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Plan 
• Part 1: Helpful analytics

– Tactics to make data analysis more insightful

• Part 2: Generating hypothesis
– Exploratory hypothesis testing and analysis as a 

datamining task

• Part 3: Technical details of iDIG
– Under-the-hood look of the intelligent Data-driven 

Insight Generator, iDIG

• Part 4: Art of data analysis
• Part 5: Science of data analysis



Part 1:
Helpful analytics
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The gist of helpful analytics

• Make it easy to formulate hypothesis 
– Extraction from big, integrated databases

• Make hypothesis testing sound
– Detection & correction of assumption violations

• Find better hypothesis & explain why it is better
– E.g., “for men, taking A is better than B”
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REVEALING SAMPLE BIAS
Example
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A seemingly 
obvious 

conclusion

• A scientist claims the SNP rs123 is a great 
biomarker for a disease
– If rs123 is AA or GG, unlikely to get the disease
– If rs123 is AG, a 3:1 odd of getting the disease

• A straightforward χ2 test. Anything more/wrong?

rs123
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• AG = 38 + 79 = 117, controls + 
cases = 189 ⇒ population is 
~62% AG ⇒ population is >9% 
AA, unless AA is lethal

• “Big data check” shows AA is 
non-lethal for this SNP ⇒
sample is biased

Sample bias is revealed 
by domain logic

Basic rule of human genetics

rs123
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FINDING EXCEPTIONS & 
CONTRADICTIONS

Example
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A seemingly 
obvious 

conclusion

• The data shows that, in Australia, craft repairers 
tend to earn more than administrative clerks
– 23% of the former vs 14% of the latter has high income 

• A straightforward χ2 test. Anything more/wrong?
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Exceptions & contradictions 
are found by context mining

• And the conclusion holds for 
neither male nor female!

• In fact, after detecting & adjusting 
for possible confounding factors, 
the conclusion is the opposite!

• The “unincorporated self-
employed” work class is an 
exception to the conclusion
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EXTRACTING DEEPER 
INSIGHT

Example
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A seemingly 
obvious 

conclusion

• Vaccines I-V are not equal in efficacy
– 0.001 < χ2 test p-value < 0.01 is significant

• A straightforward χ2 test. Anything more/wrong?
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Deeper insight can 
also be dissected 
without asking for 

more data

Vaccine III is different from / better than the rest
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DETECTING PROBLEMS IN 
NULL HYPOTHESIS

Example
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A seemingly 
obvious conclusion

• A multi-gene signature is claimed as a good 
biomarker for breast cancer survival
– Cox’s survival model p-value << 0.05

• A straightforward Cox’s proportional hazard 
analysis. Anything more/wrong?
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Inappropriate null 
hypothesis detected by 

generating empirical null 
distribution

• Almost all random 
signatures also have p-
value << 0.05 

⇒ null model is confounded
⇒ significant signatures can’t 

be trusted; they are no 
better than random ones!
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Helpful analytics’s version
• There are many ways to violate the null hypothesis but only one way that 

is truly pertinent to the outcome of interest 
• A helpful analytics system helps the user find this one way

Anna Karenina Principle
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• So far, we have assumed 
there is an initial hypothesis

• If there is no initial 
hypothesis, how do we 
generate some?
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Time for a short break and
Some photos of Singapore



Part 2:
Generating hypotheses
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The gist of hypothesis generation

• Hypothesis
– A comparison of 

two samples

• Help users understand what is interesting about 
their data
– Hypothesis mining algo
– GUI for visualization and summarization

– More informative than patterns and rules
• Users not only get to know what is happening but also 

when or why it is happening
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Conventional 
hypothesis generation

• Limitation
– Scientist has to think of a hypothesis first
– Allow just a few hypotheses to be tested at a time

• So much data have been collected …
– No clue on what to look for 
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Exploratory hypothesis testing

• Data-driven hypothesis generation
– Have a dataset but dunno what hypotheses to test
– Use computational methods to automatically 

formulate and test hypotheses from data

• Problems to be solved 
– How to formulate hypotheses?
– How to automatically generate & test hypotheses?
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Formulation of a hypothesis 

• “For Chinese, is drug A better than drug B?”

• Three components of a hypothesis:
– Context (under which the hypothesis is tested)

• Race: Chinese
– Comparing attribute

• Drug:  A or B
– Target attribute/target value

• Response: positive

• 〈{Race=Chinese},  Drug=A|B,  Response=positive〉
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Generating a hypothesis

• 〈{Race=Chinese},  Drug=A|B,  Response=positive〉

• To test this hypothesis we need info:
– NA =support({Race=Chinese, Drug=A})
– NA

pos =support({Race=Chinese, Drug=A, Res=positive})
– NB =support({Race=Chinese, Drug=B})
– NB

pos =support({Race=Chinese, Drug=B , Res=positive})

⇒ Frequent pattern mining

context Comparing
attribute

response=
positive

response=
negative

{Race=Chinese} 
Drug=A NA

pos NA − NA
pos

Drug=B NB
pos NB − NB

pos
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More formally

• Given
– Dataset D, min_sup, max_pvalue, min_diff
– Atarget= vtarget

– 𝒜𝒜𝑔𝑔𝑟𝑟𝑜𝑜𝑢𝑢𝑝𝑝𝑖𝑖𝑛𝑛𝑔𝑔: context/comparing attributes

• Find all 𝐻𝐻 = ⟨𝑃𝑃,𝐴𝐴diff = 𝑣𝑣1∣𝑣𝑣2, Atarget= vtarget ⟩
– 𝐴𝐴diff ∈ 𝒜𝒜𝑔𝑔𝑟𝑟𝑜𝑜𝑢𝑢𝑝𝑝𝑖𝑖𝑛𝑛𝑔𝑔 & ∀(𝐴𝐴=𝑣𝑣) in 𝑃𝑃, 𝐴𝐴 ∈𝒜𝒜𝑔𝑔𝑟𝑟𝑜𝑜𝑢𝑢𝑝𝑝𝑖𝑖𝑛𝑛𝑔𝑔

– 𝑠𝑠𝑢𝑢𝑝𝑝(𝑃𝑃i) ≥ min_sup, where 𝑃𝑃i = 𝑃𝑃 ∪ {𝐴𝐴diff =𝑣𝑣i}, i=1, 2
– p-value(𝐻𝐻) ≤ max_pvalue
– ∣𝑝𝑝1 − 𝑝𝑝2∣ ≥ min_diff, where 𝑝𝑝𝑖𝑖 is proportion of 𝑣𝑣𝑡𝑡𝑎𝑎𝑟𝑟𝑔𝑔𝑒𝑒𝑡𝑡

in sub-population 𝑃𝑃i, i=1, 2
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Need for hypothesis analysis

• Exploration is not guided by domain knowledge 
⇒Spurious hypotheses has to be eliminated

• Reasons behind significant hypotheses
– Find attribute-value pairs that affect the test 

statistic a lot
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Spurious hypotheses

• Simpson’s Paradox
– “Stage” has assoc w/ both “drug” & “response”:

• Doc’s tend to give drug A to patients at stage 1, & drug B to patients at stage 2
• Patients at stage 1 are easier to cure than patients at stage 2

– Attribute “stage” is called a confounding factor

response=
positive

response=
negative

proportion 
of positive 
response

Drug=A 890 110 89.0%
Drug=B 830 170 83.0%
Drug=A, Stage=1 800 80 90.9%
Drug=B, Stage=1 190 10 95%
Drug=A, Stage=2 90 30 75%
Drug=B, Stage=2 640 160 80%
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Reasons behind significant hypotheses

• Problem is narrowed down
– Product A has exceptionally higher failure rate 

than product B only at the loading phase

Failure rates

Product A 4%
Product B 2%
Product A, time-of-failure=loading 6.0%
Product B, time-of-failure=loading 1.9%
Product A, time-of-failure=in-operation 2.1%
Product B, time-of-failure=in-operation 2.1%
Product A, time-of-failure=output 2.0%
Product B, time-of-failure=output 1.9%
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Algo for hypothesis generation

• A hypothesis is a comparison betw two or more 
sub-populations, and each sub-populations is 
defined by a pattern

• Step 1: Use freq pattern mining to enumerate 
large sub-populations and collect their statistics
– Stored in the CFP-tree structure, which supports efficient 

subset/superset/exact search

• Step 2: Pair sub-populations up to form 
hypotheses, and then calculate their p-values
– Use each freq pattern as a context
– Search for immediate supersets of the context patterns, and 

then pair these supersets up to form hypotheses
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Algo for rough hypothesis analysis

• Given a hypothesis H
– To check whether H forms a Simpson’s Paradox 

with an attribute A, 
• add values of A to context of H
• re-calculate the diff betw the two sub-populations 

– To calculate DiffLift and Contribution of an 
attribute-value pair A=v, 

• add A=v to context of H
• re-calculate the diff

• All done via immediate superset search on 
frequent patterns
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Other aspects

• Controlling false-positive rate
– Bonferroni’s correction 
– Benjamini and Hochberg’s method
– Permutation test

• Concise representations of hypotheses
– freq patterns & hypotheses have lots of redundancy

• Organization & presentation of hypotheses
– Visualization
– Summarization
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System Overview

Liu, et al. ”Supporting exploratory hypothesis testing and analysis”. ACM 
Transactions on Knowledge Discovery from Data, 9(4):Article 31, 2015
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Experiment settings

• PC configurations
– 2.33Ghz CPU, 3.25GB memory, Windows XP

• Datasets:
– mushroom, adult: UCI repository
– DrugTestI, DrugTestII: study assoc betw SNPs in 

several genes & drug responses.

Datasets #instances
#continuous

attributes
#categorical

attributes Atarget/vtarget

adult 48842 6 9 class=>50K  (nominal)
mushroom 8124 0 23 class=poisonous (nominal)
DrugTestI 141 13 74 logAUCT  (continuous)
DrugTestII 138 13 74 logAUCT (continuous)
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Running time

• Three phases 
– Frequent pattern mining
– Hypothesis generation
– Hypothesis analysis

Datasets min_sup min_diff GenH AnalyzeH AvgAnalyzeT #tests #signH
adult 500 0.05 0.42 s 6.30 s 0.0015 s 5593 4258

adult 100 0.05 2.69 s 37.39 s 0.0014 s 41738 26095

mushroom 500 0.1 0.67 s 19.00 s 0.0020 s 16400 9323

mushroom 200 0.1 5.45 s 123.47 s 0.0020 s 103025 61429

DrugTestI 20 0.5 0.06 s 0.06 s 0.0031 s 3627 20

DrugTestII 20 0.5 0.08 s 0.30 s 0.0031 s 4441 97

max_pvalue = 0.05
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• We have now seen that 
filling in contingency 
tables, looking for 
contradictions, etc. can 
be cast as frequent 
pattern mining tasks 

• How is this done 
efficiently?
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Time for a second short break and 
Some photos around NUS



Part 3:
Technical details of iDIG
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MINING FREQUENT 
PATTERNS
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Market basket analysis

• What do my customers buy? 
• Which products are bought together?

• Find correlations between the different items that 
customers buy

Source: A. Puig
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Frequent pattern mining

• Frequent itemsets
– Items that often appear 

together
– {bread, peanut-butter}

• Transaction db T = {t1, …, tn} is a set of trans

• Each trans tk is an itemset I = {i1, …, im}

• Find freq patterns among sets of items in T
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Generate freq itemsets with 
support ≥ minsup

• Given d items. There are 2d possible itemsets
• Do we need to generate them all?
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FP-Tree: Counting itemset occurrences

• Build in one scan a data structure, FP-Tree

• Use it for fast support counting
– To count the support of an itemset {FCM}, follow 

the “dotted” links on M. At each node M:n, note its 
support n & visit its prefix chain; if FCM is found in 
the prefix,  add n to the support

Han et al. “Mining frequent patterns without candidate generation”. 
SIGMOD 2000, pp.1–12

Source: A. Puig
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SE-Tree: Mining freq itemsets

• Build FP-Tree on the db

• Visit itemsets non-
redundantly by following 
the right-to-left top-to-
bottom SE-Tree order

• When visiting an itemset
– Use the FP-tree to count its support efficiently
– If it is frequent, output it, & visit its supersets
– Otherwise skip visiting its supersets

SE-Tree 
enumeration order

Li et al. “Mining Statistically Important Equivalence Classes and Delta-
Discriminative Emerging Patterns”. KDD 2007, pp. 430--439
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CFP-Tree: Storing freq itemsets

Liu et al. “CFP-Tree: A compact disk-based structure for storing and 
querying frequent itemsets”. Information Systems, 32(2):295-319, 2007
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Querying 
stored freq
itemsets

from CFP-
Tree

Is Q freq? 
and what is 
its support?

Liu et al. ”A performance study of three disk-based structures for 
indexing and querying frequent itemsets”. PVLDB, 6(7):505-516, 2013.
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IMMEDIATE SUPERSET 
SEARCH
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Simple immediate subset search

• Given Q, use exact match to search Q – {q} for 
each q in Q

Simple immediate superset search

• Given Q, use exact match to search Q  ∪ {q} for 
each q not in Q

• Can we do better? Figure out which q does not 
need checking! Details in paper below:

Liu et al. ”A performance study of three disk-based structures for 
indexing and querying frequent itemsets”. PVLDB, 6(7):505-516, 2013.
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Size and construction time
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Scalability: 1000 queries w/ hits

• CFP-Tree scales sub-linearly for queries with hits!
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Scalability: 1000 queries w/o hits

• CFP has near constant cost for queries w/o hits
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Time for a third short break and 
Some info about data science & analytics research 
in NUS School of Computing



Part 4:
Art of data analysis
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THE PRESENCE OF ABSENCE
Triumph of logic
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Where should 
extra armour be 
put on a bomber 
plane to improve 

its survival?
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• US General’s solution
– Collect statistics on which parts of bomber planes 

got shot how many times
– Put armour on the hot spots

• Is this a good solution? Why?
Undamaged plane (left). A plane shaded everywhere bullets struck returning aircraft (right).
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• Abraham Wald’s analysis
– Data were collected from planes that survived
– The more bullet holes seen in a part, the more hits 

that part could take
– Thus the parts that were unscathed would need 

more armour

Abraham Wald (1902-1950) was a Hungarian mathematician. He
invented sequential hypothesis testing from his work on bomber
planes. He died in a plane crash in the Nilgiri mountains.
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• “It is so easy to make bad inferences with data… 
there’s a creative part of understanding 
quantitative data that requires a sort of artistic or 
creative approach to research.” ---Nate Bolt

• http://www.fastcodesign.com/1671172/how-a-
story-from-world-war-ii-shapes-facebook-today
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ABSENCE IS PRESENCE
Triumph of logic



61

Keynote at ICICICT 2017 Copyright 2017 © Wong Limsoon

We love to find correlations like this…

• Dietary fat intake correlates with breast cancer
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And like this…

• Animal fat intake correlates with breast cancer
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But not non-correlations like this…

• Plant fat intake doesn’t correlate with breast cancer
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We tend to ignore non-associations

• We have many technologies to look for 
associations and correlations
– Frequent patterns
– Association rules
– …

• We tend to ignore non-associations
– We think they are not interesting / informative
– There are too many of them

• Is this a good thing to do? Why?
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There is much to be gained when 
we take both into our analysis

A: Dietary fat intake 
correlates with breast 
cancer

B: Animal fat intake 
correlates with breast 
cancer

C: Plant fat intake 
doesn’t correlate with 
breast cancer

⇒ Given C, we can 
eliminate A from 
consideration, and 
focus on B!
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The power of 
negative space!

• How many animals do you see?
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THE DATA IS TELLING YOU 
MORE THAN WHAT IT IS 
TELLING YOU

Triumph of logic



68

Keynote at ICICICT 2017 Copyright 2017 © Wong Limsoon

• But …
Growth of BioGrid

Protein-protein interaction detection

• Many high-throughput 
assays for PPIs Generating large amounts

of expt data on PPIs can be 
done with ease
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Large disagreement betw methods

Noise in PPI networks

Sprinzak et al., JMB, 327:919-923, 2003
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• Can you think of things a biologist can do to 
remove PPIs that are likely to be noise?
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• Two proteins should be 
in the same place to 
interact. Agree?

Good idea. But the two 
proteins in the PPI you are 
looking at may not have 
localization annotation

De-noising PPI 
networks using 
localization 
coherence

Chua & Wong. Increasing the reliability of protein interactomes. 
Drug Discovery Today, 13(15/16):652--658, 2008



72

Keynote at ICICICT 2017 Copyright 2017 © Wong Limsoon

• Do you really need to know where two proteins 
are, in order to know whether they are in the 
same place?
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Topology of neighbourhood of real PPIs

• Suppose 20% of 
putative PPIs are noise

⇒ ≥ 3 purple proteins are 
real partners of both A 
and B

⇒ A and B are likely 
localized to the same 
cellular compartment  
(Why?)

⇒ A and B are likely PPI

A B
?

Liu et al. Complex discovery from weighted PPI networks. 
Bioinformatics, 25(15):1891-1897, 2009
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It works!

Cf. ave localization coherence of protein pairs in DIP < 5%
ave localization coherence of PPI in DIP < 55%
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THE DATA TELLS YOU MORE 
THAN WHAT IT DOESN’T 
WANT TO TELL YOU

Triumph of logic
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Is anonymized data 
really anonymous?
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Latanya Sweeney 
inferred the governor’s 

medical record by 
linking the GIC record to 

Voter list!

Sweeney, “k-anonymity: A model 
for protecting privacy”, Int J Unc
Fuzz Knowl Based Syst, 10:557-
570, 2002 
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• Oftentimes it is logic that triumphs in data 
analysis, not mechanical use of datamining, 
machine learning, and statistical methods



Part 5:
Science of data analysis
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The science exists but …

• Current data analysis methods have clear 
assumptions & practices
– Normal distribution
– I.I.D.
– Proper design of experiment
– Domain-specific laws
– Proper context

• Analysis outcome is valid when assumptions hold & 
practices followed

• But often assumptions not checked & practices not 
followed when people run these methods!



81

Keynote at ICICICT 2017 Copyright 2017 © Wong Limsoon

NORMAL DISTRIBUTION,
BUT REAL WORLD IS OFTEN NOT 
NORMALLY DISTRIBUTED

Forgotten assumptions
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Wisdom of the crowd

• Estimates not normally distributed
• They are lognormally distributed
⇒ Subjects had problems choosing the right order 

of magnitude

Lorenz et al., PNAS, 108(22):9020-9025, 2011
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and what held yesterday may not hold today
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2007 financial crisis

• All of them religiously 
check VaR (Value at Risk) 
everyday

• VaR measures the expected loss 
over a horizon assuming normality

• “When you realize that VaR is using 
tame historical data to model a 
wildly different environment, the 
total losses of Bear Stearns’ hedge 
funds become easier to understand. 
It’s like the historic data only has 
rainstorms and then a tornado 
hits.” – New York Times, 2 Jan 2009

• You can still turn things into your 
advantage if you are alert:  When VaR
numbers start to miss, either there is 
something wrong with the way VaR is 
being calculated, or the market is no 
longer normal
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I.I.D., 
BUT REAL WORLD IS OFTEN NOT 
INDEPENDENTLY DISTRIBUTED

Forgotten assumptions
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Experiments on social influence

• 12 groups, 12 subjects each

• Each subject solves 6 
different estimation tasks 
regarding geographical facts 
and crime statistics

• Each subject responds to 1st

question on his own

• After all 12 group members 
made estimates, everyone 
gives another estimate, 5 
consecutive times

• Different groups based their 
2nd, 3rd, 4th, 5th estimates on
– Aggregated info of others’ 

from the previous round
– Full info of others’ estimates 

from all earlier rounds
– Control, i.e. no info 

• Two questions posed for 
each of the three treatments

• Each declares his confidence 
after the 1st and final 
estimates

Lorenz et al., PNAS, 108(22):9020-9025, 2011
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Social influence effect

• Social influence diminishes diversity in groups 
⇒ Groups potentially get into “group think”!
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Range reduction effect

• Group zooms into wrong estimate
• Truth may even be outside all estimates
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Social  influence diminishes 
wisdom of the crowd

• Social influence triggers convergence of 
individual estimates

• The remaining diversity is so small that the 
correct value shifts from the center to the outer 
range of estimates

⇒ An expert group exposed to social influence may 
result in a set of predictions that does not even 
enclose the correct value any more!

• Conjecture:  Negative effect of social influence is 
more severe for difficult questions
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Related issue: 
People do not say 
what they really 

want to say

“In fact, the evidence is 
very strong that there is a 
genuine difference 
between people's private 
opinions and their public 
opinions.” 

Stephen King, “Conflict between public and 
private opinion”, Long Range Planning, 
14(4):90-105, August 1981
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PROPER DESIGN OF EXPT,
BUT REAL WORLD BIG DATA IS NOT 
“DESIGNED”

Forgotten assumptions



92

Keynote at ICICICT 2017 Copyright 2017 © Wong Limsoon

Design of experiments 

• In clinical testing, we carefully choose the sample 
to ensure the test is valid
– Independent: Patients are not related 
– Identical: Similar # of male/female, young/old, … in cases 

and controls 

• In big data analysis, and in many datamining works, people 
hardly ever do this!
– Is this sound?

Note that sex, age, … don’t 
need to appear in the 

contingency table
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Looks like treatment A is better

Looks like treatment B is better

Looks like treatment A is better

What is happening here?
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A/B sample not identical 
in other attributes

• Taking A
– Men = 100 (63%)
– Women = 60 (37%)

• Taking B
– Men = 210 (91%)
– Women = 20 (9%)

• Men taking A
– History = 80 (80%)
– No history = 20 (20%)

• Men taking B
– History = 55 (26%)
– No history = 155 (74%)
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Related issue: Sampling bias

The reason the Tribune was mistaken is that their editor trusted the results 
of a phone survey… Telephones were not yet widespread, and those who 
had them tended to be prosperous and have stable addresses.
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CLEAR CONTEXT, 
BUT REAL WORLD BIG DATA OFTEN HAS 
CONFOUNDED CONTEXTS

Overlooked information
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… And worse, 
we tend to ignore context!

• We have many technologies to look for 
associations and correlations
– Frequent patterns
– Association rules
– …

• We tend to assume the same context for all 
patterns and set the same global threshold
– This works for a focused dataset
– But for big data where you union many things, this 

spells trouble
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The right context

• 〈{Race=Chinese},  Drug=A|B,  Response=positive〉

• If A/B treat the same single disease, this is ok

• If B treats two diseases, this is not sensible

• The disease has to go into the context

Context Comparing
attribute

response=
positive

response=
negative

{Race=Chinese} 
Drug=A NA

pos NA − NA
pos

Drug=B NB
pos NB − NB

pos



Summary 
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What have we learned?
• Part 1: Simple tactics to get deeper insight from data

• Part 2: These tactics can be realized using frequent 
pattern mining

• Part 3: Data structures and algorithms for efficient 
frequent pattern mining and querying

• Part 4: It  is often logic that triumphs in data analysis, 
not mechanical use of datamining, machine 
learning, and statistical methods

• Part 5: Science of data analysis exists, but:
– Assumptions often don’t hold and not checked
– Practices often not followed
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