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Undeclared heterogeneity

 Batch effects

— Batch effects are unwanted sources of variation
caused by different processing date, handling
personnel, reagent lots, equipment/machines, etc.

 Undeclared subtypes
— Disease has subtypes but these are not labelled

 Undeclared heterogeneity is a big challenge
faced in biological research, especially towards
translational research and precision medicine
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Sometimes, a gene expression study
may involve batches of data collected

over a Ic:ng period of time... PCA Scatte r p I Ot
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« Samples from diff batches are gro'upedmtogether,
regardless of subtypes and treatment response

Image credit: Difeng Dong’s PhD dissertation, 2011
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* Problems with common normalization methods
A better normalization method: GFS

 Batch effect-resistant feature selection built on
top of GFS: SNET/FSNET/PFSNET

 Subpopulation-sensitive feature selection built on
top of PFSNET: SPSNET
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Common normalization methods%® NUS

« Aim of normalization: * Transform data so

Reduce variance w/o that distribution of
increasing bias probe intensities is
same on all arrays
* Scaling method -EBg,(x-n)/o

— Intensities are scaled
so that each array
has same ave value

— E.g., Affymetrix’s

Quantile normalization
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Quantile Normalization

Density of PM probe intensities for Spikeln chips

« Given n arrays of length p,
form X of size p x n where -
each array is a column

« Sort each column of X to S ]
giVG Xsort

 Take means across rows | | |
of X, and assign this
mean to each elem in the
J
row to get X’

« Get X, m.izeq PY @rranging |« Implemented in some

each column of X’ to microarray s/w, e.g.,
have same ordering as X EXPANDER

1.0

— After Quantile Normalization

ensity
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In such a case, batch effect may be RENUS

severe... to the extent that you can =) N US
predict the batch that each sample
comes! s Afte r u a nti I e @ gfa’;i_(r)]gilpl;rr\éversity
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Caution: It is difficult to eliminate NUS
batch effects effectively
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Leek et al, Nature Reviews Genetics, 2010
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MNature Reviews | Genetics

Green and orange are
normal samples differing in
processing date

a: Before normalization
b: Post normalization

c: Checks on individual
genes susceptible to batch
effects

d: Clustering after
normalization (samples still
cluster by processing date)
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Caution: “Over
normalized” signals
In cancer samples

A gene normalized by quantile
normalization (RMA) was detected
as down-regulated DE gene, but
the original probe intensities in
cancer samples were not diff from
those in normal samples

A gene was detected as an up-
regulated DE gene in the non-
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Wang et al. Molecular Biosystems, 8:818-827, 2012
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Simulations

 Real one-class data from a multiplex experiment (no batches); n =8
« Randomly assigned into two phenotype classes D and D*, 100x

« 20% biological features are assigned as differential, and a randomly
selected effect size (20%, 50%, 80%, 100% and 200%) added to D*

« Half of D and D* are assigned to batch 1, and the other half assigned
to batch 2. A randomly selected batch effect (20%, 50%, 80%, 100%
and 200%) is added to all features in batch 1

Talk at IPM, Tehran, August 2017 Copyright 2017 © Wong Limsoon



Batch-effect correction can NUS
introduce false positives

of Singapore

_Nobatch  ~ _ _Batch _~_ COMBAT__ _ Quanfile_  Linear-Scaling
p < 0.05; no correction
P: Precision R: Recall F: F-measure
L& . . L Feature selection via t-test
S =41d | =T B Precision is strongly
] 18] Q?H NS =t affected by batch
i correction via COMBAT
_ _ This means that false
PR F PRF PRF PRF PRF positives are added post-
p <0.05; FDR .
- batch correction. Data
= : i = . o
; i T : integrity is affected
Moreover, post-batch
- 1 "7 correction does not
1L S R 1~ N H restore performance to
.| -1 1P .7 S where no batch is present
‘ T i

P R F PRF PRF PRF PRF
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GENE FUZZY SCORE

Belorkar & Wong, “GFS: Fuzzy preprocessing for effective gene
expression analysis”, BMC Bioinformatics, 17(S17):1327, 2016
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Gene fuzzy score (GFS)

Raw gene expression — gene ranks within microarrays — fuzzified scores

0 1 Score
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Fuzzification
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 Ranks rather than absolute values
— No assumption on identical expression distribution

* Fuzzification
— Reduced fluctuations from minor rank differences
— Noise from rank variation in low-expression genes discarded
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Why low- _ =-
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discarded % 3 -
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Desirable characteristics of NUS
normalization methods

* High quality
— The output of the method is useful in separating
samples of different phenotypes from each other

* High consistency

— When applied to any two representative batches
of data, the overlap between high-variance
features (e.g. genes) is high

* High biological coherence

— E.g. high-variance genes in the normalized output
induce large subnetworks on known pathways

Talk at IPM, Tehran, August 2017 Copyright 2017 © Wong Limsoon
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Datasets used in evaluating GF Sz

Disease type Source Affy GeneChip Dataset composition
DMD Haslett et al. HG-U95Av2 12 DMD, 12 controls
Pescatori et al. HG-U133A 22 DMD, 14 controls
| eukemia Golub et al. HU-6800 47 ALL, 25 AML
Armstrong et al. HG-U95Av2 24 ALL, 24 AML
ALL Yeoh et al. HG-U95Av2 15 BCR-AEBL, 27 E2A-PBEX1
Ross et al. HG-U133A 15 BCR-ABL, 18 E2A-PBX1
ALL Yeoh et al. HG-U95Av2 6 Normal, 26 TEL-AMLI,

22 Hyperdip>=50, 15 T-ALL,
10 Pseudodip, 6 BCR-ABL,
7 MLL, & Hyperdipd7-50
8 E2A-PBX1, 3 Hypodip

. Haslett, et al. PNAS, 99(23):15000-15005, 2002.

. Pescatori et al. FASEB Journal, 21(4):1210-1226, 2007
. Golub et al. Science, 286(5439):531-537, 1999

. Armstrong et al. Nature Genetics, 30(1):41-47, 2002

. Yeoh, et al. Cancer Cell, 1(2):133-143, 2002.

. Ross, Mary E., et al. Blood ,104(12):3679-3687, 2004

Copyright 2017 © Wong Limsoon
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Evaluating quality

—_— — 55

. Compute
PCA cilhouette score

Select top 15%
highest variance
genes

Processed | . ver ' [N — [BC1,BC2,PC] —— 55

— Iter 2 s ———| PC1, PC2, PC3 55_2
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v
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Randomly select

15% genes ! Iter_1000 — R R e . S5 1000
-

* An ideal normalization method should produce a

silhouette score distribution that is high and
stable
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Observations

i *
+ The GFS null é ‘ 3
distribution is stable B

and has high
silhouette score

GFS Quantile Z-score Raw Mean scaling

(a) Acute Lymphoblastic Leukemia (ALL)

* For GFS, the score
obtained from the top
15% highest variance
genes is always ;
greater than the score ' ‘
from the 95t .

percentile of the null
distribution (b) Duschenne Muscular Dystrophy (DMD)

GFS Quantile Z-score Raw Mean scaling
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Raw gene

Randomly split into

Iter_] Iter_2 lter 100
Evaluating
consistency - .
1. Preprocess
2. Extract top 15%
highest variance
genes
List '| L|5[
l.'.umpuh—*
jaccard
coefficient
Jl'.' 1 _I.,_ 2 IC H'fll.'fl
b y
~"

score distribution

 An idea method should produce a Jaccard
coefficient distribution that is high and stable
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Observations ¢ ’ ?
 The Jaccard ?

coefficient of GFS

over a" GFS  Quantile Z-score Raw Mean scaling
subsamplings Is (El) Acute Lymphoblastic Leukemia (ALL)
stable at a

coefficient equal to
or higher than other :
methods 4 ? ?

GFS  Quantile Z-score Raw Mean scaling

(b) Duschenne Muscular Dystrophy (DMD)
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Evaluating biological coherence % sz

1. Selecttop 15%

highest variance
£ ey
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E
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Fern contribation to
first 3 PCs

Significance of sub et
count

. An ideal method should produce high-variance
genes that induce larger and more significant

subnetworks
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Observations

Raw Scaled Z-score Cuantile GFS

freq | p freq | p freq | p freq | p freq | p
ar 0.672 08461 | 74 0.876 | &7 0.672 | 80 0.071
=4 0.621 0545 | 41 0722 | 45 0577 | &7 0,000

 High-variance genes ;
from methods other | |x faw)n fossla o)z fome) = oo
than GFS induce 5 3 E:Egg 0958 |4 |osm|2 |osese|11 | o000

4]
M
m

e EEEY

9 0408 |3 |[osss|9e |oo02s|s o020
2 | o402 0289 |4 |[014a|3 |o280|4 |o013

SUbnetworkS that are 5 | o017 00044 |oos7|s |om7|1 |oamo
o |3 3 2 5 | o000

0,062 0.062 0.021 0.165

generally not very o O O O O T O N
different from those (a) Acute Lymphoid Leukemia (ALL)
produced by random

Raw Scaled Z-score Cluantile GFS
e n es zize | ftreg | p treq | p treq | p treq | p treg | p
g 2 74 0.903 | 570 | 0415 | 57 0.9%5 | 104 | 0O.27B | 85 0009
3 83 0.007 | 44 0.pa4 | 23 0.9%9 | 40 0777 | Bl 0000
4 19 0.799 | 22 0643 | 1T 0.8%4 | 1B 0861 | 2B 0004
5 1% 0.324 | 11 0.06% | 12 0.586 | 13 0485 | 1B 0000
i 7 0521 | 11 0145 | 7 0.521 | 10 0.206 | 11 0.000
7 2 0.106 | 12 0.005 | 4 0.519 | 10 00zz | 9 0000
a T 0018 | &6 0045 | 3 0392 | 6 0045 ) 3 0011
g 1 0615 | 5 00313 0.148 | 7 0.008 | 4 0.002
1o 2 02291 0467 | 3 0084 | 2 0220 2 0007
20 - - - - - - - - 1 0000

(b) Duchenne Muscular Dystrophy (DMD)
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BATCH EFFECT-RESISTANT
FEATURE SELECTION

Goh & Wong, “Protein complex-based analysis is resistant to the obfuscating
consequences of batch effects”, BMC Genomics, 18(Suppl 2):142, 2017
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What if class and batch effects NUS
are strongly confounded?
 Batch-effect correction does not work well

* Inadvertently lose info on disease subpopulations
(which look like batch effects but are meaningful)

— Consider batch effect-resistant methods instead
of batch removal

* Protein complex-/ network-based feature
selection methods (SNET, FSNET, PFSNET, etc.)
exhibit strong reproducibility with high
phenotype specificity, maybe they are batch
resistant?

Talk at IPM, Tehran, August 2017 Copyright 2017 © Wong Limsoon



FSNET HEEER

w*
F
"
Fub

B(g,C)

— Proportion of tissues in class
C that have protein g among
their most-abundant proteins

Score(S,p,C) v

— Score of protein complex S

ajnuenp Jaddn N

and tissue p weighted based B(gi, C;) = fs(gi. i)
on class C ‘ phee, Gl
fSNET(S!X!Y!C)
— Complex S is differentially ~ score(S, ., C Zfé (9> pr) * B(g:, )
high in sample set X and low gi€S

in sample set Y, weighted

based on class C, when

fsner(S:XY,C) is at largest  fop1 (S, X, Y. C)) = —
extreme of t-distribution \/ O]y e )

mean(S, X, C;) — mean(S,Y, C})
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SNET and PFSNET

« SNET
— Predecessor of FSNET

— fs(g,p) is set to 1 if protein g is in top theta1% most abundant
proteins in tissue p

* PFSNET
— Successor of FSNET
— delta(S, p, X, Y) = score(S, p, X) —score(S, p, Y)

— mean(S, X, Y, 7)
: XY . Z)= :

where mean(S, X,Y,7) and se(S,X,Y,Z) are respectively the mean and
standard error of the list {delta(S,p., X,Y)|py is a tissue in Z}. The complex § is
considered significantly consistently highly abundant in X but not in Y if
fersnet (S, X, Y, X UY) is at the largest 5% extreme of the Student ¢-distribution.

Talk at IPM, Tehran, August 2017 Copyright 2017 © Wong Limsoon



Comparison with NUS
popular feature-selection methods™ ™

 SP is the protein-based two-sample t-test

« HE is a two-step procedure deploying SP first,
followed by the Fisher’s exact test on networks

« Significant artificial complexes are constructed
with various level of purity (i.e. proportion of
significant proteins in the complex). Equal # of
non-significant complexes are constructed as
well

Talk at IPM, Tehran, August 2017 Copyright 2017 © Wong Limsoon
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Control Samples Class D Class D* Class D Class D*
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o
o
0000 00 00-00 00

batches
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Simulations

 Real one-class data from a multiplex experiment (no batches); n =8
« Randomly assigned into two phenotype classes D and D*, 100x

« 20% biological features are assigned as differential, and a randomly
selected effect size (20%, 50%, 80%, 100% and 200%) added to D*

« Half of D and D* are assigned to batch 1, and the other half assigned
to batch 2. A randomly selected batch effect (20%, 50%, 80%, 100%
and 200%) is added to all features in batch 1

Talk at IPM, Tehran, August 2017 Copyright 2017 © Wong Limsoon
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National University
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F-score distributions
SNET and FSNET is
robust against batch
effects relative to
traditional methods
e.g. SP and HE

As a fairer
comparison, we
consider both
complex and
constituent protein
scenarios (SP does
not use complexes)

But how does it look
on real data?

Copyright 2017 © Wong Limsoon



Network-based methods are enriched NUS
for class-related variation (Real data)

of Singapore

A CCCCCCCC S P PC1 Batch B PC1 Class H E PC1 Batch H
7 _ e _ o Protein complexes used
o] [— o] ‘ 3 | = — ] —
8 = | ¥ —| —— T = as reference
I normal cancer I ;‘pj ;‘p? T normal can;cer T ;; re7p2

- e B L me e Side-by-side boxplots

S e e DR -|—J = stratified by class and

e T e e e batch tested on real data

S e W e P wee O ww  SNET and FSNET are

] T ’ " robust against batch

e - e effects, and only seems
,,,,,,,, to capture variation

of ] < = = °) —— ] ] — stemming from class

ﬁr ﬁ cancer ﬁr % % ﬁrz T cancer ﬁrz ? ? effeCtS
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Top complex-based features are NUS

strongly associated with class, not batch™™
Rank 1 Rank 2 Rank 3

E = == = = Q SNET and FSNET
= i c B can capture the class
j effects while being
BT robust against batch

In contrast, both class
and batch variability

BDQ SDQ 4 L = are present in the top
3 o * ; 21 * —C 1= | E ; variables selected by
normal  cancer normal  cancer  repi rep2 or  repl rep2 SP and HE

FFFFFF
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SUBPOPULATION-SENSITIVE
FEATURE SELECTION

Belorkar, Vadigepalli, Wong, “SPSNet: Subpopulation-sensitive network-based
analysis of heterogeneous gene expression data”, manuscript, 2017

Copyright 2017 © Wong Limsoon
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« While SNET, FSNET, PFSNET, etc. are batch-
effect resistant, they are design for feature-
selection from homogeneous phenotypes

 They loses sensitivity when the phenotypes are
heterogeneous subpopulations

Talk at IPM, Tehran, August 2017 Copyright 2017 © Wong Limsoon
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a Hypothesis N

 Each subpopulation in a heterogeneous dataset
should “uniquely dominate” a few subnetworks

— Subpopulation X dominates subnetwork Y if genes from Y
are highly expressed in subjects in X

— Subpopulation X uniquely dominates subnetwork Y if X
dominates Y, and no other subpopulation dominates Y

g

4 |dea

 For a subnetwork, use the top n subjects as a
reference for an undeclared subtype. Then run
_ PFSNET on this subnetwork using this reference Y,

~
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of Singapore

In each pathway, form subnetworks with each node
and its immediate neighbors (n > 5)

* ” |
=
1
1

0 Rank genes in the order of their expression, then fuzzify ﬂ

3
b
o
§
T
. Pathway 1 Pathway 2
For each subnetwork S,
] ® (
Flg,m) Flg.pe)) L Flg.p)
m w———); 5 ”Z 5 Blg,4) Z Al Compute two scores
ped | per patient
For each patient Compute group 9Seor N — ‘ a(
’ Select patients with §Score(p, Sk, C) = Z Flg,p) = B(g, 4)
fuzzy score avg. of top :averages rEIE_\"a"CEIfait[{’;S gESy
enes in a subnet using selecte . - .
genesin@su patients SSeore(p, S, T) = Y Flo.p) % 5(0, B)
gE Sy,
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T ! s Bl t-test
W
B |p < threshold —> S} signficantly DEl
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Recall & precision
on simulated

datasets

@

=
b

« SPSNET recalls more
planted significant
subnetworks than
PFSNET, while
keeping false positives
in check

=
o

=
n

Ratio of significant to generated subnets
o o o
L5 ] od -

=

=
(=1
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sgrlcantin 1 significant in 2 significantin 1 & 2 significant in neither
Subtype-wise significance

(c) Dataset 2: 40% subtype 1, 60% subtype 2

Method

. Prs
- = 55

—— e ——

sigrficant in 1 sigraficant in 2 signaficantin 1 & 2 sagnibcart in neither

Subtype-wise significance

(d) Dataset 2: 20% subtype 1, 80% subtype 2 i
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Isolating subpopulations

 Mix T-ALL + TEL-AML1 vs. normal

30 TEL-AML1 + 29 T-ALL | 30 TEL-AML1 + 20 T-ALL | 30 TEL-AML1 + 10 T-ALL
PFSNet 0.116 0.12 0.079
SPSNet 0.323 0.342 0.288

Silhouette scores based on PC1-3 of feature matrices built using scores of significant
subnetworks in PFSNET and SNET

« Mix two batches of HCC tumour vs non-tumour

Normal vs HCC (first 3 PCs, with batch labels) | Normal vs HCC (2%, 3¢ PC, without batch labels)
PFSNet 0.145 0.117
SPSNet 0.268 0.298

Silhouette scores based on PCA of feature matrices built using scores of significant subnetworks in PFSNET and SNET

« SPSNET is much better than PFSNET at
separating hidden subpopulations/batch effects

Talk at IPM, Tehran, August 2017 Copyright 2017 © Wong Limsoon
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(b) SPSNet — Normal vs. (30 TEL-AML1 + 29 T-ALL)
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Dataset 1+ Dataset 2 Dataset 1+ Dataset 2

SNal (PFSNet) (SPSNet)

TEL-AML1 T-ALL
vs. Contro vs. Control
(PFSNet) (PFSNet)

Dataset 1 Dataset 2
(PFSNet) (PFSNet)

30 TEL-AML1 + 29 T-ALL vs normal HCC two batches, tumour vs non-tumour

« SPSNET finds more subpopulation-specific
subnetworks than PFSNET

Talk at IPM, Tehran, August 2017 Copyright 2017 © Wong Limsoon
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SPSNET works when BINUS
there are >2 subpopulations too ~ ™

©
looe S g
L R
Simvastatin N.:lfcnopln 10.02 > - 10.02 g
(=]
Y Y len id S S
: eflunomide | o
000 = ¢ 000 o™
. !
- &8¢ o *,  Nsenopin
k002 A =0.02 ‘-:-
... L ™ o«
hinyl |
Control S [0.04 8 =0.04 8
<2 30 2
<20 P PP
; <" 10 2 . LU
40 - e - &
-30 2 P 0 ~ =20 0 3°
-10 , : < =10 rl,b?b L : a0
Pc 10 5 -20 q:\ C 1 10 10 \'.5
342 30 ~3 2 v
<1% Vari < 0 .9 6.49 % var: -8
FancG QC) anan Q(J

(b) ANOVA: across 6 modes of action

(a) SPSNet: across 6 modes of action

 Rat toxicogenomics RNA-seq : 1 control vs 5 drugs
« SPSNET (no drug info) works as well as ANOVA (w/

drug info)
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What have we learned?

« Common normalization methods have problems
— Fail to remove batch effects
— Remove subpopulation effects along with batch
— Introduce false effects

e GFS is a better normalization method
 SNET/FSNET/PFSNET are batch effect-resistant

« SPSNET is subpopulation-sensitive, works well
for datasets with undeclared heterogeneity

« These methods work well on microarray, RNA-
seq, and SWATH MS proteomics data
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