From bewilderment to enlightenment: Logic in cancer research

> Wong Limsoon Based on joint work with Wilson Goh and Sriganesh Srihari

About Limsoon

Position

Kwan-Im-Thong-Hood-Cho-Temple Chair Professor, Dept of Computer Science, NUS

Research

database systems & theory, knowledge discovery, bioinformatics & computational biology

Honours

- ACM Fellow
- FEER Asian Innovation Gold Award 2003
- ICDT Test of Time Award 2014

Two bewilderments

3

Breast cancer survival signatures are no better than random signatures

Mutation mutual exclusivity are not associated with synthetic lethality

And maybe some enlightenment at the end....

Talk at IMETI2018, Taiwan

Copyright 2018 © Wong Limsoon

Some NUS numbers

- 3 campuses
 - Kent Ridge, Bukit Timah, & Outram
- 150 hectares
- 13 undergrad schools
- 4 graduate schools

- 28k undergrads
- 10k grad students
- 2.4k faculty
- 3.5k research staff
- 5.4k other staff

Story #1 BREAST CANCER-SURVIVAL SIGNATURES

Talk at IMETI2018, Taiwan

Copyright 2018 © Wong Limsoon

Venet et al., PLOS Comput Biol, 2011

A seemingly obvious conclusion

A multi-gene signature (social defeat in mice) is claimed as a good biomarker for breast cancer survival

Cox's survival model p-value << 0.05

A straightforward Cox's analysis. Anything wrong?

In fact, almost all random signatures also have p-value < 0.05;

And the larger a random signature is, the more likely this happens

Venet et al., PLOS Comput Biol, 2011

Goh & Wong, Why breast cancer signatures are no better than random signatures explained. Drug Discovery Today, 2018

National Universit of Singapore

<u>Talk at</u> IMETI2018, Taiwan

Perhaps instead of asking whether a signature is significant, ask what makes a signature significant

Proliferation is a hallmark of cancer

11

Hypothesis: Proliferation-associated genes make a signature significant

			# of rar signatur ≥1 proli	ndom res w f gen		
Cutoffo	Counts					
Cutons	NP	Р	Marginals			
Above 0.05	7043	19 043	26 086			
Below 0.05	2766	19 148	21 914			
Marginals	9809	38 191	48 000			

Impact of proliferation genes on reported signatures

Ó

0 o.

0.4

Proportion of proliferation genes

8

0

0.2

6

٥

0.8

0.6

٥

0

P-value of reported signatures, before removing proliferation genes

Small signatures

P-value of reported signatures, after removing proliferation genes

Talk at IMETI2018, Taiwan

Many random signatures with proliferation genes are not significant;

Which proliferation genes make many random signatures significant?

<section-header>

Helpful analytical practices

15

Leverage existing data and knowledge

Careful and systematic evaluation of gene sets

Rigorous testing against as many published datasets as possible

Proliferation is a cancer hallmark

GLINSKY, DAI, RHODES, ABBA, WHITFIELD

SPS = { genes appearing in at least two of these good signatures }:

83 genes in total

81 of these are proliferation associated

16

Systematic evaluation

SPS genes show additive effect,

other proliferation genes don't

Talk at IMETI2018, Taiwan

Copyright 2018 © Wong Limsoon

Test on many datasets

For any independent dataset, a random signature has ~50% chance to be significant in it

How many independent datasets are needed to avoid reporting random signatures as significant?

n	(50%) ⁿ
1	50.00%
2	25.00%
3	12.50%
4	6.25%
5	3.13%
6	1.60%
7	0.78%

Test on many datasets

Number of datasets random signature significant in

SPS is universally significant on 7 breast cancer datasets

Random signatures (same size as SPS) are hardly universal, even though they get better p-values than known signatures on some datasets

Frequency

of Singapore

A theory-practice gap

~50% of random signatures are significant in 1 dataset

Red histogram is expected # of random signatures significant in n independent dataset (according to bionomial distribution)

Blue histogram is observed distribution

A related cautionary note

NN	NN Acc. (%)	Acc. t ₁ -sparse (%)	Acc. t ₂ -sparse (%)	NPAQ r for t_1 -sparse (%)	NPAQ r for t_2 -sparse (%)
ARCH1	74.00	78.00	81.00	20.31	62.50
ARCH ₂	62.00	73.00	78.00	12.50	65.62
ARCH ₃	76.00	82.00	83.00	45.31	52.34
ARCH ₄	50.00	64.00	72.00	17.19	93.75
ARCH5	78.00	82.00	83.00	74.22	24.22
ARCH ₆	80.00	11.00	87.00	37.50	55.47
ARCH ₇	87.00	89.00	89.00	6.25	79.69

Table 2: First and second column refer to the baseline model where we use BNNs with 7 different architectures. The third and fourth represent the accuracies of sparsified models with $t_1 = 0.03, t_2 = 0.05$ sparsification thresholds. The last 2 columns show NPAQ estimates for the difference between each sparsified model and the orignal model.

Credit: Teodora Baluta

Alice Lee Centre for Nursing Studies

Story #2 SYNTHETIC LETHALS

Talk at IMETI2018, Taiwan

Copyright 2018 © Wong Limsoon

Synthetic lethality

Some models of synthetic lethality of Singapore

a parallel pathways model where targeting B results in disruption of

both survival pathways, and **b** negative feedback-loop model where targeting B shunts of (forward) signals for cell survival

Why interested in synthetic lethality?

Synthetic-lethal partners of frequently mutated genes in cancer are likely good treatment targets

25

Synthetic lethality implies mutual exclusivity

26

Fact/postulate:

When a pair of genes is synthetic lethal, mutations of these two genes avoid each other

Observation:

Mutations in genes (A,B) are seldom observed in the same subjects

Conclusion by abduction: Genes (A,B) are synthetic lethal

Srihari et al. Inferring synthetic lethal interactions from mutual exclusivity of genetic events in cancer. *Biology Direct*, 10:57, 2015.

Talk at IMETI2018, Taiwan

A seemingly obvious approach Revisional University based on hypergeometric test

where $P[X > |S_{AB}|]$ is computed using the hypergeometric probability mass function for $X = k > |S_{AB}|$:

$$P[X > |S_{AB}|] = \sum_{k=|S_{AB}|+1}^{|S_B|} \frac{\binom{|S_A|}{k} \binom{|S|-|S_A|}{|S_B|-k}}{\binom{|S|}{|S_B|}}$$

Mutations of genes (A,B) avoid each other if P[X ≤ S_{∆R}] ≤ 0.05

Anything wrong with this?

(1)

27

Differential essentiality of genes *B* between DDR-deficient and MCF7 cell lines

cens

Ranges for GARP scores of predicted genes (ME) and entire set of profiled genes in BRCA1-deficient cell lines

Cell lines with BRC41 mutation, loss or downregulation

Among top ME-genes, GARP score ranks correlate with mutual exclusion ranks But GARP scores of MEgenes (i.e. have mutually exclusive mutations to BRCA1) are similar to other genes

The hypergeometric distribution NUS does not reflect real-world mutations

$$P[X \le |S_{AB}|] = 1 - P[X > |S_{AB}|], \tag{1}$$

where $P[X > |S_{AB}|]$ is computed using the hypergeometric probability mass function for $X = k > |S_{AB}|$:

 $P[X > |S_{AB}|] = \sum_{k=|S_{AB}|+1}^{|S_B|} \frac{\binom{|S_A|}{k}\binom{|S|-|S_A|}{|S_B|-k}}{\binom{|S|}{|S_B|}}$

The Hypergeometric distribution assumes:

Mutations are independent

Mutations have equal chance to appear in a subject Real-life mutations are inherited in blocks; those close to each other are correlated

Some subjects have more mutations than others

⇒Null distribution is not hypergeometric, binomial, etc.

Real-life example: Mutations of TP53 and its neighbours

(a) Genomic location of genes close to TP53

TNFSF12		2.4%	
SENP3	1	2.4%	
TNFSF13	1	2.4%	
EIF4A1	:	24%	
SNORD10	1	2.4%	
CD68	1	2.4%	
FXR2	1	2.6%	
MPDU1	1	2.5%	
5DX15	1	2.5%	
SHBG	1	2.6%	
SAT2	1	2.6%	
ATP1B2	:	2.8%	
TP53	1	2,8%	
WRAP53	:	2.4%	
EFNB3	:	24%	

Deep Deletion No alterations - Not profiled

Genetic Atteration

(b) CNA profile of genes close to TP53

A related cautionary note

	Dis	tribution		Mean	Standard deviation				
Scenario	А	В	Α	В	А	В	Sample size		
(1)	Normal	Normal	0	0	1	1	10	30	100
(2)	Normal	Normal	0	0.5	1	1	10	30	100

Sample size

Wang, Sue, & Goh. Drug Discovery Today, 22(6):912-918, 2017

Talk at IMETI2018, Taiwan

Copyright 2018 © Wong Limsoon

Group genes into genomic clusters

Test genes in far-apart genomic clusters for mutually exclusive mutations

Mutually exclusive clusters should contain synthetic-lethal & collateral-lethal gene pairs

Prediction of

collateral / synthetic lethality partners of 7 DDR genes

Gene	HDMI	ME Pairs	PW Confirmed
PTEN	0.040	71	53
TP53	0.025	51	36
BRCA2	0.030	34	22
ATM	0.020	26	19
CDH1	0.025	33	17
RB1	0.040	52	37
MSH3	0.025	18	11

A example of synthetic lethality: NUS TP53-BCL2

(a) Pathway heatmaps of the TP53 group(b) GARP score distribution of the TP53 and the BCL2 group. and BCL2 genes.

36

Another example: PTEN-WDR48

(a) Pathway heatmaps of the PTEN group and the WDR48 group.

An example of collateral lethality

FXR2 is located near TP53 FXR1 and FXR2 are paralogs that buffer each other's function

Do FXR1 and TP53 deletions avoid each other?

TCGA prostate

Altered in 159 (32%) of 498 sequenced cases/patients (498 total)

Is FXR1 synthetic lethal to TP53? Does inhibiting FXR1 lead to cell death for TP53deleted cell lines?

Talk at IMETI2018, Taiwan

38

Tumour bearing homozygous TP53/FXR2 codeletion shrinks upon doxycycline-induced FXR1 knock down

39

Talk at IMETI2018, Taiwan

Copyright 2018 © Wong Limsoon

Prince George's Park

SUMMARY

Talk at IMETI2018, Taiwan

Copyright 2018 © Wong Limsoon

Bewilderment: Breast cancer survival signatures are no better than random signatures Enlightenment: SPS genes

Bewilderment: Mutation mutual exclusivity are not associated with synthetic lethality Enlightenment: Collateral lethality

Copyright 2018 © Wong Limsoon

References

43

Wilson Wen Bin Goh, Limsoon Wong. **Why breast cancer signatures are no better than random signatures explained**. *Drug Discovery Today*, 23(11):1818-1823, 2018.

Wilson Wen Bin Goh, Limsoon Wong. **Turning straw into gold: Building robustness into gene signature inference**. *Drug Discovery Today*, in press.

Sriganesh Srihari, Jitin Singla, Limsoon Wong, Mark Ragan. Inferring synthetic lethal interactions from mutual exclusivity of genetic events in cancer. *Biology Direct*, 10:57, 2015.

PhD program at NUS Graduate School of Integrative Sciences and Engineering,

http://ngs.nus.edu.sg/graduate_programme.html

PhD program at NUS School of Computing,

http://comp.nus.edu.sg/programmes/pg/phdcs