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Two bewilderments 85

 Breast cancer survival signatures are no better
than random signatures

e Mutation mutual exclusivity are not associated
with synthetic lethality

And maybe
some enlightenment at the end....
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Story #1

BREAST CANCER-SURVIVAL
SIGNATURES
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Venet et al.,, PLOS Comput Biol, 2011

BNUS
S ™ A seemingly
ol | obvious conclusion

A multi-gene signature (social defeat in mice) is
claimed as a good biomarker for breast cancer
survival

— Cox’s survival model p-value << 0.05

o A straightforward Cox’s analysis. Anything

wrong?
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Goh & Wong, Why breast cancer signatures are no better than random signatures explained. Drug Discovery Today, 2018
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« Many random signatures with proliferation genes
are not significant

 Which proliferation genes make many random
sighatures significant?

 What other key factors make many random
sighatures significant?

« Some helpful analytical practices
— Leverage existing data and knowledge
— Careful and systematic evaluation of gene sets

— Rigorous testing against as many published
datasets as possible
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Leverage background knowledge NUS

« Background knowledge
— Proliferation is a cancer hallmark

e Good signatures with high diff in p-values before
vs after removing proliferation genes

— GLINSKY, DAI, RHODES, ABBA, WHITFIELD

« SPS ={genes appearing in at least two of these
good signatures }

— 83 genes in total
— 81 of these are proliferation associated
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Test on many datasets

Known (signatures)
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Mumber of datasets random signature significant in

SPS is universally
significant on 7 breast
cancer datasets

Random signatures
(same size as SPS)
are hardly universal,
even though they get
better p-values than
known signatures on
some datasets
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Story #2

SYNTHETIC LETHALS
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Srihari et al. Inferring synthetic lethal interactions from mutual exclusivity
of genetic events in cancer. Biology Direct, 10:57, 2015. B2 ® N US

Synthetic lethal pairs 95

Fact/postulate

— When a pair of genes is synthetic lethal, mutations
of these two genes avoid each other

Observation

— Mutations in genes (A,B) are seldom observed in
the same subjects

Conclusion by abduction
— Genes (A,B) are synthetic lethal

Why interested in synthetic lethality?

— Synthetic-lethal partners of frequently mutated
genes in cancer are likely good treatment targets
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A seemingly obvious approach NUS
based on hypergeometric test ~ ™"

Sa Sy PIX<[Sap|] = 1-P[X > |Sas]]. (1)

where P [X>|Sp|] is computed using the hypergeo-
metric probability mass function for X = k> |S4p|:

s 3 ()

K=ISual 41 S| )
S5

 Mutations of genes (A,B) avoid each other if P[X <
Spgl £0.05

 Anything wrong with this?
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What Is happenln

Mutual exchusivity vs Cell in essentiality - BRCAT
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Gene rank by mutual excushity with BRCAT

e Among top ME-genes,
GARP score ranks
correlate with mutual
exclusion ranks

Srihari et al. Biology Direct, 10:57, 2015.
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But GARP scores of
ME-genes (i.e. have
significantly mutually
exclusive mutations
to BRCA1) are similar

to other genes
Copyright 2018 © Wong Limsoon
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The hypergeometric distribution NUS
does not reflect real-world mutation

of Singapore

e Real-life mutations

PIX<[Sap]] = 1-PIX > [S,s]. (1)

where P [X >|S4p|] is computed using the hypergeo- - Inherlted In bIOCkS,
metric probability mass function for X = k> |S,z/:
E those close to each
P Sl = S ( ¢ >( it other are correlated

)

— Some subjects have
more mutations than
others, e.g. those
with defective DNA-

« The Hypergeometric
distribution assumes

— Mutations are

independent repair genes

— Mutations have equal o _ _
chance to appear in a = Null distribution is not
subject hypergeometric,

binomial, etc.
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Solution? B e

 Group genes into genomic clusters

« Test genes in far-apart genomic clusters for
mutually exclusive mutations

 Mutually exclusive clusters should contain
synthetic-lethal & collateral-lethal gene pairs
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lllustrative example

e FXR2is located near TP53

« FXR1 and FXR2 are paralogs that buffer each
other’s function

e Do FXR1 and TP53 deletions avoid each other?

TCGA prostate

Altered in 159 (32%) of 498 sequenced cases/patients (498 total)

P53 SR LT AR R
FXR2 (LTI AR fA O T T
FXR1 12% | | TN 11

Genetic Alteration I Amplification I Desp Deletion Inframe Mutation (unknown significance) ™ Missense Mutation (unknown significance)

[l mMRMA Downregulation mRNA Upregulation Nop alterations ™ Truncating Mutation (unknown significance)

 |s FXR1 synthetic lethal to TP53?

 Does inhibiting FXR1 lead to cell death for TP53-
deleted cell lines?
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Tumour bearing NUS
homozygous
TP53/FXR2 co-
deletion shrinks upon
doxycycline-induced
FXR1 knock down
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Fan et al., eLife, 6:€26129, 2017 Days after the start of treatment
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Summary

 Bewilderment: Breast cancer survival signatures
are no better than random signatures

 Enlightenment: SPS genes

 Bewilderment: Mutation mutual exclusivity are not
associated with synthetic lethality

 Enlightenment: Collateral lethality

Bewilderment Logic Enlightenment

Happy families are all alike; every
unhappy family is unhappy in its own way
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