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Two bewilderments W NationalUniversiy

Breast cancer survival signatures are no better than
random signatures

Mutation mutual exclusivity are not associated with
synthetic lethality

And maybe
some enlightenment at the end....
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Story #1

BREAST CANCER-SURVIVAL
SIGNATURES
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Venet et al., PLOS Comput Biol, 2011

NUS
; s A seemingly

obvious conclusion

HR=2.4 (Cl, 1.5-3.9)
p=0.00014

oo 02 04 06 08

|
a 5 10 15
time [yr]

A multi-gene signature (social defeat in mice) is
claimed as a good biomarker for breast cancer
survival

— Cox’s survival model p-value << 0.05

A straightforward Cox’s analysis. Anything wrong?
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Goh & Wong, Why breast cancer signatures are no better than random signatures explained. Drug Discovery Today, 2018
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Perhaps instead of asking whether a
signature is significant, ask what makes a
signature significant

Talk at IMETI2018, Taiwan Copyright 2018 © Wong Limsoon



NUS

National University
of Singapore

Yale-NU



Proliferation is a NUS
hallmark of cancer

of Singapore

Hypothesis: Proliferation-associated genes make a
signature significant

o o Counts 2~

' CULOffs F--=ssseesssssenpessssamnesseofonnnnnnnnnanns
: NP Marginals

: Above 0.05: 7043 19 043 26 086

| Below 0.05! 2766 19148 | 21914
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Impact of proliferation genes NUS
on reported signatures
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P-value of reported signatures,
before removing proliferation
genes

P-value of reported signatures,
after removing proliferation
genes
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Many random signatures with proliferation
genes are not significant;

Which proliferation genes make many
random signatures significant?
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Helpful analytical practices

of Singapore

Leverage existing data and knowledge
Careful and systematic evaluation of gene sets

Rigorous testing against as many published
datasets as possible
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Leverage background knowledge®® sz

Proliferation is a cancer hallmark

Good signatures with high diff in p-values before vs
after removing proliferation genes:

GLINSKY, DAI, RHODES, ABBA, WHITFIELD

SPS = { genes appearing in at least two of these
good signatures }:

83 genes in total
81 of these are proliferation associated
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Test on many datasets e
For any independent
dataset, a random n (50%)"
signature has ~50% 1 50.00%
chance to be significant : >
in it 2 25.00%
3 12.50%
How many independent 4 6.25%
datasets are needed to 5 3.13%
avoid reporting random 6 1.60%
signhatures as 7 0 78%

significant?
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Test on many datasets

Known (signatures)

Onearlaps with SPS
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SPS is universally
significant on 7 breast
cancer datasets

Random signatures
(same size as SPS) are
hardly universal, even
though they get better
p-values than known
sighatures on some
datasets
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A theory-practice gap
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~50% of random
signatures are
significant in 1 dataset

Red histogram is
expected # of random
signatures significant
in n independent
dataset (according to
bionomial distribution)

Blue histogram is
observed distribution
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A related cautionary note

NN NN Ace. (%) | Ace. rp-sparse (%) | Acc. ra-sparse (%) | NPAQ r for ¢ -sparse (%) | NPAQ r for r;-sparse (%)
ARCH, 74.00 78.00 21.00 20.31 62.50
ARCH; 62.00 73.00 78.00 12.50 63.62
ARCH; 76.00 82.00 83.00 45.31 52.34
ARCH4 50.00 64.00 72.00 17.19 93.75
ARCH5 78.00 22.00 83.00 74.22 24.22
ARCHg 20.00 11.00 87.00 37.50 55.47
ARCH, 87.00 £9.00 £9.00 6.25 79.69

Table 2: First and second column refer to the baseline model where we use BNNs with 7 dif-
ferent architectures. The third and fourth represent the accuracies of sparsified models with
t1 = 0.03,1, = 0.05 sparsification thresholds. The last 2 columns show NPAQ estimates for the

difference between each sparsified model and the orignal model.

Credit: Teodora Baluta
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Story #2

SYNTHETIC LETHALS

Talk at IMETI2018, Taiwan Copyright 2018 © Wong Limsoon



iabl iabl
Synthetic lethality viuDie viable

viable lethal
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Some models of synthetic lethality?®

a CEFMI'I}‘ b Ce%ffw

Fig. 7 Two models for pathway-based targeting of synthetic lethal
genes B in conjunction with deleted/downregulated genes A:

a parallel pathways model where targeting 8 results in disruption of
both survival pathways, and b negative feedback-loop model where
targeting B shunts of (forward) signals for cell survival

Talk at IMETI2018, Taiwan
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Why interested in
synthetic lethality?

Synthetic-lethal
partners of
frequently mutated
genes in cancer are
likely good treatment
targets

Copyright 2018 © Wong Limsoon
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Synthetic lethality implies NUS
mutual exclusivity

Fact/postulate:

When a pair of genes is synthetic lethal, mutations
of these two genes avoid each other

Observation:

Mutations in genes (A,B) are seldom observed in
the same subjects

Conclusion by abduction:
Genes (A,B) are synthetic lethal

Srihari et al. Inferring synthetic lethal interactions from mutual exclusivity
of genetic events in cancer. Biology Direct, 10:57, 2015.
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A seemingly obvious approach NUS
based on hypergeometric test

Sa Sy PIX<[Sap|] = 1-P[X > |Sas]]. (1)

where P [X>|Sp|] is computed using the hypergeo-
metric probability mass function for X = k> |S4p|:

s 3 ()

K=ISual 41 S| )
S5

Mutations of genes (A,B) avoid each other if P[X =<
Spgl £0.05

Anything wrong with this?
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Seems to work fine 85 e

Differential essentiality of genes B between
DDR-deficient and MCF7 cell lines
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Really?

Mutual exchusivity vs Cell in essentiality - BRCAT
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Gene rank by mutual excushity with BRCAT

Among top ME-genes,
GARP score ranks
correlate with mutual
exclusion ranks
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Ranges for GARP scores of predicted genes (ME) and entire set of profiled genes in
BRCAI-deficient cell lines

esxentiality soare

GARFP
I
|

el Bimes wiiithe SERCT ko, boss on sl noregulation

But GARP scores of ME-
genes (i.e. have mutually
exclusive mutations to
BRCAH1) are similar to
other genes

Copyright 2018 © Wong Limsoon
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The hypergeometric distribution NUS
does not reflect real-world mutation

of Singapore

Real-life mutations are

PIX<[Sapl) = 1-PIX > [Sasl] (1) ] . .
whfare P [X‘>‘|SABH is com‘puted using the hypergeo- Inherlted In bIOCkS’ those
metric probability mass function for X = k> |Sp]: close to each other are
(1Sl (SISl
P[X ~ |SABH _ |2: ( k )( S|k ) correlated

)

Some subjects have
more mutations than
others

The Hypergeometric
distribution assumes:

Mutations are independent

= Null distribution is not
hypergeometric,
binomial, etc.

Mutations have equal chance
to appear in a subject
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Real-life example: 92 NUS
Mutations of TP53 and its neighbours

of Singapore
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(a) Genomic location of genes close to TP53 (b) CNA profile of genes close to TP53
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Distribution Mean Standard deviation

. Sample size
re a e Scenario A B A B A B

(1) Normal Normal 0 0 1 1 10 30 100

cautionary @ e | vema] ol o] | 1+ 1 0] »]m
note
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Effect size

Wang, Sue, & Goh. Drug Discovery Today, 22(6):912-918, 2017 log;«(p)
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Solution?

Group genes into genomic clusters

Test genes in far-apart genomic clusters for
mutually exclusive mutations

Mutually exclusive clusters should contain
synthetic-lethal & collateral-lethal gene pairs

Talk at IMETI2018, Taiwan Copyright 2018 © Wong Limsoon



Prediction of NUS
collateral / synthetic lethality partners
of 7 DDR genes

Gene HDMI | ME Pairs | PW Confirmed
PTEN 0.040 71 H3
TP53 0.025 51 36
BRCA2 0.030 34 22
ATM 0.020 26 19
CDHI1 0.025 33 17
RB1 0.040 52 37

0.025 18 11
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A example of synthetic lethality: NUS
TP53-BCL2

GARP distributions for BCLZ - TP53
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(a) Pathway heatmaps of the TP53 group(,) GARP score distribution of the TP53
and the BCL2 group. and BCL2 genes.
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An example of collateral lethality 3% ==

FXR2 is located near TP53

FXR1 and FXR2 are paralogs that buffer each
other’s function

Do FXR1 and TP53 deletions avoid each other?

TCGA prostate

Altered in 159 (32%) of 498 sequenced cases/patients (498 total)

P53 Sl LT R
FXR2 5% T T T N T

FXR1 12% | | TN 11

Genetic Alteration I Amplification I Desp Deletion Inframe Mutation (unknown significance) ™ Missense Mutation (unknown significance)

[l mMRMA Downregulation mRNA Upregulation Nop alterations ™ Truncating Mutation (unknown significance)

Is FXR1 synthetic lethal to TP53?

Does inhibiting FXR1 lead to cell death for TP53-
deleted cell lines?
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Tumour bearing NUS

homozygous

P53/FXR2 co-

deletion shrinks upon

doxycycline-induced
FXR1 knock down
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Fan et al., eLife, 6:626129, 2017 Days after the start of treatment
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SUMMARY
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Bewilderment: Breast cancer survival signatures are
no better than random signatures

Enlightenment: SPS genes

Bewilderment: Mutation mutual exclusivity are not
associated with synthetic lethality

Enlightenment: Collateral lethality

Bewilderment Logic Enlightenment

Happy families are all alike; every
unhappy family is unhappy in its own way
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