Some simple tactics for deriving a deeper analysis of data

Wong Limsoon

About Limsoon

Position

Kwan-Im-Thong-Hood-Cho-Temple Chair Professor, Dept of Computer Science, NUS

Research

Database systems & theory, knowledge discovery, bioinformatics & computational biology

Honours

- ACM Fellow
- FEER Asian Innovation Gold Award 2003
- ICDT Test of Time Award 2014

3

Part 1: Helpful analytics Simple mechanical tactics to make data analysis more insightful

Part 2: Exploratory hypothesis testing & analysis **Translating these tactics into datamining tasks**

Part 3: Art & science of data analysis Beyond the mechanical

Part 1: Helpful analytics

Make it easy to formulate hypothesis Extraction from big, integrated databases

Make hypothesis testing sound

Detection & correction of assumption violations

Find better hypothesis & explain why it is better E.g., "for men, taking A is better than B"

Keynote at ICCST 2017, Kuala Lumpur

Copyright 2017 © Wong Limsoon

5

6

A seemingly obvious conclusion

Context

Race = White

Occupation	Income>50K	Income<50K
Adm-clerical	439 (14%)	2,645~(86%)
Craft-repair	844 (23%)	2,850(77%)

The data shows that, in Australia, craft repairers tend to earn more than administrative clerks

23% of the former vs 14% of the latter has high income

A straightforward χ^2 test. Anything more/wrong?

Exception as deeper insight

 $\begin{array}{c} \text{Context} \\ \hline \text{Race} = \text{White}, \end{array}$

Work class = Self-emp-not-inc

Occupation	Income>50K	Income<50K
Adm-clerical	16 (35%)	30~(65%)
Craft-repair	90~(18%)	409 (82%)

The "unincorporated self-employed" work class is an exception to the conclusion that "craft repairers tend to earn more than administrative clerks"

Context	Occupation	Income > 50K	Income<50K
Race $=$ White,	Adm-clerical	251 (24%)	787~(76%)
Sex = Male	Craft-repair	829 (24%)	2,695(76%)

Context	Occupation	Income>50K	Income < 50 K
Race = White,	Adm-clerical	188 (9%)	1,858 (91%)
Sex = Female	Craft-repair	15 (9%)	155 (91%)

The conclusion "craft repairers tend to earn more than administrative clerks" holds for neither male nor female

The conclusion is an artefact of male earning more than female

8

9

Type of vaccines	Had flu	Avoided flu	total
1	43	237	280
II	52	198	250
III	25	245	270
IV	48	212	260
V	57	233	290
Total	225	1125	1350

A seemingly obvious conclusion

Vaccines I-V are not equal in efficacy

- 0.001 < χ 2 test p-value < 0.01 is significant

A straightforward χ 2 test. Anything more/wrong?

Computation of the $\chi 2$

Type of vaccines	Had flu	(O-E) ² /E	Avoided flu	(O-E) ² /E
Ι	43 (46.7)	0.293	237 (233.3)	0.059
II	52 (41.7)	2.544	198 (208.3)	0.509
III	25 (45.0)	8.889	245 (225.0)	1.778
IV	48 (43.3)	0.510	212 (216.7)	0.102
V	57 (48.3)	1.567	233 (241.7)	0.313
Total	225	13.803	1125	2.761

 Vaccine III contributes to the overall χ2= (8.889+1.778)/16.564 = 64.4%

χ^2 with Vaccine III removed

Type of vaccines	Had flu	Avoided flu	total
1	43	237	280
II	52	198	250
IV	48	212	260
V	57	233	290

- χ2 =2.983 with 3 d.f.
- 0.1<p<0.5, not statistically significant

Vaccine III is different from / better than the rest

Trendstrengthening subpopulation as deeper insight

Vaccine III vs. rest

Avoided

flu

245

880

1125

total

270

1080

1350

Had flu

25

200

225

• χ 2 =12.7 with 1 d.f.

Type of

vaccines

I, II, IV, V

• P < 0.001

Total

Ш

Keynote at ICCST 2017, Kuala Lumpur

Copyright 2017 © Wong Limsoon

Group							
SNP	Genotypes	Conti	rols [n(%)]	Cases	s [n(%)]	χ ²	P value
rs123	AA	1	0.9%	0	0.0%		4.78E-21 ^b
	AG	38	35.2%	79	97.5%		
	GG	69	63.9%	2	2.5%		

A seemingly obvious conclusion

Abbreviation: SNP, single nucleotide polymorphism.

A scientist claims the SNP rs123 is a great biomarker for a disease

- If rs123 is AA or GG, unlikely to get the disease
- If rs123 is AG, a 3:1 odd of getting the disease

A straightforward χ^2 test. Anything more/wrong?

Sample bias is revealed by domain logic

12

	Group						
SNP	Genotypes	Cont	rols [n(%)]	Case	s [n(%)]	χ²	P value
rs123	AA	1	0.9%	0	0.0%		4.78E-21 ^b
	AG	38	35.2%	79	97.5%		
	GG	69	63.9%	2	2.5%		

Abbreviation: SNP, single nucleotide polymorphism.

AG = 38 + 79 = 117, controls + cases = $189 \Rightarrow$ population is ~62% AG \Rightarrow population is >9% AA, unless AA is lethal

"Big data check" shows AA is non-lethal for this SNP ⇒ sample is biased

Keynote at ICCST 2017, Kuala Lumpur

13

Think in terms of contingency tables

What have we learned? Look for subpopulations causing exception, contradiction, and/or trend strengthening

Some times must also use simple domain logic to detect problems Can we do these

automatically

-and efficiently?

Part 2: Exploratory hypothesis testing & analysis

The gist of hypothesis generation

15

Hypothesis

A comparison of two samples

More informative than patterns and rules

 Users not only get to know what is happening but also when or why it is happening

Help users understand what is interesting about their data

Hypothesis mining algorithms

GUI for visualization and summarization

Conventional hypothesis generation

16

• How?

- Collect data and eye ball a pattern!

PID	Race	Sex	Age	Smoke	Stage	Drug	Response
1	Caucasian	Μ	45	Yes	1	А	positive
2	Chinese	М	40	No	2	А	positive
3	African	F	50	Yes	2	В	negative
Ν	Caucasian	М	60	No	2	В	negative

Limitation

Scientist has to think of a hypothesis first Just a few hypotheses got tested at a time

So much data have been collected ...

No clue on what to look for

Keynote at ICCST 2017, Kuala Lumpur

Exploratory hypothesis testing

17

Data-driven hypothesis generation

- Have a dataset but dunno what hypotheses to test
- Use computational methods to automatically formulate and test hypotheses from data

Problems to be solved

- How to formulate hypotheses?
- How to automatically generate & test hypotheses?

Formulation of a hypothesis

18

"For Chinese, is drug A better than drug B?"

Three components of a hypothesis:

- Context (under which the hypothesis is tested)
 - Race: Chinese
- Comparing attribute
 - Drug: A or B
- Target attribute/target value
 - Response: positive

{{Race=Chinese}, Drug=A|B, Response=positive}

Generating a hypothesis: Think in terms of contingency tables

19

{{Race=Chinese}, Drug=A|B, Response=positive>

To test this hypothesis we need info:

- N^A =support({Race=Chinese, Drug=A})
- N^A_{pos} =support({Race=Chinese, Drug=A, Res=positive})
- N^B =support({Race=Chinese, Drug=B})
- N^B_{pos} =support({Race=Chinese, Drug=B, Res=positive})

Context	Comparing Attribute	response= positive	response= negative
(Pass-Chinese)	Drug=A	N ^A _{pos}	$N^A - N^A_{pos}$
{Race=Chinese}	Drug=B	N ^B _{pos}	$N^B - N^B_{pos}$

⇒ Frequent pattern mining

Keynote at ICCST 2017, Kuala Lumpur

Need for hypothesis analysis

20

Lots of contingency tables (i.e. hypotheses) can be generated quickly ...

- Exploration is not guided by domain knowledge
 Sourieus by pathages have to be aliminated
- \Rightarrow Spurious hypotheses have to be eliminated
- Reasons behind significant hypotheses
- \Rightarrow Find attribute-value pairs that affect the test statistic a lot

Alternatively, generate & explore hypotheses incrementally, starting from the most general?

Spurious hypotheses detected by looking at subpopulations

	response= positive	response= negative	proportion of positive response
Drug=A	890	110	89.0%
Drug=B	830	170	83.0%
Drug=A, Stage=1	800	80	90.9%
Drug=B, Stage=1	190	10	95%
Drug=A, Stage=2	90	30	75%
Drug=B, Stage=2	640	160	80%

Simpson's Paradox

"Stage" has assoc w/ both "drug" & "response"

- Doc's tend to give drug A to patients at stage 1, & drug B to patients at stage 2
- Patients at stage 1 are easier to cure than patients at stage 2

Attribute "stage" is called a confounding factor

Keynote at ICCST 2017, Kuala Lumpur

Reasons for significant hypothese NUS ... found by looking at subpopulations

	Failure rates
Product A	4%
Product B	2%
Product A, time-of-failure=loading	6.0%
Product B, time-of-failure=loading	1.9%
Product A, time-of-failure=in-operation	2.1%
Product B, time-of-failure=in-operation	2.1%
Product A, time-of-failure=output	2.0%
Product B, time-of-failure=output	1.9%

Problem is narrowed down

Product A has exceptionally higher failure rate than product B only at the loading phase

22

Algorithm for hypothesis generation

23

A hypothesis is a comparison between two or more sub-populations, and each sub-population is defined by a pattern

Step 1: Use freq pattern mining to enumerate large sub-populations and collect their statistics

Stored in the CFP-tree structure, which supports efficient subset/superset/exact search

Step 2: Pair sub-populations up to form hypotheses, and then calculate their p-values

- Use each freq pattern as a context
- Search for immediate supersets of the context patterns, and then pair these supersets up to form hypotheses

Algo for rough hypothesis analysi sigapore

Given a hypothesis H

Add values of an extra attribute A to context of H

Re-calculate test statistic

- Test statistic is reversed

 Exception?
- Test statistic becomes insignificant
 Contradiction?
- Test statistic is strengthened
 Better explanation?

All done via immediate superset search on frequent patterns

- A frequent pattern ≈ a population
- A superset of a frequent pattern ≈ a subpopulation

24

Liu, et al. "Supporting exploratory hypothesis testing and analysis". *ACM Transactions on Knowledge Discovery from Data*, 9(4):Article 31, 2015

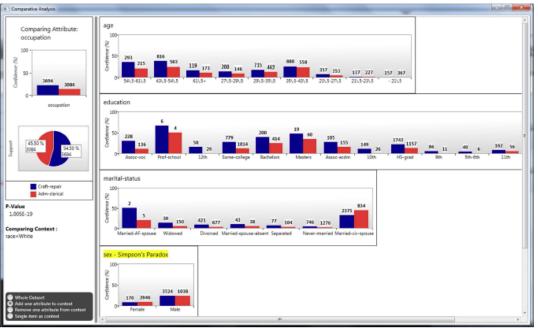
Examples

ID	Gender	Education	Occupation	Income
1	F	Bachelor	Adm-clerical	>50K
2	М	High-School	Sales	≤50K

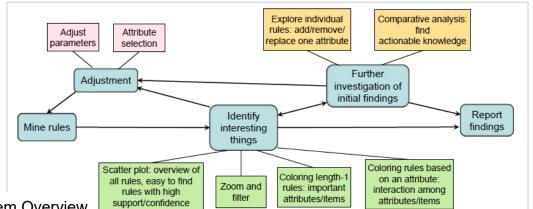
An example dataset

Typical questions:

- Which groups of people are more likely to have a high income?
- 2. Which attributes are important to income?
- 3. What is the effect of "Education" on income with respect to other attributes?
- 4. Women earn less than men in general. How can women have a high income?



Comparative analysis



System Overview

Keynote at ICCST 2017, Kuala Lumpur

Copyright 2017 Strong Limsoon

25

of Singapore

Experiment settings

26

PC configurations

2.33Ghz CPU, 3.25GB memory, Windows XP

Datasets

mushroom, adult: UCI repository

DrugTestl, DrugTestll: *study assoc betw SNPs in several genes & drug responses*

Datasets	#instances	#continuous attributes	#categorical attributes	A _{target} ∕∨ _{target}
adult	48842	6	9	class=>50K (nominal)
mushroom	8124	0	23	class=poisonous (nominal)
DrugTestl	141	13	74	logAUCT (continuous)
DrugTestII	138	13	74	logAUCT (continuous)

Keynote at ICCST 2017, Kuala Lumpur

Copyright 2017 © Wong Limsoon

Running time

27

Three phases

Frequent pattern mining Hypothesis generation Hypothesis analysis

Datasets	min_sup	min_diff	GenH	AnalyzeH	AvgAnalyzeT	#tests	#signH
adult	500	0.05	0.42 s	6.30 s	0.0015 s	5593	4258
adult	100	0.05	2.69 s	37.39 s	0.0014 s	41738	26095
mushroom	500	0.1	0.67 s	19.00 s	0.0020 s	16400	9323
mushroom	200	0.1	5.45 s	123.47 s	0.0020 s	103025	61429
DrugTestl	20	0.5	0.06 s	0.06 s	0.0031 s	3627	20
DrugTestII	20	0.5	0.08 s	0.30 s	0.0031 s	4441	97

max_pvalue = 0.05

Part 3: Art & science of data analysis



29

There is only so much a data mining or hypothesis exploration system can do for you automatically

You need to do some logical thinking when using these systems or looking at their outputs

- Don't ignore non-associations
- Don't ignore context
- Ensure a conclusion is independent of other factors

And your data may be telling more than you think

We tend to ignore non-association

Many technologies for association and correlation mining

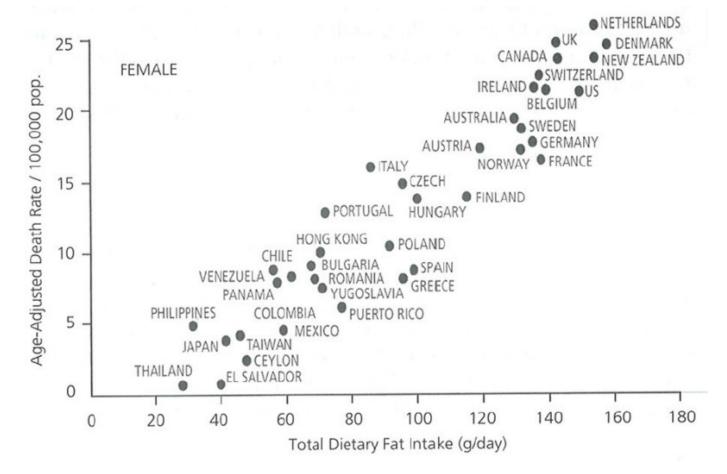
- Frequent patterns
- Association rules

But ignore nonassociations

- Not interesting
- Too many of them
- Is this a good thing?

How many animals do you see?

30



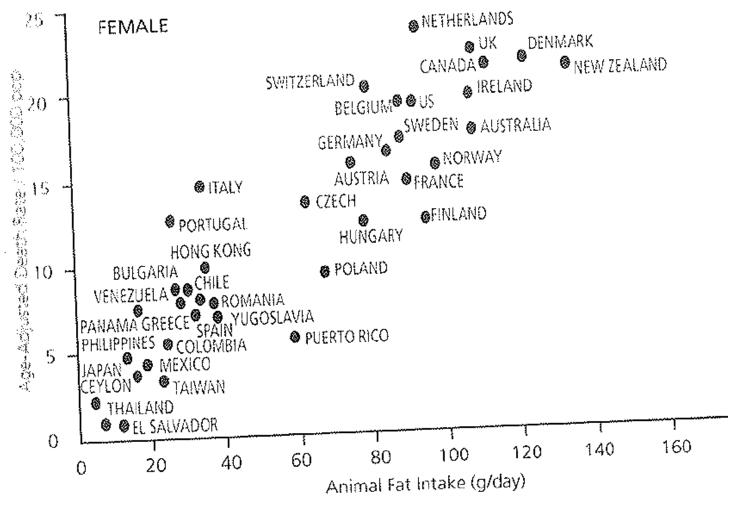
Dietary fat intake correlates with breast cancer

Copyright 2017 © Wong Limsoon

31

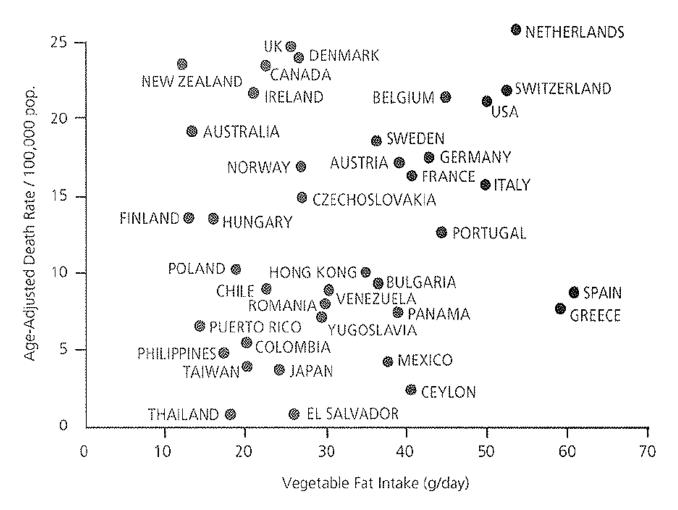
32

And like this...



Animal fat intake correlates with breast cancer

But not non-correlations like this.



Plant fat intake doesn't correlate with breast cancer

33

of Singapore

34

There is much to be gained when we take both into our analysis

A: Dietary fat intake correlates with breast cancer

B: Animal fat intake correlates with breast cancer

C: Plant fat intake doesn't correlate with breast cancer ⇒ Given C, we can eliminate A from consideration, and focus on B!

We tend to ignore context!

35

We have many technologies to look for associations and correlations

- Frequent patterns
- Association rules

We tend to assume the same context for all patterns and set the same global threshold

- This works for a focused dataset
- But for big data where you union many things, this spells trouble

The right context

36

{{Race=Chinese}, Drug=A|B, Response=positive}

Context	Comparing attribute	response= positive	response= negative
	Drug=A	N ^A _{pos}	$N^A - N^A_{pos}$
{Race=Chinese}	Drug=B	N ^B _{pos}	$N^B - N^B_{pos}$

If A/B treat the same single disease, it is ok

If B treats two diseases, but A one, it is not sensible

 \Rightarrow The disease has to go into the context

We don't check independence

37

In clinical testing, we carefully choose the sample to ensure the test is independent of other factors

- Patients are not related
- Similar # of male/female, young/old, ... in cases and controls

	Α	В
lived	60	65
died	100	165

Note that sex, age, ... don't need to appear in the contingency table

In big data analysis, and in many datamining works, people hardly ever do this!

What is happening here?

Overall

	Α	В
lived	60	65
died	100	165

Looks like treatment A is better

Women

Men

	Α	В
lived	40	15
died	20	5

A B lived 20 50 died 80 160

History of heart disease

	A	В
lived	10	5
died	70	50

No history of heart disease

	Α	В
lived	10	45
died	10	110

Looks like treatment B is better

Looks like treatment A is better

of Singapore

A/B sample not identical in other attributes

39

Overall

	A	В
lived	60	65
died	100	165

Women

	Α	В
lived	40	15
died	20	5

History of heart disease

	А	В
lived	10	5
died	70	50

Men

	A	В
lived	20	50
died	80	160

No history of heart disease

	Α	В
lived	10	45
died	10	110

Taking A

- Men = 100 (63%)
- Women = 60 (37%)

Taking **B**

- Men = 210 (91%)
- Women = 20 (9%)

Men taking A

- History = 80 (80%)
- No history = 20 (20%)

Men taking B

- History = 55 (26%)
- No history = 155 (74%)

Keynote at ICCST 2017, Kuala Lumpur

Copyright 2017 © Wong Limsoon

	Rome	Latina	Frosinone	Viterbo	Rieti
Amsterdam	430	447	449	415	409
Athens	347	321	331	346	364
Barcelona	283	305	293	292	271
Beograd	227	222	236	220	238
Berlin	393	400	409	374	373
Bern	227	249	247	220	205
Bonn	353	370	372	339	330
Bruselles	388	406	406	371	365
Bucharest	364	355	368	359	378
Budapest	268	261	274	246	259
Calais	418	448	446	418	405
Copenhagen	510	522	527	492	491
Dublin	622	645	641	615	600
Edinburgh	637	655	655	625	615
Frankfurt	318	333	336	302	295
Hamburg	435	448	453	417	414
Helsinki	727	729	739	706	713
Istanbul	452	430	443	443	464
Lisbon	615	637	622	624	604
London	474	494	493	464	456
Luxembourg	325	346	346	315	307
Madrid	449	470	458	460	440
Marseille	200	223	213	202	183
Moscow	782	773	785	759	774
Munich	230	245	250	216	213
Oslo	664	675	682	646	645
Paris	365	386	383	357	343
Prague	305	313	320	286	290
Sofia	294	273	286	280	301
Stockholm	653	658	668	632	636
Warsaw	435	433	444	413	421
Vienna	255	254	265	233	240
Zurich	227	246	246	214	205

Distances of European cities (km) from the main cities of Latium

Madrid and Warsaw are at almost the same distance to Latium cities

Are Madrid and Warsaw near each other?

Giuliani et al., Physics Letters A, 247:47-52, 1998

PCA of distance matrix of European cities to Latium cities

Factor loadings and proportions of explained variance

Variables	Components						
	PCI	PC2	PC3	PC4	PC5		
Rome	0.9997	0.0137	-0.0184	-0.0120	0.0001		
Frosinone	0.9973	-0.0715	0.0132	0.0011	0.0029		
Latina	0.9987	-0.0420	-0.0272	0.0058	-0.0024		
Rieti	0.9909	0.0162	0.0393	-0.0009	-0.0023		
Viterbo	0.9964	0.0837	-0.0070	0.0060	0.0017		
Explained variance	0.9965	0.0029	0.000569	0.000043	0.000005		

PC1 accounts for >99% of variance

PC1 correlates with distance of European cities to Latium cities

PC2, PC3, ... account for < 1% of variance

Are PC2, PC3, ... useless / non-informative?

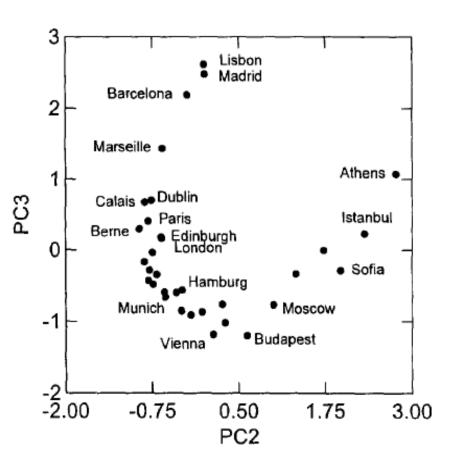
Keynote at ICCST 2017, Kuala Lumpur

Copyright 2017 © Wong Limsoon

42

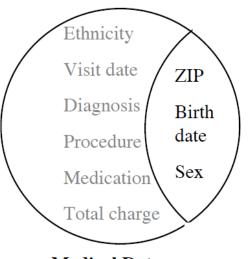
PC2 & PC3 are the angular orientation of European cities centered on Latium

So you can tell Madrid is not near Warsaw



Is anonymized data really anonymous?

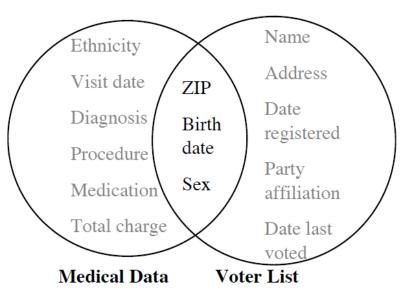
43



Medical Data

The National Association of Health Data Organizations (NAHDO) reported that 37 states in the USA have legislative mandates to collect hospital level data and that 17 states have started collecting ambulatory care data from hospitals, physicians offices, clinics, and so forth [2]. The leftmost circle in Figure 1 contains a subset of the fields of information, or *attributes*, that NAHDO recommends these states collect; these attributes include the patient's ZIP code, birth date, gender, and ethnicity.

In Massachusetts, the Group Insurance Commission (GIC) is responsible for purchasing health insurance for state employees. GIC collected patientspecific data with nearly one hundred attributes per encounter along the lines of the those shown in the leftmost circle of Figure 1 for approximately 135,000 state employees and their families. Because the data were believed to be anonymous, GIC gave a copy of the data to researchers and sold a copy to industry [3]. Latanya Sweeney inferred the governor's medical record by linking the GIC record to Voter list!



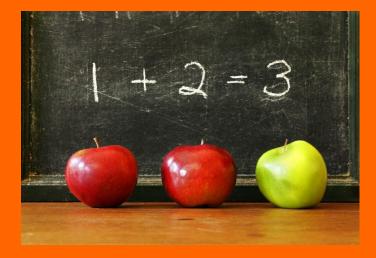
44

For twenty dollars I purchased the voter registration list for Cambridge Massachusetts and received the information on two diskettes [4]. The rightmost circle in Figure 1 shows that these data included the name, address, ZIP code, birth date, and gender of each voter. This information can be linked using ZIP code, birth date and gender to the medical information, thereby linking diagnosis, procedures, and medications to particularly named individuals.

For example, William Weld was governor of Massachusetts at that time and his medical records were in the GIC data. Governor Weld lived in Cambridge Massachusetts. According to the Cambridge Voter list, six people had his particular birth date; only three of them were men; and, he was the only one in his 5-digit ZIP code.

Sweeney, "k-anonymity: A model for protecting privacy", *Int J Unc Fuzz Knowl Based Syst*, 10:557-570, 2002

Summary



What have we learned?

46

Part 1: Simple tactics to get deeper insight from data

Part 2: These tactics can be realized using frequent pattern mining

Part 3: It is often logic that triumphs in data analysis, not mechanical use of datamining, machine learning, and statistical methods

Good to read

47

Guimei Liu, Haojun Zhang, Mengling Feng, Limsoon Wong, See-Kiong Ng. **Supporting exploratory hypothesis testing and analysis**. *ACM Transactions on Knowledge Discovery from Data*, 9(4):Article 31, April 2015

Wei Zhong Toh, Kwok Pui Choi, Limsoon Wong. **Redhyte: A selfdiagnosing, self-correcting, and helpful hypothesis analysis platform**. *Journal of Information and Telecommunication*, 1(3):241--258, July 2017

Limsoon Wong. **Big data and a bewildered lay analyst**. *Statistics* & *Probability Letters*, to appear