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Motivating 
example

When xs and ys are sorted according to 
isBefore,

ov1(xs, ys) = ov2(xs, ys)

ov1(xs,ys) has complexity O(|xs||ys|)

ov2(xs,ys) has complexity O(|xs| + k |ys|), 
where each event in ys overlaps fewer 
than k events in xs
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Can we get the 
simplicity of ov1 at the 

efficiency of ov2?
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Intensional expressiveness gap
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ov1 is easily expressible using only comprehension syntax 

No obvious efficient implementation w/o using more advanced 
programming language features and/or library functions

Many other functions suffer the same plight …

{ (x,y) | x, y  taxpayers, x earns less but pays more tax than y }

{ (x,y) | x, y  mobile phones, x’s price is similar to y’s price }
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Limited mixing 
lemma

Let e(X) be an expression in NRC1(<) 
and e[C/X]C’. Suppose e(X) has at most 
linear-time complexity wrt size of X. Then 
for each (u,v) in gaifman(C’), either

(u,v) in gaifman(C), or 

u in atom0(C) and v in atom1(C), or

u in atom1(C) and v in atom0(C)

Similar limited mixing lemmas can be 
proved for 

NRC1(takewhile, dropwhile, sort,<)

NRC1(foldleft, sort,<)

NRC1(zip, sort,<)
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atom0(C) = { c1, c2 }; atom1(C) = { c3, c4, c5, c6, c7, c8 }

Comprehension 
in  restricted 1st 

order setting
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Intensional expressiveness gap is “real”
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What new library function or programming construct precisely fills the gap?

I.e., how to allow the “missing” efficient algorithms to be expressed w/o 
changing the class of functions that can be expressed
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Monotonicity & 
antimonotonicity

Monotonicity of bf wrt (xs, ys)

If (x « x’ | xs), then y in ys: bf(y, x) 
implies bf(y, x’)

If (y’ « y | ys), then x in xs: bf(y, x) 
implies bf(y’, x)

Antimonotonicity of cs wrt bf

If (x « x’ | xs), then y in ys: bf(y, x) & 
! cs(y, x) implies ! cs(y, x’)

If (y « y’ | xs), then x in xs: ! bf(y, x) 
& ! cs(y, x) implies ! cs(y’, x)
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Synchrony 
generator, 
capturing a 
programming 
pattern for efficient 
synchronized 
iteration on two 
collections
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for (x <- xs, (_, Y) <- syncGenGrp(isBefore, overlap)(xs, ys), y <- Y) yield (x, y)

When bf/isBefore is monotonic wrt (xs, ys) 
and cs/overlap is antimonotonic wrt bf :

ov1(xs, ys) = ov4(xs, ys)

ov1(xs,ys) has complexity O(|xs| |ys|)

ov2(xs,ys) has complexity O(|xs| + k|ys|), 
where each event in ys overlaps fewer 
than k events in xs
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syncGenGrp is a conservative extension
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The functions definable in NRC1(<) and NRC1(<,syncGenGrp) 
are exactly the same

However, more efficient algorithms for some functions (e.g., low-
selectivity joins) are definable in the latter

Thus, syncGenGrp fills the intensional expressive power gap of 
comprehension syntax in a “1st-order restricted setting”
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A zoo of relational joins
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Defined based on syntactic restrictions on join predicates

Implemented by different algos for efficiency

type form usual implementation properties

equijoin x.a = y.b hash join, merge join convex, reflexive

single 
inequality

x.a ≤ y.b merge join Convex, reflexive

range join x.a – e ≤ y.b ≤ x.a + e range join Convex, reflexive

band join x.a ≤ y.b ≤ x.c band join Convex, reflexive

interval join x.a ≤ y.b && y.c ≤ x.d
where x.a ≤ x.d and y.c ≤ y.b

Union of two band joins, interval 
joins for special data types

Non-convex, 
antimonotonic

Convexity  antimonotonicity

 syncGenGrp implements them simply and efficiently, viz. Synchrony join
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syncGenGrp generalizes relational merge join 
from equijoin to antimonotonic predicates
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groups = merge join algo, implements relational join 
when cs is an equijoin predicate

{ (x, y) | x <- xs, (_,Y) <- groups(bf, cs)(xs, ys), y <- Y }

= join { (x, y) | x <- xs, y <- ys, cs(y, x) }

groups2 = syncGenGrp extensionally & intensionally 

groups2 = a novel “synchrony” join algo, implements 
relational join when cs is an antimonotonic predicate

{ (x, y) | x <- xs, (_,Y) <- groups2(bf, cs)(xs, ys), y <- Y}

= join { (x, y) | x <- xs, y <- ys, cs(y, x) }
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Synchrony iterator

syncGenGrp is somewhat ugly when 
extended to multiple collections

Decompose it into Synchrony iterator

syncGenGrp(bf, cs)(xs, ys) =

{  

val yi = new Eiterator(ys, bf, cs);

for (x <- xs)

yield (x, yi.syncedWith(x))

}
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Simultaneous 
synchronized 
iteration on 
multiple 
collections

Introduce a new generator pattern into 
comprehension syntax

Compile it as

Eiterator is convenient to add to function 
libraries in any popular programming 
languages, w/o changing any of their 
compilers

But if you can touch the compilers, things 
get even more appealing…
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Example 
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O(|ws|(|xs| + k|ys| + k2|zs| + k3)), 

assuming no event overlaps more 

than k other events

O((k3 +1)|ws| + 2k(|xs| + |ys| + |zs|)), 

which is linear when k is small
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GMQL emulation, a stress test
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GMQL is an advanced genomic 
query system

Handles complex non-equijoins on 
genomic regions

GMQL ~24k lines of codes

Synchrony emulation ~4k lines, 
much faster, needs much less 
memory

The GMQL MAP query is emulated using a Synchrony iterator like this:
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Summary 
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Synchrony generator & iterator

A programming pattern for synchronized iteration 

A conservative extension of comprehension syntax in a 1st-order 
restricted setting

Generalization of efficient relational database merge join to 
antimonotonic predicates

See our paper (JFP, 32:e9, 2022) for details ☺


