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Outline  

• Design of query languages 
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DESIGN OF QUERY 

LANGUAGES 
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Two ways to 

develop query 

languages 
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Structural Recursion 

• Let u : t  t  t, f : s  t, and e : t be such that  t, 

u, e  forms a commutative idempotent monoid. 

Then there is a unique h : {s}  t satisfying 

 

 

 

 

• Such a h is said to be defined by structural 

recursion on the union representation of sets. 

Denote this h by sru(u, f, e) 
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MapReduce is Structural Recursion 

• sru(u, f, e) {o1, …, on} = f(o1) u … u f(on) u e 

 

• The function f is “map”; it is applied (in parallel) 

to all elements in the input set 

 

• The function u is “reduce”; it is applied (in 

parallel) to combine the results of the map 
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Examples 

• Structural recursion is expressive and can be 

used to write relatively efficient queries 

 

 

 

 
 



ICDT2014 Copyright 2014 © Limsoon Wong 

8 

• But  t, u, e has to be a commutative idempotent 

monoid in order for sru(u, f, e) to be well defined 

on sets. E.g., sru(+, x.1, 0) is not well defined 

 
 

Restrict use of structural recursion to sru(, f, {}), 

which is always well defined 

More considerations in (Tannen, Subrahmanyam, ICALP91) 
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Nested Relational Calculus (NRC) 

• Types 

 

• Expressions 

where {e1 | x  e2} = sru(, x.e1, {})(e2) 
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• These operations are expressible in NRC: Project, 

Join, Union, Select, Difference, Intersect, Unnest, 

Nest. E.g.: 

 

 

 

 

 
 

• Theorem 1 (Tannen, Buneman, Wong, ICDT92) 

 NRC has the same expressive power as the 

algebras of Schek&Scholl, Thomas&Fischer, etc. 

 

NRC is equivalent to … 
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Comprehension Syntax 

• Translating into comprehension syntax 
 

{e1 | x  e2} = { y | x   e2, y  e1} 

 

• Translating from comprehension syntax 
 

{ e1 | x   e2,  } = { {e1 |  } |  x  e2}  

{ e1 | C, }  = if C then {e1 |  }  else { } 

{ e1 | } = { e1 } 

 

Treat comprehension as a nice syntactic sugar 

Further articulation in (Buneman, Libkin, Suciu, Tannen, Wong, SIGMOD Record 94) 
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ENGINEERING DATA 

INTEGRATION SYSTEMS 
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Kleisli Query System 

• Nested set/bag/list model 
 

• Self-describing data 

exchange format 
 

• Lots of thin wrappers 
 

• High-level query language 

with type inference 
 

• Powerful query optimizer 
 

• Nested set/bag/list store 

Buneman, Davidson, Hart, Overton, Wong, VLDB95 

Wong, ICFP00 
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US DOE “Impossible Query”, 1993 

• For each gene on a given cytogenetic band, find 

its non-human homologs 

source type location remarks

GDB Sybase Baltimore Flat tables
SQL joins
Location info

Entrez ASN.1 Bethesda Nested tables
Keywords
Homolog info
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sybase-add (#name:”GDB", ...); 

create view  L from locus_cyto_location using GDB; 

create view E from object_genbank_eref using GDB; 

select 

     #accn: g.#genbank_ref,   #nonhuman-homologs: H 

from 

     L as c,  E as g, 

     {select u 

      from g.#genbank_ref.na-get-homolog-summary as u 

      where not(u.#title string-islike "%Human%") & 

 not(u.#title string-islike "%H.sapien%")} as H 

where 

     c.#chrom_num = "22” & 

     g.#object_id = c.#locus_id & 

     not (H = { }); 

Solution in Kleisli 

• Using Kleisli: 

–  Clear 

–  Succinct 

–  Efficient 

 

•  Handles  

– Heterogeneity 

– Complexity 
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UNDERSTANDING 

EXPRESSIVE POWER 
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Conservative Extension Property 

A language L has conservative extension property if 

  

 for every function f definable in L,  

 there is an implementation f* of  f in L such that 

 

  for any input i and corresponding output o, 

   each intermediate data item created  
  in the course of executing  f* on i to  

  produce o has set nesting complexity  

  no more than that of i and o 
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Expressive Power of NRC 

• Theorem 2 (Wong, PODS93) 

 NRC has the conservative extension property 

 

• Corollary 3 

 Every function from flat relations to flat relations 

expressible in NRC is expressible in relational 

algebra 
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Proof Idea 

• Strongly normalizing 

rewrite system 

• Vertical loop fusion 
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Theoretical Reconstruction of SQL 

• Expressions of NRC(Q,+,•,–,,,=, Q) are those of 

NRC plus the followings 

 

 

 

 

 

• Here  {| e1 | x  e2 |} = f(o1) + … + f(on), where f is 

the function f(x) = e1 and {o1, …, on} is the set e2 
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Example Aggregate Functions 

• Count the number of records 

  count(R) := {| 1 | x  R |} 
 

• Total the first column 

  total1(R) := {| 1 x | x  R |} 
 

• Average of the first column  

  ave1(R) := total1(R)  count(R) 
 

• A totally generic query expressible in SQL but 

inexpressible in FO(=) 

  eqcard(R,S) := count(R) = count(S) 
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Expressive Power of NRC(Q,+,•,–,,,=, Q)  

• Theorem 4 (Libkin, Wong, DBPL93) 

 NRC(Q,+,•,–,,,=, Q) has the conservative 

extension property 

 

• Corollary 5 

 Every function from flat relations to flat relations 

is expressible in NRC(Q,+,•,–,,,=, Q) iff it is also 

expressible in “entry-level” SQL 
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Finite/Co-finite Property I 

• Theorem 6 (Libkin, Wong, DBPL93) 

Let P : Q  B be a predicate definable in 

NRC(Q,+,•,–,,,=, Q). Then either P holds for 

finitely many natural numbers or P fails for 

finitely many natural numbers 

 

• Corollary 7 

NRC(Q,+,•,–,,,=, Q) cannot test whether a 

natural number is even or odd 
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Proof Idea 

• P : Q  B has height 0. By conservative 

extension property on NRC(Q,+,•,–,,,=, Q), any 

implementation of it in NRC(Q,+,•,–,,,=, Q) is 

equivalent to one that does not use sets. Such an 

implementation must be equivalent to something 

like 

 

 
 

• Finite/co-finiteness then follows from the fact that 

polynomials have finite number of roots 
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• Theorem 8 (Libkin, Wong, PODS94) 

Let P : {b  b}  B be a predicate definable in 

NRC(Q,+,•,–,,,=, Q). Then there is a h such that 

either P holds for all h-multi-cycles or P fails for 

all h-multi-cycles 
 

• Corollary 9 

NRC(Q,+,•,–,,,=, Q) cannot test the parity of a 

set and cannot express transitive closure 

h-multi-cycle 

Finite/Co-finite Property II 
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Locality Property 

A language L has locality property if the result of 

every flat relational query f definable in L  is 

determined by a small neighbourhood of its input 

 

I.e., for all flat relational query expression e[R] in L, 

there is a finite number r such that,  

for all  = A,O in STRUCT[R],  

for all two m-ary vectors a and b of elements in , 

 Nr (a)  Nr (b) implies 

  a  e[O/R] if and only if b  e[O/R] 

 
Notations: Nr (b) means the neighbourhood of b in , up to a radius r.  



ICDT2014 Copyright 2014 © Limsoon Wong 

27 

Bounded Degree Property 

A language L has bounded degree property if 

  

 for every function f, on graphs, definable in L, and 

 for any number k, 

 

 there is a number c such that  

  for any graph G with deg(G) { 0, 1, …, k}, 

  it is the case that c  card(deg(f(G)))  

That is, L cannot define a function that produces complex 

graphs from simple graphs 
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Expressive Power of NRC(Q,+,•,–,,,=, Q) 

• Theorem 10 (Dong, Libkin, Wong, ICDT97) 

NRC(Q,+,•,–,,,=, Q) has the locality property, 

when restricted to flat relational queries on input 

structures of degree less than some fixed k 

 

• Theorem 11 (Dong, Libkin, Wong, ICDT97) 

Every language that has the locality property 

also has the bounded degree property 

 

• Theorem 12 (Dong, Libkin, Wong, ICDT97) 

NRC(Q,+,•,–,,,=, Q) has the bounded degree 

property 
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EXPLORING INTENSIONAL 

EXPRESSIVE POWER 
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What is intensional expressive power? 

• Saying a function with linear complexity is 

expressible in a given query language is not the 

same as saying its implementation in that query 

language has linear complexity 

 

 

I.e., we are looking at 

• What the algorithms expressible in a query 

language are,  

• Rather than what the functions expressible in a 

query language are 
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NRC(powerset) 

NRC cannot 

express recursive 

queries. Adding a 

powerset operation 

enables this. 
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Operational 

Semantics 
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Recursive queries are costly in 

NRC(powerset) 

• Theorem 13 (Suciu, Paredaens, PODS94) 

Any implementation of transitive closure in 

NRC(powerset) must use exponential space 
 

• Theorem 14 (Van den Bussche, TCS01) 

Every flat relational query on unary schemas in 

NRC(powerset) is either already expressible in 

NRC w/o using the powerset operation or must 

use exponential space 
 

• Theorem 15 (Biskup, Paredaens, Schwentick, Van den Bussche, SIAM J Comput 04) 

Any implementation of set parity in the “Equation 

Algebra” must use exponential space 
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• These intensional expressive power results are 

quite query specific, and their proofs are not 

easily “portable” to other queries 
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Dichotomy Theorem 

• Theorem 16 (Wong, PODS13) 

Let f be a flat relational query in NRC(Q,+,•,–
,,,=, Q, powerset) on structures from a class  

where (i)  is severely dichotomous and (ii) its 

structures have degree  k. Then either f is 

already expressible in NRC(Q,+,•,–,,,=, Q) or 

must use exponential space 

 

• Corollary 17 

All implementations of transitive closure, set 

parity, etc. in NRC(Q,+,•,–,,,=, Q, powerset) 

must use exponential space 
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This theorem generalizes earlier intensional 

expressive power results 

 

• Works for all queries on “severely dichotomous” 

structures 

 

• Works for a more powerful query language 

 

• Uses a proof technique that is “portable” 
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Another form of structural recursion 

mentioned in our ICDT92 paper 

 

 

 

• Semantics 

 

 

 

• In short… 
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Equivalence 

• Proposition 18 (Suciu, Wong, ICDT95) 

There are uniform translations between NRC(sru) 

and NRC(sri). So for any set of external functions 

, we have NRC(sru, ) = NRC(sri, )  
 

• Our uniform sri  sru translation is expensive 
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Some sri queries cannot be parallelized 

• Theorem 19 (Suciu, Wong, ICDT95) 

Any uniform translation of NRC(sri) queries to 

NRC(sru) / NRC(hom) must map some PTIME 

queries into EXPSPACE ones  

 

• In fact, in the presence of certain external 

functions, there is a PTIME NRC(sri) query for 

which every equivalent NRC(sru) / NRC(hom) query 

requires EXPSPACE 
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NC is strictly in PTIME? 

• Theorem 20 (Tannen, Suciu, PODS94) 

– NRC1(hom, ) captures NC 

– NRC1(sri, ) captures PTIME 

 

• Corollary 21 (Suciu, Wong, ICDT95) 

There is no uniform translation of a language for 

PTIME into a language for NC 

Notations:  NRC1 = the flat-types fragment of NRC 
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A cute result on lists 

• Treat {} as empty list, {e} as singleton list,  as 

list concatenation. Then NRC(sru) and NRC(sri) 

become query languages for list 
 

 

• Theorem 20 

The zip : {b}  {b}  {b  b} function cannot be 

implemented in NRC(sru) and NRC(sri) in 

O(min(m, n)) time, where (m, n) are length of the 

two input lists to zip 
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Proof Idea 

• Suppose zip can be implemented in O(min(m,n)) 

time. Then head : {b}  {b} can be implemented 

in constant time in NRC(sri) 
 

 head (L) = sri (x.{1 x}, {}) (zip (L, {{}})) 
 

• But it is easy to show that head cannot be 

implemented in NRC(sri) in constant time 
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ADDING ANNOTATIONS 
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What are annotations 

• Data can be annotated for many reasons 

– Confidentiality policy 

• Public < Confidential < Secret < Top Secret < 0 

– Provenance 

– Probability 

– Uncertainty 

 

• It is desirable to propagate annotations on source 

tuples to query results 
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Example 

• “Thesis” 21 (Green, Karvounarakis, Tannen, PODS07) 

The propagation of a rich variety of annotations 

can be expressed as a semi-ring K, +, *, 0, 1 
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How to 

propagate 

annotations 

for positive 

NRC 

• Theorem 22 (Foster, Green, Tannen, PODS08) 

If h : K1  K2 is a homomorphism of semi-rings 

then h(e(v)) = h(e)(h(v)) 
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Finer Notions of Provenance 

a) (select * from R where A <> 1) union 

(select A, 5 as B from R where A = 1) 
 

b) update R set B = 5 where A  = 1 
 

c) delete from R where A = 1;  

insert into R values (1, 5) 

 

Copying  

Kind Preserving 
If output item has same 

color as input item then 

they are of the same 

kind: both sets, both 

tuples, or identical atoms 
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NRL(color) = NRC + NUL 

• Add these NUL constructs for updates to NRC 

 

 

 

 

 

 

• Add a new type “color” to indicating provenance 

annotations 

–  is color to mean “newly created” 

– write s to mean type with provenance annotations 
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Provenance Semantics 
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Provenance-Aware DB Operations 

• f : s  t is color propagating if f does not let input 

colors influence the uncolored part of the output 

and f is insensitive to actual colors used  

 

• f : s  t is bounded inventing if f does not create 

many new values 

 

• A provenance-aware db operation (pado) is a 

color-propagating and bounded-inventing 

function f : s  t 
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Soundness and Completeness 

• Theorem 23 (Buneman, Cheney, VanSummeren, ICDT07) 

Every function is in CP if and only if it is in PNRC 

 

• Theorem 24 (Buneman, Cheney, VanSummeren, ICDT07) 

Every function is in KP if and only if it is in PNUL 
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OPEN PROBLEMS 
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Maybe you know the answer … 

• In the presence of an order on base types, 

– Locality theorem becomes useless 

– Bounded degree property fails 

– Dichotomy theorem fails 

Can this be fixed? 

 

• Is there a PTIME query in NRC(sri) that has no 

PTIME equivalent in NRC(sru) in the absence of 

external functions?  Is transitive closure such a 

query? 

 


