · · ·
skin =smooth vs rough skin=smooth vs smooth · · ·
shape=round vs round shape=round vs oblong · · ·

· · · · · · · · · · · ·

Fig. 6. Comparing apples vs oranges vs bananas. The fruit X is likely to be an apple
because its differences with orange1, banana1, etc. are identical to that of apple1.

To wit, we can associate two proteins as having the same or similar function
by the similarity of the differences of their sequences compaired to all other
sequences. This is precisely the strategy followed by SVM Pairwise [14]. Here, a
feature vector is generated for each protein by recording its pairwise alignment
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score with each sequence in the database. To create a classifier for distinguishing
proteins of function f from the rest, the feature vectors are divided into f vs non-
f , and a support vector machine classifier is then trained. Given a new unknown
protein, a feature vector is first generated by recording its pairwise alignment
score with each sequence in the database. The feature vector is then given to the
classifier for prediction. SVM Pairwise has much greater sensitivity and precision
than the more direct guilt by association of sequence similarity described earlier.
SVM Pairwise succeeds for two main reasons. Guilt by association of sequence
similarity cannot be applied if a sequence has low similarity with the database
and it does not make use of contrast groups. In contrast, SVM Pairwise does not
care about the level of sequence similarity, so long as the sequence alignment
scores have consistent differences between f vs non-f .

5 Invariants in Diseases

One of the popular problems in bioinformatics is the analysis of gene expres-
sion profiles for disease subtype diagnosis. Each disease and its various subtypes
have their underlying causes. The causes are often difficult to decipher due to
the complexity of molecular circuitries and gene-environment interactions. Nev-
ertheless, different causes have different invariant down-stream effects that are
useful as diagnostic indicators. These invariant down-stream effects are often–
but not always—manifested as consistent gene expression profile differences in
a large number of target genes over the different disease subtypes.

This type of invariant down-stream effects can be discovered in a variety of
ways [18]. For example, in an unsupervised setting, one discards those genes with
low variants, performs a bi-clustering of the remaining genes vs patient samples,
and identifies the invariant gene expression profiles for each disease subtype.
As another example, in a supervised setting, one groups the patient samples
based on disease subtypes, computes a test statistics such as χ2 for each gene to
determine how well it separates one disease subtype from the rest, and identifies
those genes that best distinguishes a subtype. Figure 7 is a beautiful illustration
based on the gene expression profiles of childhood acute lymphoblastic leukemia
samples [33].

Childhood acute lymphoblastic leukaemia (ALL) is the most common form of
childhood cancer. It has as many as 6 different subtypes with differing treatment
outcome. To avoid under-treatment, which causes relapse and eventual death, or
over-treatment, which causes severe long-term side effects, accurate diagnostic
subgroup must be assigned upfront so that the correct intensity of therapy can
be delivered to ensure that the child is accorded the highest chance for cure [22].
Contemporary approaches to the diagnosis of childhood ALL require an extensive
range of procedures including morphology, immunophenotyping, cytogenetics,
and molecular diagnostics [22]. Such a multi-specialist expertise requirement
is generally unsatisfiable in developing countries. Thus, even though childhood
ALL is a great success story of modern cancer therapy with survival rates of
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Fig. 7. Gene expression profiles of childhood ALL. Each row is gene. Each column is
a patient. Image credit: Yeoh and others [27].

75–80% in major advanced hospitals [23], it is still a fatal disease in developing
countries with survival rates of 5–20%.

Our microarray gene expression profiling followed by computational analy-
ses described above accurately identifies each of the known clinically important
subgroups of childhood ALL [33]. We achieve an exceedingly accurate overall
diagnostic accuracy of 96% in a blinded test set illustrating the robustness of
the invariants identified.

It is worth noting that about 2000 new cases of childhood ALL are diagnosed
in ASEAN countries each year. About 50% of these cases need low-intensity
therapy, 40% need intermediate intensity, and 10% need high intensity. This is a
disease with a cure rate of >75% in Singapore. But in ASEAN countries, except
Malaysia and Singapore, childhood ALL patients have a dismal 5–20% cure rates.
This is mainly due to these countries’ inability to deliver the correct intensity of
therapy. Treatment for childhood ALL over 2 years for intermediate-risk costs
US$60k, good-risk costs US$36k, and high-risk costs US$72k. Treatment for
relapse cases costs US$150k. As the less developed ASEAN countries generally
lack the ability to diagnose the subtypes of their childhood ALL patients, the
treatment for intermediate risk case is conventionally applied for everyone, as it
maximizes the expected benefit in such a situation; see Figure 8. If our single-
test platform becomes broadly available, they can then adopt a more accurate
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risk-stratified treatment strategy. As shown in Figure 8, this can result in savings
of US$52M a year yet with better cure rates and much reduced side effects, as
the correct intensity of therapy is applied upfront.

Treatment Cost–new cases Cost–relapses Total cost

Low-intensity treat-
ment for everyone

$36K * 2000 $150K * 1000 $222M

Intermediate-
intensity treatment
for everyone

$60K * 2000 $150K * 200 $150M and 50%
of patients have
side effects

High-intensity treat-
ment for everyone

$72K * 2000 $0 $144M and 90%
of patients have
side effects

Risk-stratified treat-
ment; viz., low inten-
sity to 50%, inter-
mediate intensity to
40%, high intensity to
10%

$36K * 1000 +
$60K * 800 +
$72K * 200

$0 $98M

Fig. 8. Costs of treatment options for childhood ALL in ASEAN countries.

6 Remarks

Let me now summarize the key learnings of this tutorial.
I have considered several common bioinformatics applications such as recog-

nizing active sites and key mutations, determining the origin of Polynesians,
predicting the function of proteins, and diagnosing a disease and optimizing its
treatment. We have seen that there are invariants underlying these problems,
and the exploitation of such invariants and/or their consequences yield logical
solutions to these problems.

I have used three paradigms in the exploitation of invariants here. The first
paradigm is a direct search of an invariant in a group. An example of such a
direct search is the application of finding active sites with the use of a multiple
alignment algorithm. The second paradigm is a search of “emerging patterns”,
where we look for patterns that are invariant in one group but are changed in a
contrast or control group. The use of a contrast group helps isolate invariants that
are fundamental to the target group, as opposed to invariants that are observed
in a general population. An example of a search for emerging patterns is the
application of finding key mutations that cause a group of proteins to reduce
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the efficiency in their function. The third paradigm is the concept of “guilt by
association”, where we deduce that two objects belong to the same type if they
exhibit specific common invariants associated with that type. An example of
this is the inference of protein function. These three paradigms are also used
in combination. An example is the identification of gene expression profiles for
diagnosing childhood ALL subtypes. Here, we look for gene expression profiles
as emerging patterns that distinguish one ALL subtype from the other subtypes,
and use such gene expression profiles to classify patients into the associated ALL
subtypes.

I have also discussed the softer but still very important aspect of economics
of bioinformatics. This is illustrated in the treatment optimization of childhood
ALL. In particular, we have explained why the intermediate-intensity treatment
is conventionally applied if the ALL subtype cannot be applied, and why a risk-
stratified treatment based on bioinformatics analysis is a superior strategy.

I have briefly mentioned four kinds of computational techniques here. The
first kind is that of multiple sequence alignment, where we determine how to best
match up several sequences, as illustrated in the application of finding active
sites. The second kind is that of sequence comparison, where we determine if
two sequences are sufficiently similar, as illustrated in the application of protein
function inference. The third and fourth kinds are those of statistical testing and
machine learning, as illustrated in the analysis of childhood ALL gene expression
data.

Paper length constraints do not allow a more detailed exposition of the above.
The reader is encouraged to consult the following articles and references therein
for more information. In particular, for sequence comparison, Waterman [30]
provides an excellent theoretical background, Gusfield [10] provides an excellent
algorithmic background, and Li et. al. [13] present the exciting recent develop-
ment of using spaced seeds for extremely sensitive and efficient sequence compar-
ison. For multiple sequence alignment, Thompson et. al. [29, 28] describe one of
the most popular multiple alignment tool packages, and Chin et. al. [6] present
a recent improvement in efficient multiple sequence alignment with performance
guarantee. For protein function prediction, Altschul et. al. [1] describe the ex-
tremely popular BLAST approach to guilt by association of sequence similarity,
Bateman et. al. [2] describe guilt by association of domain similarity as embodied
in PFAM domains, Liao and Noble [14] describe guilt by association of similarity
of dissimilarities as embodied in SVM Pairwise, Wu et. al. [32] describe guilt by
association of similarity of phylogenetic profiles, Ma et. al. [17] describe guilt
by association of secondary structures, Kung et. al. [11] describe guilt by asso-
ciation of similarity in gene expression profiles, and Chua et. al. [7] present the
exciting recent development of guilt by association of similarity of interaction
partners. For gene expression analysis, Slonim et. al. [24] is the classic paper
that started the field, Miller et. al. [18] is an excellent overview of the issues and
techniques, Broberg [4] is a good discussion on several popular test statistics,
Breitling and Herzyk [3] describe new rank-based test statistics, Niijima and
Kuhara [21] describe new kernel subspace methods for multiclass classification,
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and Subramanian et. al. [26] present the exciting recent development of the gene
set enrichment analysis approach.
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