
Copyright © 2019 by National University of Singapore. All Rights Reserved.
© Copyright National University of Singapore. All Rights Reserved.

Some thoughts on
designing a genomic
query language

Limsoon Wong
Short talk for GeCo Workshop, Como, March 2019

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Two perspectives on a query language

Surface syntax
Easy to read, understand, & write queries correctly

Sufficient power to express needed queries

Prevent expensive queries

Abstract syntax
Easy to analyze, manipulate, and optimize

Easy to cater for extensions

Sufficient power to express needed algorithms

Compositionality & orthogonality are key principles for query language design

{ {x, z) | (x,y)A, (y’,z)B, y = y’ }

select (a.x, b.z)
from a in A, b in B
where a.y = b.y’

U{ U{ if a.y = b.y’
 then { (a.x, bz) } else {}
 | b  B}
 |a  A}

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Compositionality & orthogonality in NRC

Types

Expressions, constructs are provided for each type orthogonally

U{e1 | x e2} means
 f(o1)  …  f(on),

where f(x) = e1
and {o1, …, on} = e2

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Genomic data

Loci

Tracks

Annotations

E.g. you see a row denoted “Base position”;
this is the coordinates on a reference
genome. The rest of the rows (e.g. “Gene
catalog” and “day7_ESTs blat”) are “tracks”
bearing different kinds of annotations. Each
track corresponds to one kind of
experiments, one kind of predictions, etc.;
e.g. “day7_ESTS blat” are short stretches of
RNAs from a day-7 sample that have been
mapped (using a tool called “blat”) to
specific positions on the reference genome.

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Genomic data types

An annotation datatype !t and its subtype landmark !!t

of type t = (#name: string, #pval: real, …)

are represented as (#loc: Loc, #anno: (name: string, #pval: real, …))

A track datatype {!t} and its subtype landmark track {!!t}

are represented as { !t } and { !!t }

Equipped with some implicit / automatic normalizations / constraints, e.g.
sorted by #loc, idempotency and non-overlapping loci on the same track

Landmarks on the same landmark track are non-overlapping, and all annotations can “see” no more
than one landmark on the same landmark track

Landmarks can be used for organizing storage & distribution of annotations

Meta info can be
added to tracks.

But let’s not worry
about these here

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Conceptual organization of
annotation & landmark tracks

Landmark track A

Landmark track B

Annotation track C

Annotation track D

x x x x x x x

x x x x x

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Some operations for the loci type

p before q

p overlap q p, q : Loc p can-see r p : Loc, r : !!t

p near q …

satisfying “p can-see r whenever (p overlap or near q) & q = r.loc”,

plus maybe other convexity constraints to be thought up

Precise set of operations on loci (e.g. p is-nearer q1 than q2) is not important here

But a well-designed set of operations should constraint users from “bad”
“expensive” queries, while providing sufficient expressive power for commonly
needed queries

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Operations on annotations and tracks

 e1 : {! t1 }, e2 : {! t2}

{! e1 | x  e2 } : {! t1 }

 e : !t e1, e2 : {! t }

{! } : {! t } {! e} : {! t} e1  e2 : {! t }

p : Loc, e : t e : !t

!(#loc: p, #anno: e) : !t e.loc : Loc, e.anno : t

Let’s call this language NRCgenome in this talk

Semantics: Same
as those for sets,
except keep
things sorted on
#loc & maintains
other constraints
that we may come
up with

Ditto for !!t, but
maybe ban
!!(#loc, #anno)

Plus some set-track conversion ops & syntactic sugars

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Common genomic queries in NRCgenome

“Extract from a track R, the annotations in a given region (e.g. 21q22.3) of
the genome”

{! x | x  R, x.loc overlap 21q22.3 }

“Extract from the HMMPFAM prediction track, those RBP predictions with
pval < 1E-6”

{! x | x  HMMPFAM, x.anno.name = “RBP”, x.anno.pval < 1E-6 }

These queries operate on a single track

They can be executed efficiently, viz. O(n), in NRCgenome

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Common genomic queries in NRCgenome

“Extract from the TP53 chip-seq track, those TP53 binding sites with pval <

1E-6 and are in promoters of genes”

 {! x | y GENES, x  TP53,

 x.loc before y.loc,

 x.loc near y.loc,

 x.anno.pval < 1E-6 }

This query operates on two tracks

Its “natural” complexity is O(|GENES| * |TP53|) in NRCgenome

Does this need to
be quadratic?

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Common genomic queries in NRCgenome

“Extract from the TP53 and the HDAC1 chip-seq tracks, those TP53 and

HDAC1 binding sites that are closest to each other in the promoters of the

same genes”

{! (#loc: g.loc, #anno: (#name: g.anno.name, #pval: 0, #tp53: u, #hdac1: v))

| g  GENES,

 (u, v)  closest { (x, y) | x  TP53, x.loc near g.loc, x.loc before g.loc,

 y  HDAC1, y.loc near g.loc, y.loc before g.loc } }

This query has complexity O(|GENES| * |TP53| * |HDAC1|) in NRCgenome

Does this need to be cubic?

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Common genomic queries in NRCgenome

“Extract from the TP53 and the HDAC1 chip-seq tracks, those TP53 and

HDAC1 binding sites that are in the promoters of the same genes”

{! u | u  {! (#loc: g.loc, #anno: (#name: g.anno.name, #pval: 0,

 #tp53: { x | x  TP53, x.loc near g.loc, x.loc before g.loc},

 #hdac1: { y | y  HDAC1, y.loc near g.loc, y.loc before g.loc}))

 | g  GENES },

 u.anno.tp53  {! }, u.anno.hdac1  {! }}

This query has complexity O(|GENES| * (|TP53| + |HDAC1|)) in NRCgenome

Does this need to be quadratic?

Copyright © 2019 by National University of Singapore. All Rights Reserved.

What is needed? An idea

e : {! t }, e1 : {!! t1 } , e2 : {! t2 } , … , ek : {! tk }

{! e | (x1 , X2, …, Xk)  (e1, e2, …, ek) } : {! t }

Semantics

{! e | (x1, X2, …, Xk)  { (x1, { x2 | x2  e2, x2.loc can-see x1}, …,

 { xk | xk  ek, xk.loc can-see x1})

 | x1  e1 } }

The part in bold is executed for each landmark, considering only annotations

which can see that landmark (assuming these are stored with that landmark)

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Common genomic queries revisited

“Extract from the TP53 chip-seq track those TP53 binding sites with pval <

1E-6 and are in promoters of genes”

 {! x | y GENES, x  TP53,

 x.loc before y.loc,

 x.loc near y.loc,

 x.anno.pval < 1E-6 }

GENES is a landmark track

{! x | (y, X)  (GENES, TP53), x  X,
 x.loc before y.loc,
 x.loc near y.loc,
 x.anno.pval < 1E-6 }

Complexity is maybe O(|GENES| * 1% of |TP53|)

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Common genomic queries revisited

“Extract from the TP53 and the HDAC1 chip-seq tracks, those TP53 and

HDAC1 binding sites that are closest to each other in the promoters of the

same genes”

{! (#loc: g.loc, #anno: (#name: g.anno.name, #pval: 0, #tp53: u, #hdac1: v))
| (g, U, V)  (GENES, TP53, HDAC1) ,
 (u, v)  closest {(x,y) | x  U, x.loc near g.loc, x.loc before g.loc,
 y  V, y.loc near g.loc, y.loc before g.loc} }

Complexity is maybe O(|GENES| * (1% of |TP53| * 1% of |HDAC1|))

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Common genomic queries revisited

“Extract from the TP53 and the HDAC1 chip-seq tracks, those TP53 and

HDAC1 binding sites that are in the promoters of the same genes”

{! (#loc: g.loc, #anno: (#name: g.anno.name, #pval: 0,
 #tp53: {! x | x  U, x.loc near g.loc, x.loc before g.loc},
 #hdac1: {! y | y  V, y.loc near g.loc, y.loc before g.loc}))
| (g, U, V)  (GENES, TP53, HDAC1) }

Complexity is maybe O(|GENES| * (1% of |TP53| + 1% of |HDAC1|)

Is it necessary
to process U
and V twice?

Copyright © 2019 by National University of Singapore. All Rights Reserved.

A better idea?

e : {! t }, e1 : {!! t1 } , e2 : {! t2 } , … , ek : {! tk }, 1 : bool, …, k : bool

{! e | x1  e1 st 1, X2  e2  x2 st 2, …, Xk  ek  xk st k } : {! t }

FV(j) \ {x1, xj}  FV({! e | x1  e1, X2  e2  x2 st 2, …, Xk  ek  x2 st k }), and FV(e)  {x2, …, xk} = { }

Semantics

{! e | (x1, X2, …, Xk)  { (x1, { x2 | x2  e2, x2.loc can-see x1, 2}, …,

 { xk | xk  ek, xk.loc can-see x1, k})

 | x1  e1, 1 } }

The part in bold is executed for each landmark, considering only annotations

which can see that landmark (assuming these are stored with that landmark)

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Common genomic queries revisited again

“Extract from the TP53 and the HDAC1 chip-seq tracks, those TP53 and

HDAC1 binding sites that are in the promoters of the same genes”

{! (#loc: g.loc, #anno: (#name: g.anno.name, #pval: 0, #tp53: U, #hdac1: V))
| g  GENES,
 U  TP53  u st u.loc near g.loc & u.loc before g.loc ,
 V  HDAC1  v st v.loc near g.loc, v.loc before g.loc }

Complexity is maybe O(|GENES| * (1% of |TP53| + 1% of |HDAC1|)

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Common genomic queries revisited again

“Extract from the TP53 and the HDAC1 chip-seq tracks, those TP53 and

HDAC1 binding sites that are closest to each other in the promoters of the

same genes”

{! (#loc: g.loc, #anno: (#name: g.anno.name, #pval: 0, #tp53: x, #hdac1: y))
| g  GENES, U  TP53 u st u.loc near g.loc & u.loc before g.loc,
 V  HDAC1  v st v.loc near g.loc & v.loc before g.loc ,
 (x, y)  closest {(u,v) | u  U, v  V} }

Complexity is maybe O(|GENES| * (1% of |TP53| * 1% of |HDAC1|))

Copyright © 2019 by National University of Singapore. All Rights Reserved.

And this idea? It is really a syntactic sugar

e : {! t }, e1 : {!! t1 } , e2 : {! t2 } , … , ek : {! tk }, 1 : bool, …, k : bool

{! e | x1  e1 st 1, x2  e2 st 2, …, xk  ek st k } : {! t }

FV(j) \ {x1, xj}  FV({! e | x1  e1, x2  e2 st 2, …, xk  ek st k })

Semantics

{! e | (x1, X2, …, Xk)  { (x1, { x2 | x2  e2, x2.loc can-see x1, 2}, …,

 { xk | xk  ek, xk.loc can-see x1, k}) | x1  e1 , 1 },

 x2  X2, …, xk  Xk }

The part in bold is executed for each landmark, considering only annotations

which can see that landmark (assuming these are stored with that landmark)

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Common genomic queries revisited again

“Extract from the TP53 chip-seq track those TP53 binding sites with pval <

1E-6 and are in promoters of genes”

 {! x | y GENES, x  TP53,

 x.loc before y.loc,

 x.loc near y.loc,

 x.anno.pval < 1E-6 }

GENES is a landmark track

{! x | y  GENES,
 x  TP53 st x.loc before y.loc &
 x.loc near y.loc & x.anno.pval < 1E-6 }

Complexity is maybe O(|GENES| * 1% of |TP53|)

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Implementing “synchronized” processing
of multiple lists / tracks

lzip: (t1  bool) * (t1 * t2  bool) * (t1 * t2  bool) * (t2 * t’  t’) * (t1 * t’  t’) * (t’  {t}) * t’ * t’

  {t1} * {t2}  {t}

lzip (sx, sy, ay, h, g, f, a, e) ({}, Y) = f a

lzip (sx, sy, ay, h, g, f, a, e) (X, {}) = f a

lzip (sx, sy, ay, h, g, f, a, e) (x::X, y::Y) =

 if sx(x)

 then if sy(x, y)

 then if ay(x,y)

 then lzip (sx, sy, ay, h, g, f, h(y, g(x, a)), e) (x::X, Y)

 else lzip (sx, sy, ay, h, g, f, g(x, a), e) (x::X, Y)

 else f (g(x, a))  lzip (sx, sy, ay, h, g, f, e, e) (X, y::Y)

 else f a  lzip (sx, sy, ay, h, g, f, e, e) (X, y::Y)

At every step, either x or y
gets shifted. So complexity is
O(|X| + |Y| * ), where  is

complexdity of sx, sy, etc.

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Implementing {! e | x1  e1 st 1,
X2  e2  x2 st 2, …, Xk  ek  xk st k }

{! e | x1  e1 st 1, X2  e2  x2 st 2 } :=

 lzip(sx, sy, ay, h, g, f, ({!! },{! }), ({!! },{! })) (e1, e2) where

 sx(x1) := 1,

 ay(x1, x2) := x2.loc can-see x1 & 2,

 sy(x1, x2) := x2.loc before x1.loc or ay(x1, x2),

 h(x2, (X1,X2)) := (X1, X2{! x2 }),

 g(x1, (X1,X2)) := (X1{!! x1 }, X2),

 f(X1,X2) := {! e | x1  X1};

Synchronized scan

Copyright © 2019 by National University of Singapore. All Rights Reserved.

A nice property of {! e | x1  e1 st 1,
X2  e2  x2 st 2, …, Xk  ek  xk st k }

{! e | x1  e1 st 1, X2  e2  x2 st 2 } :=

lzip (…) (e1, e2) where …

is a homomorphism on e1. Thus

{! e | x1  {!! o1, …, ok} st 1, X2  e2  x2 st 2 }

= {! e | x1  {!! o1} st 1, X2  e2  x2 st 2 }  … 

 {! e | x1  {!! ok} st 1, X2  e2  x2 st 2 }

When annotations on track e2 are “clustered” (i.e. stored with) the specific
landmarks on track e1 these annotations “can see”, each {! e | x1  {!! oj} st
1, X2  e2  x2 st 2 } can be run in parallel on each cluster

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Some optimization rules

And  is a “positive” condition
on loci in both rules

Copyright © 2019 by National University of Singapore. All Rights Reserved.

And …

{! {! if  then e else {! } | x2  e2} | x1  e1}



e1: !!t1 & e2: !t2 &

 x1  FV(e2) & FV()  {x1,x2} = {x1,x2} &

 is a positive condition on loci of x1,x2



{! {! if  then e else {! } | x1  e1 st true, x2  e2 st true }

So a user does not need to worry about when to use {! e | x1  e1, …}

Copyright © 2019 by National University of Singapore. All Rights Reserved.

In fact, …

It is not necessary for a user to use {!, {!!, etc.

These can be inferred by a simple type system

And transformed into synchronized/parallel scans by an optimizer

 { x | y GENES,
 x  TP53,
 x.loc before y.loc,
 x.loc near y.loc,
 x.anno.pval < 1E-6 }

 {! x | y GENES,
 x  TP53,
 x.loc before y.loc,
 x.loc near y.loc,
 x.anno.pval < 1E-6 }

{! x | y  GENES,
 x  TP53 st
 x.loc before y.loc &
 x.loc near y.loc &
 x.anno.pval < 1E-6 }

Type
inference

Optimiz-
ation

