
Wong Limsoon, ICFP 2022, Ljubljana, Slovenia, Sept 2022
© Copyright National University of Singapore. All Rights Reserved.

Iterating on multiple
collections in synchrony
Journal of Functional Programming 32:e9, 2022

Iterating on multiple
collections in synchrony
Journal of Functional Programming 32:e9, 2022

Stefano Perna, Val Tannen, Limsoon Wong

1

Wong Limsoon, ICFP 2022, Ljubljana, Slovenia, Sept 2022

Motivating
example

When xs and ys are sorted according to
isBefore,

ov1(xs, ys) = ov2(xs, ys)

ov1(xs,ys) has complexity O(|xs||ys|)

ov2(xs,ys) has complexity O(|xs| + k |ys|),
where each event in ys overlaps fewer
than k events in xs

2

Can we get the
simplicity of ov1 at the

efficiency of ov2?

Wong Limsoon, ICFP 2022, Ljubljana, Slovenia, Sept 2022

Intensional expressiveness gap

3

ov1 is easily expressible using only comprehension syntax

No obvious efficient implementation w/o using more advanced
programming language features and/or library functions

Many other functions suffer the same plight …

{ (x,y) | x, y taxpayers, x earns less but pays more tax than y }

{ (x,y) | x, y mobile phones, x’s price is similar to y’s price }

Wong Limsoon, ICFP 2022, Ljubljana, Slovenia, Sept 2022

Limited mixing
lemma

Let e(X) be an expression in NRC1(<)
and e[C/X]C’. Suppose e(X) has at most
linear-time complexity wrt size of X. Then
for each (u,v) in gaifman(C’), either

(u,v) in gaifman(C), or

u in atom0(C) and v in atom1(C), or

u in atom1(C) and v in atom0(C)

Similar limited mixing lemmas can be
proved for

NRC1(takewhile, dropwhile, sort,<)

NRC1(foldleft, sort,<)

NRC1(zip, sort,<)

4

atom0(C) = { c1, c2 }; atom1(C) = { c3, c4, c5, c6, c7, c8 }

Comprehension
in restricted 1st

order setting

Wong Limsoon, ICFP 2022, Ljubljana, Slovenia, Sept 2022

Intensional expressiveness gap is “real”

5

What new library function or programming construct precisely fills the gap?

I.e., how to allow the “missing” efficient algorithms to be expressed w/o
changing the class of functions that can be expressed

Wong Limsoon, ICFP 2022, Ljubljana, Slovenia, Sept 2022

Monotonicity &
antimonotonicity

Monotonicity of bf wrt (xs, ys)

If (x « x’ | xs), then y in ys: bf(y, x)
implies bf(y, x’)

If (y’ « y | ys), then x in xs: bf(y, x)
implies bf(y’, x)

Antimonotonicity of cs wrt bf

If (x « x’ | xs), then y in ys: bf(y, x) &
! cs(y, x) implies ! cs(y, x’)

If (y « y’ | xs), then x in xs: ! bf(y, x)
& ! cs(y, x) implies ! cs(y’, x)

6

Wong Limsoon, ICFP 2022, Ljubljana, Slovenia, Sept 2022

Synchrony
generator,
capturing a
programming
pattern for efficient
synchronized
iteration on two
collections

7

for (x <- xs, (_, Y) <- syncGenGrp(isBefore, overlap)(xs, ys), y <- Y) yield (x, y)

When bf/isBefore is monotonic wrt (xs, ys)
and cs/overlap is antimonotonic wrt bf :

ov1(xs, ys) = ov4(xs, ys)

ov1(xs,ys) has complexity O(|xs| |ys|)

ov2(xs,ys) has complexity O(|xs| + k|ys|),
where each event in ys overlaps fewer
than k events in xs

Wong Limsoon, ICFP 2022, Ljubljana, Slovenia, Sept 2022

syncGenGrp is a conservative extension

8

The functions definable in NRC1(<) and NRC1(<,syncGenGrp)
are exactly the same

However, more efficient algorithms for some functions (e.g., low-
selectivity joins) are definable in the latter

Thus, syncGenGrp fills the intensional expressive power gap of
comprehension syntax in a “1st-order restricted setting”

Wong Limsoon, ICFP 2022, Ljubljana, Slovenia, Sept 2022

A zoo of relational joins

9

Defined based on syntactic restrictions on join predicates

Implemented by different algos for efficiency

type form usual implementation properties

equijoin x.a = y.b hash join, merge join convex, reflexive

single
inequality

x.a ≤ y.b merge join Convex, reflexive

range join x.a – e ≤ y.b ≤ x.a + e range join Convex, reflexive

band join x.a ≤ y.b ≤ x.c band join Convex, reflexive

interval join x.a ≤ y.b && y.c ≤ x.d
where x.a ≤ x.d and y.c ≤ y.b

Union of two band joins, interval
joins for special data types

Non-convex,
antimonotonic

Convexity antimonotonicity

 syncGenGrp implements them simply and efficiently, viz. Synchrony join

Wong Limsoon, ICFP 2022, Ljubljana, Slovenia, Sept 2022

syncGenGrp generalizes relational merge join
from equijoin to antimonotonic predicates

10

groups = merge join algo, implements relational join
when cs is an equijoin predicate

{ (x, y) | x <- xs, (_,Y) <- groups(bf, cs)(xs, ys), y <- Y }

= join { (x, y) | x <- xs, y <- ys, cs(y, x) }

groups2 = syncGenGrp extensionally & intensionally

groups2 = a novel “synchrony” join algo, implements
relational join when cs is an antimonotonic predicate

{ (x, y) | x <- xs, (_,Y) <- groups2(bf, cs)(xs, ys), y <- Y}

= join { (x, y) | x <- xs, y <- ys, cs(y, x) }

Wong Limsoon, ICFP 2022, Ljubljana, Slovenia, Sept 2022

Synchrony iterator

syncGenGrp is somewhat ugly when
extended to multiple collections

Decompose it into Synchrony iterator

syncGenGrp(bf, cs)(xs, ys) =

{

val yi = new Eiterator(ys, bf, cs);

for (x <- xs)

yield (x, yi.syncedWith(x))

}

11

Wong Limsoon, ICFP 2022, Ljubljana, Slovenia, Sept 2022

Simultaneous
synchronized
iteration on
multiple
collections

Introduce a new generator pattern into
comprehension syntax

Compile it as

Eiterator is convenient to add to function
libraries in any popular programming
languages, w/o changing any of their
compilers

But if you can touch the compilers, things
get even more appealing…

12

Wong Limsoon, ICFP 2022, Ljubljana, Slovenia, Sept 2022

Example

13

O(|ws|(|xs| + k|ys| + k2|zs| + k3)),

assuming no event overlaps more

than k other events

O((k3 +1)|ws| + 2k(|xs| + |ys| + |zs|)),

which is linear when k is small

Wong Limsoon, ICFP 2022, Ljubljana, Slovenia, Sept 2022

GMQL emulation, a stress test

14

GMQL is an advanced genomic
query system

Handles complex non-equijoins on
genomic regions

GMQL ~24k lines of codes

Synchrony emulation ~4k lines,
much faster, needs much less
memory

The GMQL MAP query is emulated using a Synchrony iterator like this:

Wong Limsoon, ICFP 2022, Ljubljana, Slovenia, Sept 2022

Summary

15

Synchrony generator & iterator

A programming pattern for synchronized iteration

A conservative extension of comprehension syntax in a 1st-order
restricted setting

Generalization of efficient relational database merge join to
antimonotonic predicates

See our paper (JFP, 32:e9, 2022) for details ☺

