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What Data?

• Transactional data

– Items, transactions, transaction ID, pattern, 

support of pattern



Talk at IT@EDU2010,  HCM  City, Vietnam, 18 August 2010 Copyright 2010 © WLS, FML, NTS

3

What Pattern?

• Freq patterns & space of freq patterns

– Minimum support threshold

– msa or ms% (msa = ceil(ms%  |D|))

– Huge: 2n (2100 ≈ 1.3 E 30)
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What Updates? 

• Incremental updates

• Decremental updates

• Support threshold adjustment
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Motivation

• Trend analysis

• Hypothetical queries
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Challenges

• # of existing freq patterns is large

– Naïve maintenance: O(NFP  m)

• NFP, # of freq patterns (upper bound 2n)

• m, # of updated transactions

• # of “new” freq pattern candidates is large

– 2n  NFP ( 2n)

• Existing approaches: Extension of certain pattern 

discovery algo / data structure they used

• What is missing?

– How freq pattern space evolves

– A theoretical framework
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Outline

• Pattern space evolution

• TRUM: A decremental maintainer

• PSM: A complete maintainer

• Optimizing performance of PCL Classifier



Pattern Space Evolution
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Basic Property of Pattern Space

• Anti-monotone property

– If P is freq, all subset of P is freq

– If P is infreq, all superset of P is infreq
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Decomposition into Equiv Classes

• Equiv Class: A set (class) of patterns that appear 

in exactly the same transactions
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Equivalence Class

• Equiv classes are convex

Can be compactly represented by borders

– A unique closed pattern (most specific pattern) 

– A set of generators (most general patterns)
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Pattern Space Evolution 

= Equiv Class Evolution

• Pattern Space Maintenance 

= Equiv Class Maintenance

• Equiv Class Maintenance 

= Border Maintenance
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Equiv Class Evolution

Incremental Updates: Case 1

• No structural change and no change to support

• Condition:  G  t+
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Equiv Class Evolution

Incremental Updates: Case 2

• Structurally unchanged but increased in support

• Condition: C  t+
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Equiv Class Evolution

Incremental Updates: Case 3

• Split into two

• Condition: C  t+, but  G  t+
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Equiv Class Evolution

Incremental Updates: Case 4 & 5

• Case 4: Emerge to be NEW freq equiv class

• Case 5: Become infreq

– msa = ceil(ms%  |D|)

Dinc-->D => |D|  => (ms%  |D|)  => msa 
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Key Incremental Maintenance Tasks

• Support update

– O(NEC  m)

• Class splitting

– O(NEC  m)

• New class discovery

– O(2n - NFP)

• Obsolete class removal

– O(NEC)

PSM+ does 

these tasks 

efficiently
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Equiv Class Evolution: 

Decremental Updates

• Incremental

– No change

–  in support

– Split up

– Emerge as freq class 

due  in support

– Become infreq due 

to  in msa

• Decremental

– No change

–  in support

– Merge w/ other class

– Become infreq due 

to  in support

– Emerge to be freq 

class due to  in msa



Talk at IT@EDU2010,  HCM  City, Vietnam, 18 August 2010 Copyright 2010 © WLS, FML, NTS

19

Key Decremental Maintenance Tasks

• Update support

• Merge Class

• Discover new freq class

• Remove obsolete class

PSM and 

TRUM do 

these tasks 

efficiently



Transaction Removal Update Maintainer, 

TRUM
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TRUM

• A decremental maintainer

• Major challenge: Merging of classes



Talk at IT@EDU2010,  HCM  City, Vietnam, 18 August 2010 Copyright 2010 © WLS, FML, NTS

22

Transaction ID-tree (Tid-tree)
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Fast Decremental Maintenance on Tid-tree
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Performance: Speed Up

Dataset
Discovery Algorithms Maintenance Algorithms

FP-growth* GC-growth Borders ZIGZAG moment

chess

msa = 1.5k
130 13 1,980 28 10,600

connect

msa = 30k
24 1.5 2,400 10 182

mushroom

msa = 500
1,240 31 6,500 486 10,700

retail

msa = 100
58 306 48 818 208

t10i4d100k

msa = 500
64 113 66 90 1,288

average 119 80 2,268 174 2,848



Pattern Space Maintainer, PSM
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PSM: A Complete Maintainer

• Incremental: PSM+

• Decremental: PSM-

• Threshold adjustment: PSM
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PSM+

• Key idea

– Only update those 

who need to be 

updated

– O(NaffectedEC)

• Solution 

– Generator 

Enumeration tree 

(GE-tree)

• Key tasks

– Support update

– Class splitting

– New class discovery

– Obsolete class 

removal
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Set-Enumeration Tree 
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Generator-Enumeration Tree

• Key features

– Generators only

– Link to corresponding equiv class

– Negative border generators
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Update of GE-tree
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PSM+: Speed Up

Dataset

Discovery 
Algorithms

Maintenance Algorithms

FP-growth* GC-growth Borders CanTree ZIGZAG moment

chess

ms%=50%
590 96 3,400 620 1,395 13,000

connect

ms%=50%
2280 8.2 5200 2340 1400 826

mushroom

ms%=0.1%
3085 380 6700 3121 47800 3216

retail

ms%=0.1%
640 247 36000 735 27100 18210

t10i4d100k

ms%=0.5%
150 374 1540 200 261 609

average 672 262 12800 746 7067 5878
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Conclusions

• Analysis of evolution of freq pattern space

• TRUM, efficient decremental maintenance

• PSM, efficient complete maintenance



Efficiently Finding Best Parameter for 

Rule-Based Classifier PCL
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Emerging Patterns

• Freq patterns: Set of items appearing in many 

records in the dataset

• Jumping emerging patterns (JEP): Patterns freq 

in one class but absent in other classes

• JEPs capture characteristics of the class that 

distinguish them from other classes

• App in classification: JEPs are used to make 

predictions
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Assoc Rule-Based Classification

• A set of rules is constructed from data 

• Class labels of test instances are determined by 

these rules

• 3 main types of rule-based classifiers 

– Best pattern is used to make prediction

– A set of patterns is used to make prediction

– A set of patterns is used as the best features and 

then  a normal classifier is then trained on these 

features
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PCL

• Construct rules from JEPs

• Given training set, collect JEPs for each class

• Given test instance, score for each class is sum 

of support of top K JEPs that cover the test 

instance divided by the sum of support of top K 

JEPs in this class

• Class whose score is higher wins

– Value of K affects prediction results
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Value of K Affects Prediction

• K too small: Lose power of small-support JEPs

• K too big: Suffer over-fitting from too many JEPs

How to choose K ?
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rPCL: Optimize Parameter by CLT

• Simulate proc of classification in a training set on each K

• Select K that gives best estimated performance

• Correctness is guaranteed by CLT
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Pattern Space Maintenance

• Pattern space is set of freq patterns in a data set

• Small change in data set unlikely to cause big 

change in pattern space 

• Pattern space maintained efficiently by PSM algo

Original After removal

Dataset abc

abd

ade

ade

abd

ade

ade

Frequent

patterns

a, b, d, e,

ab, ad, ae, de

ade

a, d, e,

ad, ae, de,

ade
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ePCL: Use PSM to improve rPCL

• Maintain freq JEPs using PSM 

PCL can be constructed fast from one sampling to others
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Accuracy Improved in Most Cases

• E.g., promoters, hepatitis, & wine datasets improved by 
26% , 15%, & 11% respectively

ePCL PCL

Improvement

(%)

Promoters 0.82 0.65 25.92

Hepatitis 0.89 0.77 14.98

Wine 0.98 0.88 11.39
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Difficult Cases

• Improvement in difficult cases is more significant. 

Difficult cases are cases when scores for both 

classes are non-zero
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Efficiency

• ePCL & rPCL same results but ePCL is lots faster

• ePCL slower than PCL due to repeated sampling

Datasets PCL rPCL ePCL Speed up 

(rPCL/ePCL)

Iris 2.0 99.0 3.0 33.0

zoo 5.0 291.0 7.0 41.5

splice 2.5 129.0 4.0 32.2

hepatitis 0.5 38.0 3.0 12.6

Running time for 10 folds cross-validation (in seconds)
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Conclusions

• Good choice of K for PCL is important

• We introduce ePCL to choose optimal K

– ePCL uses pattern maintenance for efficiency 

– ePCL uses sub-sampling and CLT to choose K

• Our technique improves PCL’s accuracy and 

running time

– Especially in difficult cases !
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