Identifying Protein Complexes from
Protein Interactome Maps

Motivation

e Nature of high-throughput e Can aprotein interact with
PPI expts S0 many proteins

— Proteins are taken out of simultaneously?

their natural context!

A big “hub” and its
“spokes” should probably
be decomposed into
subclusters

— Each subcluster is a set
proteins that interact in
the same space and time

— Viz., a protein complex
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* Motivation and Approaches

* PPI Network Cleansing based on PPI Topology
— CD-Distance, FS-Weight

* Impact of Cleansing on PPI-based Protein
Complex Prediction Methods

* Recent Improvement to PPI Network Cleansing
and PPI-Based Protein Complex Prediction

Approaches
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Approaches to PPI-Based ._.'E'.._L_E
Protein Complex Prediction

RNSC MCODE MCL
Type Clustering, Local Flow
local search neighborhood |simulation
cost based density search
Multiple No Yes No
assignment
of protein
Weighted No No Yes
edge

* Recall vs precision is poor
— Noise in PPI network?
— Non-ball-like complexes?

ZINUS
Possible Cause of Low Recall/Precistgrr—

Experimental method category* MNumber of interacting pairs Co-localization” (%) Co-cellular-role® (%)
All: All methods 9347 64 49
A: Small scale Y2H 1861 73 62
AD: GY2ZH Uetz et al. (published results) 956 66 45
Al: GY2ZH Uetz et al. (unpublished results) 516 53 33
A2 GYZH lto et al. (core) 798 64 40
A3 GY2H Ito et al. (all) 3655 41 15
B: Physical methods 71 98 95
C: Genetic methods 1052 77 75
D1: Biochemical, in vitro 614 87 79
D2: Biochemical, chromatography 648 93 88
El: Immunological, direct 1025 a0 a0
E2: Immunological, indirect 34 100 a3
2M: Two different methods 3 87 85
3M: Three different methods 1212 92 94
4M: Four different methods 570 95 93

- N
Sprinzak et al., JMB, 327:919-923, 2003 Large disagreement betw methods

e High level of noise
= Need to clean up before protein complex prediction




PPI Network Cleansing
based on PPI Topology

Bytled Uekoply

Measures that correlate with function g/t
homogeneity and localization coherence

 CD-distance
* FS-Weight

CD-distance & FS-Weight: Based on concept that two proteins with many
interaction partners in common are likely to be in same biological process &
localize to the same compartment
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Czekanowski-Dice Distance @munetal, 2008 =

* Given a pair of proteins (u, v) in a PPl network
— N, = the set of neighbors of u
— N, = the set of neighbors of v

2|NuﬂNv|
|Nu|+|Nv|

e CD(u,v) =

» Consider relative intersection size of the two neighbor
sets, not absolute intersection size

— Case 1: INy| =1, IN,J= 1, IN;,»N,|=1, CD(u,v)=1
— Case 2: |N,| =10, IN,|= 10, [N,nN,|=10, CD(u,v)=1

| Gy
FSWeight (chua et a, 2006) S
» Try to overcome weakness of CD-distance
2|Nuf'\Nv| y 2|Nuva|
FS(uv) = |Nu|+|NuﬁNv|+/’Lu |Nv|+|NuﬁNv|+ﬂv

A, and A, penalize proteins with few neighbors
~ > Ny B DI Ny|
— 2w = max{0, & N, |}, v = max{0, i - Nv|}
V| V|
Suppose average degree is 4, then
— Case 1: [Ny =1, IN,J= 1, IN,AN,|=1, FS(u,v)=4/25=0.16
— Case 2: |N,| = 10, [N |= 10, [N,nN,|=10, FS(u,v)=1
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Comelation with Functional Similarity Correlation with Expression Profile
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Evaluation wrt Intracomplex Interactishs—

Fraction of Intracomplex Interactions
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Impact of Cleansing on PPI-Based
Protein Complex Prediction Methods

PPI-Based Complex Prediction Al

RNSC MCODE MCL
Type Clustering, Local Flow
local search neighborhood |simulation
cost based density search
Multiple No Yes No
assignment
of protein
Weighted No No Yes
edge

» Issue: recall vs precision has to be improved
* Does a “cleaner” PPI network help?
* How to capture non-ball-like complexes?
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Cleaning PPI Network by FS-Weight '-‘*"--“‘““'

@ O <) @)
e
» Modify existing PPl network as follow

— Remove level-1 interactions with low FS-weight
— Add level-2 interactions with high FS-weight

* Then run RNSC, MCODE, MCL, & PCP

PCP Algorithm: Gy
Dealing w/ Non-Ball-like Complexes?

* Find all max cliques in the modified PPI network

» Merge resulting (partial) cliques with good inter-
cluster density

ES: Nie(r -1\ i 7\ i
ICD(sﬂ.sb}zz ij)ieWV,-W)jeW-V)ij)eE
Vo=Vl -7,

* Modify the PPI network by treating the merged
partial cliques as vertices

 lterate the steps above
Chua et al, JBCB, 6:435-466, 2008
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Experiments
e PPl datasets e Validation criteria
— PPI[BioGRID], BioGRID
db from Stark et al., 2006 \YE
overlap(S,C) = ll\\//5||\<;||
e Gold standards s ¢
— PC,04, Protein where .
complexes from MIPS — S = predicted cluster
03/30/2004 — C = true complex
— PCyp Protein — V, = vertices of subgraph
complexes from MIPS defined by X

05/18/2006

e Overlap(S,C)20.25is
considered a correct
prediction

NS
Validation on PC,, -

Precision vs Recall Precision vs Recall
(Biogrid, L1} (Bingrid, Filtered L1&L2)
. 1
e ."a ——MCL 0.0
02 4 "h-.‘*-.;-. -1 0
0.7 Loty | RO o7
£ 04 4 b S 0.6 4
E 0.5 ';\ 2 05
¥ na \ g -
= 04 N 204
0.3 0.3
0.2 4 * 0.2
0.1 0.1
| 1]
0 1 0.2 03 a 0.1 02 0.3
Recal Recal
(d) &3]

* Precision is improved in all methods




Validation on PC,

o

EE &

NUS
&=

Precision vs Recall

Precision vs Recall

(Bingrid, Fiitered L18L2) 200 {Biogrid. Filtered L18L2 | PC2008)
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* When predictions are validated against PC,y,
precision of all algo improved
[ ]

Many “false positives” wrt PC,,,, are actually real

_______ RNSC cluster

mm wmm m PCygy complex
—— = = MCL cluster

PCP cluster

INUS
) i

PCP

Prediction

Exampl

el

10



FINUS
o o
PCypgg complex
— PCP cluster
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Conclusions & i

* Precision of protein complex prediction can be
improved by

— PPI network augmented with level-2 interactions
— PPI network cleansed by FS-weight

» Cligue merging may capture more possibly non-
ball-like complexes




Recent Improvement to
PPI Network Cleansing & PPI-Based
Protein Complex Prediction

TINUS
Local Topological Metric "'"""*""'

* Variant of CD-distance that penalizes proteins with
few neighbors

2 | Nu M Nv |
wLuv) = | Nu | +Au+ | Nv | +Av
A, = max{0, ;l NX|—| Nu|}’ A, = max{0, ;l NX|_| N |}
V| V|

 |terate local topological metric
— Weight of interaction reflects its reliability

— Can get better results if we use this weight to re-
calculate the score of other interactions?

4
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Iterate Local Topological Metric ¥~
e wLO%u,v) =1if (u,v)eG, otherwise wL%u,v)=0
) |NuﬁNv|+|NuﬁNv|
= wi (U,V)— | Nu|+ﬂu+| Nv|+ﬂ,v
Cwtiuy = e 0r 20
D WU, ) + A D WV, X) + A
xeNu xeNv
D> W (x,y)
o A, =max{0, ey YENXW' -S> wktux) )
>y wE(x,y)
o }"kv = maX{O, eV yeNxIV I _ ZWLk—l(v, X) }
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Validation of Iterated CD-Distance” =

* DIP yeast dataset

— Functional homogeneity is 32.6% for PPIs where
both proteins have functional annotations and
3.4% over all possible PPIs

— Localization coherence is 54.7% for PPIs where
both proteins have localization annotations and
4.9% over all possible PPIs

 Let’'s see how much better iterated CD-distance
is over the baseline above, as well as over the
original CD-distance/FS-weight
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How many iteration is enough?

Cf. ave functional homogeneity of protein pairs in DIP < 4%
ave functional homogeneity of PPl in DIP < 33%
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» lIterated CD-distance achieves best performance
wrt functional homogeneity at k=2

» Ditto wrt localization coherence (not shown)
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Identifying False Positive PPIs ==

Cf. ave localization coherence of protein pairs in DIP < 5%
ave localization coherence of PPI in DIP < 55%

1 T T T T T 1 B
. Local score (k=2) — % — \; Local score (k=2) —*—
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» Iterated CD-distance is an improvement over
previous measures for assessing PPI reliability
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|dentifying False Negative PPIs ""*"-'"’""

Cf. ave localization coherence of protein pairs in DIP < 5%
ave localization coherence of PPI in DIP < 55%
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» Iterated CD-distance is an improvement over
previous measures for predicting new PPIs

[ Keynote at DMAIOB, Khulna, December 2008. Copyright © 2008 by Limsoonwong |
3]
o SoNUS
5-Fold Cross-Validation ——
e DIP core dataset
— Ave # of proteins in 5 groups: 986

— Ave # of interactions in 5 training datasets: 16723

— Ave # of interactions in 5 testing datasets: 486591
— Ave # of correct answer interactions: 307

e Measures:
— sensitivity =TP/(TP + FN)
— specificity =TN/(TN + FP)

» #negatives >> #positives, specificity is always high
» >97.8% for all scoring methods

— ﬁrecision :TP/ETP + FPi
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Sensitivity
» Iterated CD-distance is an improvement over
previous measures for identifying false positive &
false negative PPIs

B &

Now we can make protein complex E...._';é
prediction as follows...

« Remove noise edges in the input PPI network by
discarding edges having low iterated CD-distance
score

 Augment the input PPI network by addition of
missing edges having high iterated CD-distance
score

» Predict protein complex by finding and merging
maximal cliques

CMC --- Clustering based on Maximal Cliques
L Keynote at DVIAIO8, Khuina, December 2008, Copyright © 2008 by Limsoonwong |
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Validation Experiments ""‘""‘"‘"’

e Matching a predicted complex S with atrue
complex C

— Vs: set of proteins in S
— Vc: set of proteins in C
— Overlap(S, C) = |[Vs nVc| /|VsuVc|
— Overlap(S,C)>0.5
» Evaluation
— Precision = matched predictions / total predictions
— Recall = matched complexes / total complexes
» Datasets: BioGrid yeast
— #interactions: 38555

— #interactions with >0 common neighbor: 27940
L Keynote at DVIAI08, Khuina, December 2008, Copyright © 2008 by Limsoonwong |
T
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Effecting of Cleaning on CMC
aloy Jaccard0.50 emplx mips06& Jaccard0.50 cmplx
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(a) Aloy, match thres=0.50 (b) MIPS, mateh_thres=0.50

» Evaluated based on protein complexes from Aloy
and MIPS
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Precision
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Noise Tolerance of CMC
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aloy Jaccard0.50 emplx
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» If cleaning is done by iterating CD-distance 20
times,CMC can tolerate upto 500% noise in the

PPI network!

CMC vs MCL

aloy Jaccard0.50 cmplx
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 MCL benefits significantly from cleaning too
« MCL is not as good as CMC
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What have we learned?

» Guilt by association of common interaction
partners is useful for predicting

— PPI cellular localization
— Missing PPIs
— Protein complexes
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Any Question?
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