
1

CS3108, Guest lecture on 2/9/2008

What do gambling, magic, and human
evolution have in common?

Limsoon Wong

CS3108, Guest lecture on 2/9/2008

Fun With Invariants

Limsoon Wong

2

3

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Plan
• What is an invariant?

– Bet on color of the bean
– 21 cards

• Origin of Polynesians

• Make a list sorted
• Design a good database

• Diagnose leukemia's
• Apples vs oranges

• Make exponentiation faster
• Draw a straight line

• What will we learn?

– Problem solving by
logical reasoning on
invariants

– Problem solving by
rectifying violation of
invariants

– Guilt by association of
invariants

– Solution optimization by
preserving invariants

CS3108, Guest lecture on 2/9/2008

What is an invariant?

3

5

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Shall we bet on
the color of the
bean that is left

behind?

• Suppose you have a bag
of x red beans and y green
beans

• Repeat the following:
– Remove 2 beans
– If both green, discard

both
– If both red, discard one,

put back one
– If one green and one red,

discard red, put back
green

• If one bean is left behind,
can you predict its colour?

6

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Bet on the last green bean
• Suppose you have a bag

of x red beans and y green
beans

• Repeat the following:
– Remove 2 beans
– If both green, discard

both
– If both red, discard one,

put back one
– If one green and one red,

discard red, put back
green

• If one bean is left behind,
can you predict its colour?

• When the parity of green
beans is odd, it remains
odd…

• Start with y=2n+1

• y=2n+1 y=2n-1

• y=2n+1 y=2n+1

• y=2n+1 y=2n+1

• It must be green!

4

7

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Bet on the last red bean
• Suppose you have a bag

of x red beans and y green
beans

• Repeat the following:
– Remove 2 beans
– If both green, discard

both
– If both red, discard one,

put back one
– If one green and one red,

discard red, put back
green

• If one bean is left behind,
can you predict its colour?

• When the parity of green
beans is even, it remains
even…

• Start with y=2n

• y=2n y=2n-2

• y=2n y=2n

• y=2n y=2n

• It must be red!

8

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Bet on color of the last bean … and win!
• Suppose you have a bag

of x red beans and y green
beans

• Repeat the following:
– Remove 2 beans
– If both green, discard

both
– If both red, discard one,

put back one
– If one green and one red,

discard red, put back
green

• If one bean is left behind,
can you predict its colour?

• If you start with odd #
(even #) of green beans,
there will always be an odd
(even #) of green beans
in the bag

⇒ Parity of green beans is
invariant

⇒ Bean left behind is green
iff you start with odd # of
green beans

5

9

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

• What have we just seen?

• Problem solving by logical reasoning
on invariants

CS3108, Guest lecture on 2/9/2008

Welcome to the Magical World…

This section of the ppt is courtesy of Toh Xiu Ping

6

11

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

The 21 Card Trick
1. Magician asks you to

remember any one card
from a deck of 21 cards as
your card. Do not tell him
what the card is

2. He deals the 21 cards face
down, from top to bottom
and left to right, into 3
equal piles

3. Next, he fans the piles to
you and asks you to look
for the pile of cards which
contains your card and
pass the pile back to him

4. Again, he stacks up the 3
piles on top of each other
and redistribute, from top
to bottom and left to right,
into 3 equal piles

5. He repeats step (3) and (4)
2 more times

6. Finally, he deals your card
right out from the rest of
the 21 cards!

How does he manage
that?!

This section of the ppt is courtesy of Toh Xiu Ping

12

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

The Trick

• The pile containing the card is being placed in
the middle of the other 2 piles

• Imposing constraints on where the card can
move to…

This section of the ppt is courtesy of Toh Xiu Ping

7

13

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

The Invariant Underlying the Trick

After the first distribution, …

37343115122623

36331714112522

35321613272421

After the second distribution, …

After the third distribution, …

Assuming the chosen card is in the first pile.

37363534333231

27262524232221

17161514131211

This section of the ppt is courtesy of Toh Xiu Ping

14

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

• What have we just seen?

• Problem solving by logical reasoning
on invariants

8

CS3108, Guest lecture on 2/9/2008

Where do Polynesians
come from?

150000
years ago

100000
years ago

50000
years ago

present

African Asian Papuan European

Root

16

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

In the course of evolution…

9

17

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

What is the invariant?

• Mitochrondrial DNA accumulates 1 mutation
about every 10,000 years

• Human history is not so long relative to this

⇒ When a nucleotide in mitochrondrial DNA is
mutated it stays mutated through future
generations

18

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Do Polynesians come from
Asia or America?

189, 217, 247, 261

189, 217

189, 217, 261

10

19

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Origin of Polynesians
• Common mitochondrial

control seq from
Rarotonga have variants at
positions 189, 217, 247,
261. Less common ones
have 189, 217, 261

• Seq from Taiwan natives
have variants 189, 217

• Seq from regions in betw
have variants 189, 217,
261.

• More 189, 217 closer to
Taiwan. More 189, 217, 261
closer to Rarotonga

• 247 not found in America
⇒ Polynesians came from

Taiwan!

• Taiwan seq sometimes
have extra mutations not
found in other parts

⇒ These are mutations that
happened since
Polynesians left Taiwan!

20

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Are Europeans descended purely
from Cro Magnons? Purely from

Neanderthals? Or mixed?

Neanderthal
Cro Magnon

11

21

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Neanderthal vs Cro Magnon
• Based on palaeontology,

Neanderthal & Cro Magnon
last shared an ancestor
250,000 yrs ago

• Mitochondrial DNA
accumulates 1 mutation
per 10,000 yrs

⇒ If Europeans have mixed
ancestry, the
mitochondrial DNA betw 2
Europeans should have
~25 diff w/ high probability

• The number of diff betw
Welsh is ~3, & at most 8.

• When compared w/ other
Europeans, 14 diff at most

⇒ Ancestor either 100%
Neanderthal or 100% Cro
Magnon

• Mitochondrial DNA from
Neanderthal have 26 diff
from Europeans

⇒ Ancestor must be 100%
Cro Magnon

22

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

The “Invariant” Perspective

• The invariant:

When a nucleotide in mitochrondrial DNA is
mutated it stays mutated through future
generations

• The lesson learned:

Figure out origins of Polynesians
and Europeans by logical
reasoning on invariant

12

CS3108, Guest lecture on 2/9/2008

How to get a list sorted?

24

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

What makes a list
a sorted list?

• What is a sorted list?

A list L is sorted iff L[i] ≤
L[j] for all adjacent
positions i < j

• So how do you make a list
M become sorted?

While M[i] > M[j] for some
adjacent positions i < j {

swap M[i], M[j]

}

13

25

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Sorting a list

• Invariant of sorted lists

A list L is sorted iff L[i] ≤
L[j] for all adjacent
positions i < j

• Making a list M become
sorted:

While M[i] > M[j] for some
adjacent positions i < j {

swap M[i], M[j]

}

• Find violation of the
invariant

• Fix it

• When no more violation,
the list must be sorted!

26

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

• What have we just seen?

• Problem solving by rectifying
violation of invariants

14

CS3108, Guest lecture on 2/9/2008

What is a good database design?

28

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Relational Data Model

• Data are represented as a two-dimensional table

• It is a logical representation, not a physical
representation
– Ordering of the rows is irrelevant
– Ordering of the columns is irrelevant
– How the rows and columns of a table are stored is

irrelevant
– …

15

29

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Example

Color 1241977Star Wars

Color 951992Wayne’s World

Color 1041991Mighty Ducks

Film TypeLength Year Title

Beverly HillsHarrison Ford

BrentwoodMark Hamill

HollywoodCarrie Fisher

Address Name

$$$Star WarsFoxHarrison Ford3

$$$Star WarsFoxMark Hamill2

$$$Star WarsFoxCarrie Fisher1

Salary Title Studio Star Contract No

Contracts

Stars

Movies

30

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Design Issues

• How many possible alternate ways to represent
movies using tables?

• Why this particular set of tables to represent
movies?

• Indeed, why not use this alternative single table
below to represent movies?

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies

16

31

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Anomalies

• What’s wrong with the “Wrong Movies” table?

• Redundancy: Unnecessary repetition of info
• Update anomalies: If Star Wars is 125 min, we

might carelessly update row 1 but not rows 2 & 3
• Deletion anomalies: If Emilio Estevez is deleted

from stars of Mighty Ducks, we lose all info on
that movie

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies

32

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Functional Dependency

• Functional dependency (A1, …, An B1, …, Bm)
– If two tuples of a table R agree on attributes A1, …,

An, then they must also agree on attributes B1, …, Bm

⇒ Values of B’s depend on values of A’s

• Example: Title, Year Length, Film Type, Studio

• FD (A1, …, An B1, …, Bm) is trivial if a Bi is an Aj

17

33

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Can you identify the FD’s here?

• Some FD’s:
– Title, Year Length
– Title, Year Film Type
– Title, Year Studio

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies

34

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Keys

• Key
– A minimal set of attributes {A1, …, An} that

functionally determine all other attributes of a table
– A key is trivial if it comprises the entire set of

attributes of a table

• Superkey
– A set of attributes that contains a key

18

35

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Can you identify the superkeys here?

• Superkeys :
– Any set of attributes that contains {Title, Year,

Star} as a subset

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies

36

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Boyce-Codd Normal Form

• A relation R is in Boyce-Codd Normal Form iff
whenever there is a nontrivial FD (A1, …, An B1,
…, Bm) for R, it is the case that {A1, …, An} is a
superkey for R

• Theorem A1 (Codd, 1972)

A database design has no anomalies due to FD iff
all its relations are in Boyce-Codd Normal Form

19

37

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

How is BCNF violated here?

• A nontrivial FD:
– Title, Year Length, Film Type, Studio
– The LHS not superset of the key {Title,Year, Star}
⇒ Violate BCNF!

• Anomalies are due to FD’s whose LHS is not
superkey

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

38

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Towards a Better Design

• Use an offending FD (A1, …, An B1, …, Bm) to
decompose R(A1, …, An, B1, …, Bm, C1, …, Ch) into
2 tables
– R1(A1, …, An, B1, …, Bm)
– R2(A1, …, An, C1, …, Ch)

No
redundant

info

No update
anomaly

No
deletion
anomaly

20

39

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

The “Invariant” Perspective

• The invariants:

BCNF is an invariant of a good database design

• The lesson learned:

Deliver a better database design by
fixing violated invariants

CS3108, Guest lecture on 2/9/2008

Diagnosing Leukemias

21

41

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Some Patient Samples

• Does Mr. A have cancer?

malign

malign

malign

malign
benign

benign
benign

benign

genes
sa

m
pl

es

???Mr. A:

42

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Let’s rearrange the rows…

• Does Mr. A have cancer?

genes

sa
m

pl
es

malign
malign
malign
malign
benign
benign
benign
benign

???Mr. A:

22

43

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

and the columns too…

???

malign
malign
malign
malign
benign
benign
benign
benign

??????

genes
sa

m
pl

es

???Mr. A:

44

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Invariant Profile of Leukemia Subtypes

23

45

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

• What have we just seen?

• Guilt by association of invariants

CS3108, Guest lecture on 2/9/2008

Comparing Apples
to Oranges

Image credit: www.comstock.com

24

47

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Dissimilarity as Invariant

…Unknown1

…………

…Color = orange vs yellow
Skin = rough vs smooth
Size = small vs small
Shape = round vs oblong

Color = orange vs orange
Skin = rough vs rough
Size = small vs small
Shape = round vs round

Orange2

…Color = red vs yellow
Skin = smooth vs smooth
Size = small vs small
Shape = round vs oblong

Color = red vs orange
Skin = smooth vs rough
Size = small vs small
Shape = round vs round

Apple1

…Banana1Orange1Differences
with other
fruits are
identical

Differences
between
members of 2
different groups
are constant

The unknown is an
APPLE !!!

Color = red vs orange
Skin = smooth vs rough
Size = small vs small
Shape = round vs round

Color = red vs yellow
Skin = smooth vs smooth
Size = small vs small
Shape = round vs oblong

48

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

• What have we just seen?

• Guilt by association of invariants &
• Even differences can be invariant!

25

CS3108, Guest lecture on 2/9/2008

How to take exponentiation faster?

50

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Exponentiation

• What does this program
do?

F(a, 0) = 1
F(a, n+1) = a * F(a, n)

• We see that

F(a, n) = an

26

51

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Playing the invariant…
• What does this program

do?

F(a, 0) = 1
F(a, n+1) = a * F(a, n)

• We see that

F(a, n) = an

• Then

• F(a, 2*n) = a2*n

= an * an

= y * y where y = F(a, n)

• F(a, 2*n+1) = a2*n+1

= a * an * an

= a * y * y where F(a, n)

• So we get …

invariant

defn

by inv

by inv

by inv

by inv

52

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

What’s the difference?
• Original program:

F(a, 0) = 1
F(a, n+1) = a * F(a, n)

• New program:

F(a, 0) = 1
F(a, 1) = a
F(a, n) = if n is odd

then a * y * y
else y * y
where y = F(a, n div 2)

• Cost of F(a, n) = n

• Cost of F(a, n) = log2 n

125310

125311

12439

12438

call sequencelog nn

ex
po

ne
nt

ia
lly

Fa
st

er
!

Parity can be tested by
checking least
significant bit

Div2 can be
implemented by bit

shifting

27

53

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

• What have we just seen?

• Optimizing a solution by preserving
invariant

CS3108, Guest lecture on 2/9/2008

Draw

Drawing a Straight Line

28

55

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

Raster Line Drawing

• Want to plot f(X) = m X + c,
where 0 ≤ m ≤ 1

• At point x+1, should we
plot at y or at y+1?

• Choose whichever is
closer to f(x+1)

• Basic Bresenham’s algo

This section of the ppt is based on Colin Flanagan’s

m is a floating pt #.
floating pt ops are expensive

56

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

• Then
– ε + m < 0.5

2(ε’ + Δy) < Δx

– εnew = ε + m
ε’new = εnew Δx
ε’new = ε Δx + m Δx
ε’new = ε’ + Δy

– εnew = ε + m − 1
ε’new = εnew Δx
ε’new = ε Δx + m Δx − Δx
ε’new = ε’ + Δy − Δx

Let m = Δy / Δx and ε’ = ε Δx, …
• Basic Bresenham’s algo

This section of the ppt is based on Colin Flanagan’s

29

57

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

A much faster algo
• Basic Bresenham’s algo • Integer Bresenham’s algo

This section of the ppt is based on Colin Flanagan’s

Can do
shift

instead

All integer ops.
Very efficient!

58

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

This works because A is preserved by B,
as ε + m < 0.5 iff 2(ε’ + Δy) < Δx

• Basic Bresenham’s algo

Invariant A:
If ε + m < 0.5,
Do not increment y

• Integer Bresenham’s algo

Invariant B:
If 2(ε’ + Δy) < Δx,
Do not increment y

This section of the ppt is based on Colin Flanagan’s

30

59

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

• What have we just seen?

• Optimizing a solution by preserving
invariant

CS3108, Guest lecture on 2/9/2008

What have we learned?

31

61

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

What have we learned?

• Invariant is a fundamental property of many
problems

• Paradigms of problem solving
– Problem solving by logical reasoning on invariants
– Problem solving by rectifying violation of invariants
– Guilt by association of invariants
– Solution optimization by preserving invariants

62

CS3108, Guest lecture on 2/9/2008 Copyright 2008 © Limsoon Wong

I didn’t get to telling you yet, but …

• Every time you write a loop in a program, it
involves an invariant

• Every time you do a recursive function call, it
involves an invariant

• Every time you do an induction proof, it involves
an invariant

• … Computing is about discovering,
understanding, exploiting, and having fun with
invariants!

