
A Retrospective on

Naturally Embedded Query Languages

Peter Buneman, Val Tannen,

Limsoon Wong

ICDT2014 Copyright 2014 © Limsoon Wong

2

Outline

• Design of query languages

• Engineering data integration systems

• Understanding expressive power

• Exploring intensional expressive power

• Adding annotations

• Open problems

ICDT2014 Copyright 2014 © Limsoon Wong

3

DESIGN OF QUERY

LANGUAGES

ICDT2014 Copyright 2014 © Limsoon Wong

4

Two ways to

develop query

languages

ICDT2014 Copyright 2014 © Limsoon Wong

5

Structural Recursion

• Let u : t  t  t, f : s  t, and e : t be such that  t,

u, e forms a commutative idempotent monoid.

Then there is a unique h : {s}  t satisfying

• Such a h is said to be defined by structural

recursion on the union representation of sets.

Denote this h by sru(u, f, e)

ICDT2014 Copyright 2014 © Limsoon Wong

6

MapReduce is Structural Recursion

• sru(u, f, e) {o1, …, on} = f(o1) u … u f(on) u e

• The function f is “map”; it is applied (in parallel)

to all elements in the input set

• The function u is “reduce”; it is applied (in

parallel) to combine the results of the map

ICDT2014 Copyright 2014 © Limsoon Wong

7

Examples

• Structural recursion is expressive and can be

used to write relatively efficient queries

ICDT2014 Copyright 2014 © Limsoon Wong

8

• But  t, u, e has to be a commutative idempotent

monoid in order for sru(u, f, e) to be well defined

on sets. E.g., sru(+, x.1, 0) is not well defined

Restrict use of structural recursion to sru(, f, {}),

which is always well defined

More considerations in (Tannen, Subrahmanyam, ICALP91)

ICDT2014 Copyright 2014 © Limsoon Wong

9

Nested Relational Calculus (NRC)

• Types

• Expressions

where {e1 | x  e2} = sru(, x.e1, {})(e2)

ICDT2014 Copyright 2014 © Limsoon Wong

10

• These operations are expressible in NRC: Project,

Join, Union, Select, Difference, Intersect, Unnest,

Nest. E.g.:

• Theorem 1 (Tannen, Buneman, Wong, ICDT92)

 NRC has the same expressive power as the

algebras of Schek&Scholl, Thomas&Fischer, etc.

NRC is equivalent to …

ICDT2014 Copyright 2014 © Limsoon Wong

11

Comprehension Syntax

• Translating into comprehension syntax

{e1 | x  e2} = { y | x  e2, y  e1}

• Translating from comprehension syntax

{ e1 | x  e2,  } = { {e1 |  } | x  e2}

{ e1 | C, } = if C then {e1 |  } else { }

{ e1 | } = { e1 }

Treat comprehension as a nice syntactic sugar

Further articulation in (Buneman, Libkin, Suciu, Tannen, Wong, SIGMOD Record 94)

ICDT2014 Copyright 2014 © Limsoon Wong

12

ENGINEERING DATA

INTEGRATION SYSTEMS

ICDT2014 Copyright 2014 © Limsoon Wong

13

Kleisli Query System

• Nested set/bag/list model

• Self-describing data

exchange format

• Lots of thin wrappers

• High-level query language

with type inference

• Powerful query optimizer

• Nested set/bag/list store

Buneman, Davidson, Hart, Overton, Wong, VLDB95

Wong, ICFP00

ICDT2014 Copyright 2014 © Limsoon Wong

14

US DOE “Impossible Query”, 1993

• For each gene on a given cytogenetic band, find

its non-human homologs

source type location remarks

GDB Sybase Baltimore Flat tables
SQL joins
Location info

Entrez ASN.1 Bethesda Nested tables
Keywords
Homolog info

ICDT2014 Copyright 2014 © Limsoon Wong

15

sybase-add (#name:”GDB", ...);

create view L from locus_cyto_location using GDB;

create view E from object_genbank_eref using GDB;

select

 #accn: g.#genbank_ref, #nonhuman-homologs: H

from

 L as c, E as g,

 {select u

 from g.#genbank_ref.na-get-homolog-summary as u

 where not(u.#title string-islike "%Human%") &

 not(u.#title string-islike "%H.sapien%")} as H

where

 c.#chrom_num = "22” &

 g.#object_id = c.#locus_id &

 not (H = { });

Solution in Kleisli

• Using Kleisli:

– Clear

– Succinct

– Efficient

• Handles

– Heterogeneity

– Complexity

ICDT2014 Copyright 2014 © Limsoon Wong

16

UNDERSTANDING

EXPRESSIVE POWER

ICDT2014 Copyright 2014 © Limsoon Wong

17

Conservative Extension Property

A language L has conservative extension property if

 for every function f definable in L,

 there is an implementation f* of f in L such that

 for any input i and corresponding output o,

 each intermediate data item created
 in the course of executing f* on i to

 produce o has set nesting complexity

 no more than that of i and o

ICDT2014 Copyright 2014 © Limsoon Wong

18

Expressive Power of NRC

• Theorem 2 (Wong, PODS93)

 NRC has the conservative extension property

• Corollary 3

 Every function from flat relations to flat relations

expressible in NRC is expressible in relational

algebra

ICDT2014 Copyright 2014 © Limsoon Wong

19

Proof Idea

• Strongly normalizing

rewrite system

• Vertical loop fusion

ICDT2014 Copyright 2014 © Limsoon Wong

20

Theoretical Reconstruction of SQL

• Expressions of NRC(Q,+,•,–,,,=, Q) are those of

NRC plus the followings

• Here  {| e1 | x  e2 |} = f(o1) + … + f(on), where f is

the function f(x) = e1 and {o1, …, on} is the set e2

ICDT2014 Copyright 2014 © Limsoon Wong

21

Example Aggregate Functions

• Count the number of records

 count(R) := {| 1 | x  R |}

• Total the first column

 total1(R) := {| 1 x | x  R |}

• Average of the first column

 ave1(R) := total1(R)  count(R)

• A totally generic query expressible in SQL but

inexpressible in FO(=)

 eqcard(R,S) := count(R) = count(S)

ICDT2014 Copyright 2014 © Limsoon Wong

22

Expressive Power of NRC(Q,+,•,–,,,=, Q)

• Theorem 4 (Libkin, Wong, DBPL93)

 NRC(Q,+,•,–,,,=, Q) has the conservative

extension property

• Corollary 5

 Every function from flat relations to flat relations

is expressible in NRC(Q,+,•,–,,,=, Q) iff it is also

expressible in “entry-level” SQL

ICDT2014 Copyright 2014 © Limsoon Wong

23

Finite/Co-finite Property I

• Theorem 6 (Libkin, Wong, DBPL93)

Let P : Q  B be a predicate definable in

NRC(Q,+,•,–,,,=, Q). Then either P holds for

finitely many natural numbers or P fails for

finitely many natural numbers

• Corollary 7

NRC(Q,+,•,–,,,=, Q) cannot test whether a

natural number is even or odd

ICDT2014 Copyright 2014 © Limsoon Wong

24

Proof Idea

• P : Q  B has height 0. By conservative

extension property on NRC(Q,+,•,–,,,=, Q), any

implementation of it in NRC(Q,+,•,–,,,=, Q) is

equivalent to one that does not use sets. Such an

implementation must be equivalent to something

like

• Finite/co-finiteness then follows from the fact that

polynomials have finite number of roots

ICDT2014 Copyright 2014 © Limsoon Wong

25

• Theorem 8 (Libkin, Wong, PODS94)

Let P : {b  b}  B be a predicate definable in

NRC(Q,+,•,–,,,=, Q). Then there is a h such that

either P holds for all h-multi-cycles or P fails for

all h-multi-cycles

• Corollary 9

NRC(Q,+,•,–,,,=, Q) cannot test the parity of a

set and cannot express transitive closure

h-multi-cycle

Finite/Co-finite Property II

ICDT2014 Copyright 2014 © Limsoon Wong

26

Locality Property

A language L has locality property if the result of

every flat relational query f definable in L is

determined by a small neighbourhood of its input

I.e., for all flat relational query expression e[R] in L,

there is a finite number r such that,

for all = A,O in STRUCT[R],

for all two m-ary vectors a and b of elements in ,

 Nr (a)  Nr (b) implies

 a  e[O/R] if and only if b  e[O/R]

Notations: Nr (b) means the neighbourhood of b in , up to a radius r.

ICDT2014 Copyright 2014 © Limsoon Wong

27

Bounded Degree Property

A language L has bounded degree property if

 for every function f, on graphs, definable in L, and

 for any number k,

 there is a number c such that

 for any graph G with deg(G) { 0, 1, …, k},

 it is the case that c  card(deg(f(G)))

That is, L cannot define a function that produces complex

graphs from simple graphs

ICDT2014 Copyright 2014 © Limsoon Wong

28

Expressive Power of NRC(Q,+,•,–,,,=, Q)

• Theorem 10 (Dong, Libkin, Wong, ICDT97)

NRC(Q,+,•,–,,,=, Q) has the locality property,

when restricted to flat relational queries on input

structures of degree less than some fixed k

• Theorem 11 (Dong, Libkin, Wong, ICDT97)

Every language that has the locality property

also has the bounded degree property

• Theorem 12 (Dong, Libkin, Wong, ICDT97)

NRC(Q,+,•,–,,,=, Q) has the bounded degree

property

ICDT2014 Copyright 2014 © Limsoon Wong

29

EXPLORING INTENSIONAL

EXPRESSIVE POWER

ICDT2014 Copyright 2014 © Limsoon Wong

30

What is intensional expressive power?

• Saying a function with linear complexity is

expressible in a given query language is not the

same as saying its implementation in that query

language has linear complexity

I.e., we are looking at

• What the algorithms expressible in a query

language are,

• Rather than what the functions expressible in a

query language are

ICDT2014 Copyright 2014 © Limsoon Wong

31

NRC(powerset)

NRC cannot

express recursive

queries. Adding a

powerset operation

enables this.

ICDT2014 Copyright 2014 © Limsoon Wong

32

Operational

Semantics

ICDT2014 Copyright 2014 © Limsoon Wong

33

Recursive queries are costly in

NRC(powerset)

• Theorem 13 (Suciu, Paredaens, PODS94)

Any implementation of transitive closure in

NRC(powerset) must use exponential space

• Theorem 14 (Van den Bussche, TCS01)

Every flat relational query on unary schemas in

NRC(powerset) is either already expressible in

NRC w/o using the powerset operation or must

use exponential space

• Theorem 15 (Biskup, Paredaens, Schwentick, Van den Bussche, SIAM J Comput 04)

Any implementation of set parity in the “Equation

Algebra” must use exponential space

ICDT2014 Copyright 2014 © Limsoon Wong

34

• These intensional expressive power results are

quite query specific, and their proofs are not

easily “portable” to other queries

ICDT2014 Copyright 2014 © Limsoon Wong

35

ICDT2014 Copyright 2014 © Limsoon Wong

36

ICDT2014 Copyright 2014 © Limsoon Wong

37

Dichotomy Theorem

• Theorem 16 (Wong, PODS13)

Let f be a flat relational query in NRC(Q,+,•,–
,,,=, Q, powerset) on structures from a class

where (i) is severely dichotomous and (ii) its

structures have degree  k. Then either f is

already expressible in NRC(Q,+,•,–,,,=, Q) or

must use exponential space

• Corollary 17

All implementations of transitive closure, set

parity, etc. in NRC(Q,+,•,–,,,=, Q, powerset)

must use exponential space

ICDT2014 Copyright 2014 © Limsoon Wong

38

This theorem generalizes earlier intensional

expressive power results

• Works for all queries on “severely dichotomous”

structures

• Works for a more powerful query language

• Uses a proof technique that is “portable”

ICDT2014 Copyright 2014 © Limsoon Wong

39

Another form of structural recursion

mentioned in our ICDT92 paper

• Semantics

• In short…

ICDT2014 Copyright 2014 © Limsoon Wong

40

Equivalence

• Proposition 18 (Suciu, Wong, ICDT95)

There are uniform translations between NRC(sru)

and NRC(sri). So for any set of external functions

, we have NRC(sru, ) = NRC(sri, )

• Our uniform sri  sru translation is expensive

ICDT2014 Copyright 2014 © Limsoon Wong

41

Some sri queries cannot be parallelized

• Theorem 19 (Suciu, Wong, ICDT95)

Any uniform translation of NRC(sri) queries to

NRC(sru) / NRC(hom) must map some PTIME

queries into EXPSPACE ones

• In fact, in the presence of certain external

functions, there is a PTIME NRC(sri) query for

which every equivalent NRC(sru) / NRC(hom) query

requires EXPSPACE

ICDT2014 Copyright 2014 © Limsoon Wong

42

NC is strictly in PTIME?

• Theorem 20 (Tannen, Suciu, PODS94)

– NRC1(hom, ) captures NC

– NRC1(sri, ) captures PTIME

• Corollary 21 (Suciu, Wong, ICDT95)

There is no uniform translation of a language for

PTIME into a language for NC

Notations: NRC1 = the flat-types fragment of NRC

ICDT2014 Copyright 2014 © Limsoon Wong

43

A cute result on lists

• Treat {} as empty list, {e} as singleton list,  as

list concatenation. Then NRC(sru) and NRC(sri)

become query languages for list

• Theorem 20

The zip : {b}  {b}  {b  b} function cannot be

implemented in NRC(sru) and NRC(sri) in

O(min(m, n)) time, where (m, n) are length of the

two input lists to zip

ICDT2014 Copyright 2014 © Limsoon Wong

44

Proof Idea

• Suppose zip can be implemented in O(min(m,n))

time. Then head : {b}  {b} can be implemented

in constant time in NRC(sri)

 head (L) = sri (x.{1 x}, {}) (zip (L, {{}}))

• But it is easy to show that head cannot be

implemented in NRC(sri) in constant time

ICDT2014 Copyright 2014 © Limsoon Wong

45

ADDING ANNOTATIONS

ICDT2014 Copyright 2014 © Limsoon Wong

46

What are annotations

• Data can be annotated for many reasons

– Confidentiality policy

• Public < Confidential < Secret < Top Secret < 0

– Provenance

– Probability

– Uncertainty

• It is desirable to propagate annotations on source

tuples to query results

ICDT2014 Copyright 2014 © Limsoon Wong

47

Example

• “Thesis” 21 (Green, Karvounarakis, Tannen, PODS07)

The propagation of a rich variety of annotations

can be expressed as a semi-ring K, +, *, 0, 1

ICDT2014 Copyright 2014 © Limsoon Wong

48

How to

propagate

annotations

for positive

NRC

• Theorem 22 (Foster, Green, Tannen, PODS08)

If h : K1  K2 is a homomorphism of semi-rings

then h(e(v)) = h(e)(h(v))

ICDT2014 Copyright 2014 © Limsoon Wong

49

Finer Notions of Provenance

a) (select * from R where A <> 1) union

(select A, 5 as B from R where A = 1)

b) update R set B = 5 where A = 1

c) delete from R where A = 1;

insert into R values (1, 5)

Copying

Kind Preserving
If output item has same

color as input item then

they are of the same

kind: both sets, both

tuples, or identical atoms

ICDT2014 Copyright 2014 © Limsoon Wong

50

NRL(color) = NRC + NUL

• Add these NUL constructs for updates to NRC

• Add a new type “color” to indicating provenance

annotations

–  is color to mean “newly created”

– write s to mean type with provenance annotations

ICDT2014 Copyright 2014 © Limsoon Wong

51

Provenance Semantics

ICDT2014 Copyright 2014 © Limsoon Wong

52

Provenance-Aware DB Operations

• f : s  t is color propagating if f does not let input

colors influence the uncolored part of the output

and f is insensitive to actual colors used

• f : s  t is bounded inventing if f does not create

many new values

• A provenance-aware db operation (pado) is a

color-propagating and bounded-inventing

function f : s  t

ICDT2014 Copyright 2014 © Limsoon Wong

53

Soundness and Completeness

• Theorem 23 (Buneman, Cheney, VanSummeren, ICDT07)

Every function is in CP if and only if it is in PNRC

• Theorem 24 (Buneman, Cheney, VanSummeren, ICDT07)

Every function is in KP if and only if it is in PNUL

ICDT2014 Copyright 2014 © Limsoon Wong

54

OPEN PROBLEMS

ICDT2014 Copyright 2014 © Limsoon Wong

55

Maybe you know the answer …

• In the presence of an order on base types,

– Locality theorem becomes useless

– Bounded degree property fails

– Dichotomy theorem fails

Can this be fixed?

• Is there a PTIME query in NRC(sri) that has no

PTIME equivalent in NRC(sru) in the absence of

external functions? Is transitive closure such a

query?

