NUS National University of Singapore National University of Singapore

Some opinion and advice on machine learning in population-based genomic medicine

Wong Limsoon

A confession

I use machine learning in very limited ways these days If you properly Resolve batch effects Control confounding factors Use informative features

Then any simple analysis methods (including machine learning methods) give equally good results

Machine learning currently has quite weak validation practices

A "black box" produced by a machine learning method may not be what you think it is

In the GWAS context

If you properly

Resolve batch effects Control confounding factors Use informative features

Then any simple analysis methods (including machine learning methods) give equally good results Resolving batch effects Not an issue, as not much batch effects

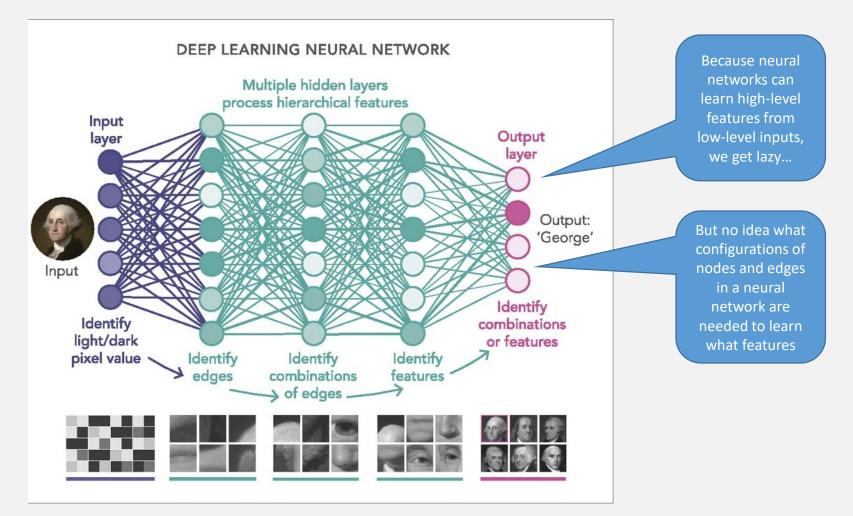
Controlling confounding factors, e.g. population structure *An issue, somewhat solved by stratification, sample selection,*

etc.

Using informative features

An issue, we are still using features with diluted info

And is exacerbated when using machine learning in some cases



Features with diluted information are often used in machine learning

In the context of GWAS

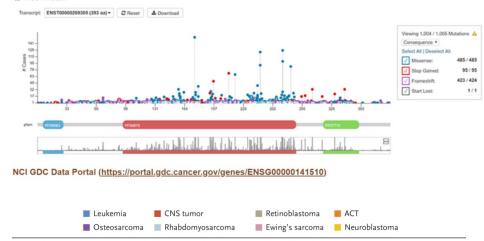
SNPs are de facto features They have "structures" (in the same gene, pathway, etc.) They have "interactions" (genetic linkage, epistasis, etc.)

Real explanations are often revealed at higher levels

But such higher-level info is often insufficiently exploited, even totally ignored

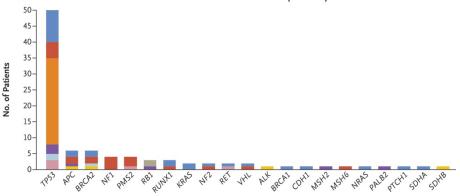
Good explanations are often revealed at higher levels

Mutational processes shape the landscape of TP53 mutations in human cancer.



TP53 are mutated in as many ways in as many cancer patients

But many patients have mutations in TP53 Mutations in 21 Genes Associated with Autosomal Dominant Cancer-Predisposition Syndromes



https://www.nejm.org/doi/full/10.1056/NEJMoa1508054

Provide / use higher-level info as much as possible

Machine learning methods have a hard time finding SNPcancer associations, like the TP53 ones

Confused by noise from millions of SNPs

Diluted as each patient has his own mutations in TP53

Even when TP53 SNPs were found by machine learning methods, they couldn't tell you these are TP53 ones

These methods see SNP-level (not gene-level) info, since this is what they are provided with

Another confession

I haven't done much work on GWAS these days

But I am thick-skinned

I am going to use this one as my example:

Sharlee Climer, Alan R. Templeton, Weixiong Zhang, "Allele-specific network reveals combinatorial interaction that transcends small effects in psoriasis GWAS", *PLoS Comput Biol*, 10(9):1003766, 2014

Missing heritability

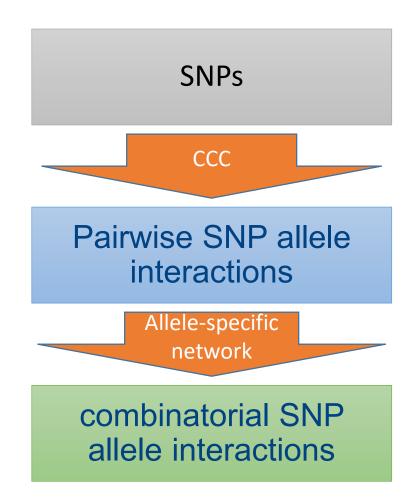
Single genetic variations cannot account for much of the heritability of diseases, behaviours, and other phenotypes

Combinatorial interactions may account for a substantial portion of this "missing heritability"

But their discoveries have been difficult 10¹² pairwise SNP interactions, 10¹⁸ triplets, etc. Too many to screen efficiently Severe multiple testing

Also need to account for "diploid semantics" in the design of a screening metric

From SNPs to higher-level more informative features



Custom correlation coefficient, CCC

$$CCC is allelespecific$$

$$CCC is allelespecific$$

$$CCC _{ij} = R_{ij} * F_i * F_j * W$$

$$Rare alleles havemore weight$$

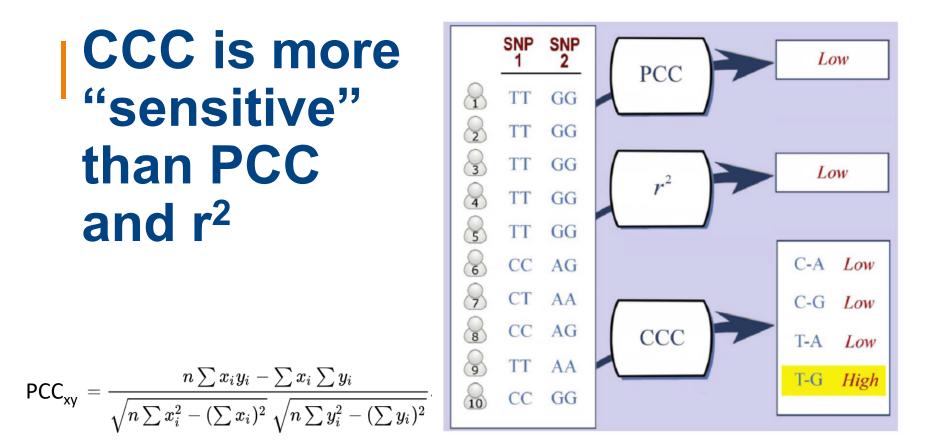
$$CCC is allelespecific$$

$$CCC _{ij} = R_{ij} * F_i * F_j * W$$

$$Rare alleles havemore weight$$

$$Suppose The second second$$

	P	SNP 2							
	R _{ij} —		B Bb				bb		
	AA	AB = 1	Ab = 0		AB = 1/2	Ab = 1/2		AB = 0	Ab = 1
	AA	aB = 0	ab = 0		aB = 0	ab = 0		aB = 0	ab = 0
SNP 1	Аа	AB = 1/2	Ab = 0		AB = 1/4	Ab = 1/4		AB = 0	Ab = 1/2
		aB = 1/2	ab = 0		aB = 1/4	ab = 1/4		aB = 0	ab = 1/2
	аа	AB = 0	Ab = 0		AB = 0	Ab = 0		AB = 0	Ab = 0
	ad	aB = 1	ab = 0		aB = 1/2	ab = 1/2		aB = 0	ab = 1



$$r=rac{\mathsf{P}_{\mathsf{AB}}\,\mathsf{P}_{\mathsf{ab}}-\mathsf{P}_{\mathsf{Ab}\,\mathsf{PaB}}}{\sqrt{p_A(1-p_A)p_B(1-p_B)}}$$

Figure 1. Genotypes for ten individuals for a pair of SNPs. The first five individuals are perfectly correlated, but the others are not correlated at all. The absolute value of PCC is 0.3 and r^2 returns 0.0, due to the uncorrelated individuals. CCC supplies four correlation values, each of which corresponds to a specific type of correlation. These values are low for three of the possible combinations, but a high value of 0.7 for the T-G combination was returned. doi:10.1371/journal.pcbi.1003766.g001

CCC is more efficient than PCC and r²

$$CCC_{ij} = R_{ij} * F_i * F_j * w$$

n: sample size, m: # of SNPs

 F_i is computed once for each SNP allele i in O(n) time

 R_{ij} is looked up in O(1) time CCC_{ii} is computed in O(1) time

 \therefore CCC complexity = O(m² + n)

$$\mathsf{PCC}_{\mathsf{xy}} = rac{n\sum x_i y_i - \sum x_i\sum y_i}{\sqrt{n\sum x_i^2 - (\sum x_i)^2}}\, \sqrt{n\sum y_i^2 - (\sum y_i)^2}$$

$$r = rac{\mathsf{P}_{\mathsf{AB}} \, \mathsf{P}_{\mathsf{ab}} - \mathsf{P}_{\mathsf{Ab} \; \mathsf{PaB}}}{\sqrt{p_A (1-p_A) p_B (1-p_B)}}$$

PCC complexity = $O(m^2 * n)$ r² complexity = $O(m^2 * n)$ \therefore CCC is much faster

Sample size of 1,000; CCC is 1,000 times faster than PCC & r²

Allele-specific psoriasis network analysis

Construct allele-specific network using 929 psoriasis cases and 681 controls in GAIN GRU genome-wide data: 443,020 autosomal SNPs

Nodes are SNP alleles Edges link SNP alleles (i,j) with $CCC_{ii} > \theta$ θ is set here so that# nodes = # edges

Each connected component is a combinatorial interaction of SNP alleles

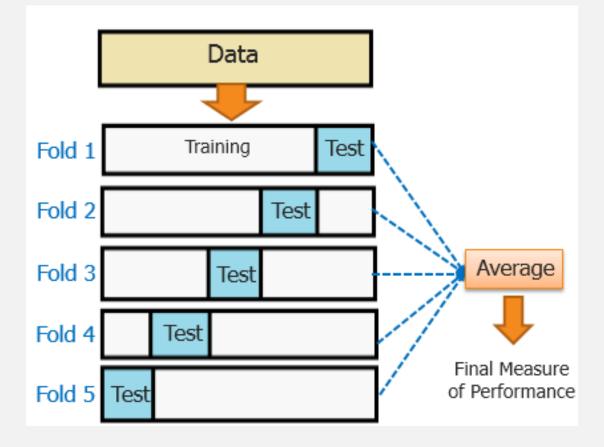
Test it and its complement allele pattern for association with phenotype (psoriasis)

Top connected component, ps1

Node #	Risk Allele	Freq. Cases	Freq. Controls	OR	rsID
1	G	0.431	0.324	1.58	rs3130573
2	С	0.421	0.300	1.70	rs1265078
3	т	0.394	0.266	1.79	rs3130467
4	С	0.391	0.260	1.83	rs3130517
5	т	0.381	0.252	1.83	rs3130713
6	т	0.530	0.438	1.45	rs3130685
7	С	0.360	0.233	1.85	rs2394895
8	А	0.469	0.346	1.67	rs3130955
9	А	0.516	0.413	1.52	rs9263967
10	т	0.404	0.256	1.97	rs2844627
11	т	0.298	0.150	2.41	rs12191877
12	С	0.513	0.401	1.57	rs2524163
13	А	0.513	0.405	1.55	rs2243868
14	С	0.341	0.208	1.97	rs2894207
15	А	0.296	0.154	2.31	rs9468933
16	G	0.424	0.288	1.82	rs7773175
17	А	0.404	0.291	1.65	rs9380237

OR = 3.64 (CI: 2.75-4.80) P < 5.01×10^{-16} (Bonferroni corrected) Freq in cases: 22%, in control: 7%

3 SNPs in known psoriasisassociated genes (SEEK1, SPR1, HCR)



Machine learning has quite weak validation practices

Computational validations

Phenotype permutations, i.e. null distribution for OR

Genotype permutations, i.e. null distribution for CCC

Boot-strap trials

Independent validation

Phenotype permutations

Genotype permutations

P-values based on phenotype permutations agree with Bonferroni-corrected p-values

Edges unlikely to be false positives *Max CCC in permuted networks* = 0.6515 *Min CCC in unpermuted network* = 0.6949

Boot-strap trials

Independent validation

Ps1 robustly reproduced in 1,000 boot-strap rounds using random 50% of cases and controls $Ave \ OR = 3.66 \ (CI: 3.64-3.69)$ $Ave \ P < 2.91 \ x \ 10^{-11}$

Ps1 replicated using GAIN ADO dataset (439 psoriasis cases, 728 controls) OR = 3.86 (CI: 2.98—5.01) $P < 1.81 \times 10^{-25}$ Freq in cases: 26%, controls: 8%

Brief comparison w/ PCC

A network constructed using PCC to link SNPs, same # of nodes and edges as CCC network

PCC network is more dispersed \Rightarrow fewer "believable modules"

Genotype-permuted PCC networks have higher PCC values than the unpermuted network \Rightarrow more false positives

PCC network took much longer to build

Some caveats

Though CCC is much more efficient to compute that PCC and r^2 , it still took ~50 "desktop" days to compute the allele-specific psoriasis network

But parallelizes easily; ran in 1 day on 45 desktops

Didn't take care of linkage disequilibrium, population structure, etc.

Can do these easily at post-processing

WHEN YOU SEE A CLAIM THAT A COMMON DRUG OR VITAMIN "KILLS CANCER CELLS IN A PETRI DISH,"

KEEP IN MIND:

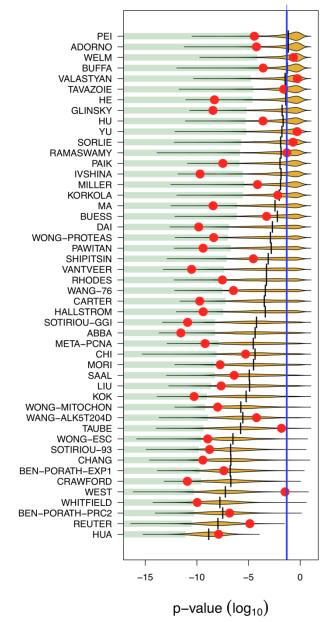
SO DOES A HANDGUN.

An unrelated story about validation

 $\log_{10}(0.05)$

Anna Karenina effect

40-50% of random signatures also have p-value << 0.05 on breast cancer datasets



An engineer's solution to eliminate random signatures

For any independent dataset, a random signature has ~50% chance to be significant in it

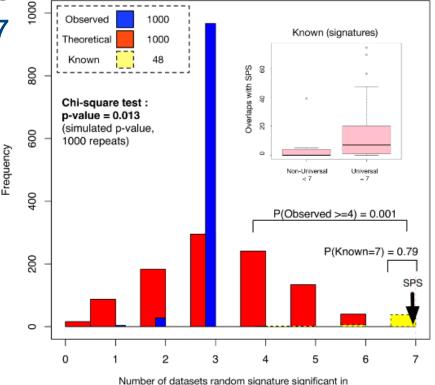
How many independent datasets are needed to avoid reporting random signatures as significant?

n	(50%) ⁿ
1	50.00%
2	25.00%
3	12.50%
4	6.25%
5	3.13%
6	1.60%
7	0.78%

Test on 7 datasets

SPS & most known signatures are universally significant on 7 breast cancer datasets

Random signatures (same size as SPS) are hardly universal, even though they get better p-values than known signatures on some datasets



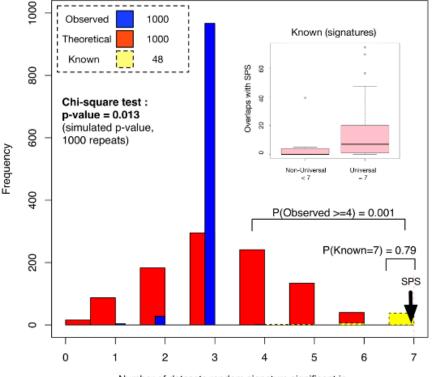
Goh & Wong. Drug Discovery Today, 24(1):31--36, 2019

A theory-practice gap

Red histogram is expected # of random signatures significant in 1 to 7 independent datasets

Blue histogram is observed distribution

The independent datasets are less independent than you think!



Number of datasets random signature significant in

A "black box" produced by a machine learning method may not be what you think it is

Neural networks: A popular machine learning approach

Do you know what a neural network has learned?

When two neural networks trained on the same training datasets have the same high performance on the same test datasets, have they learned the same thing?

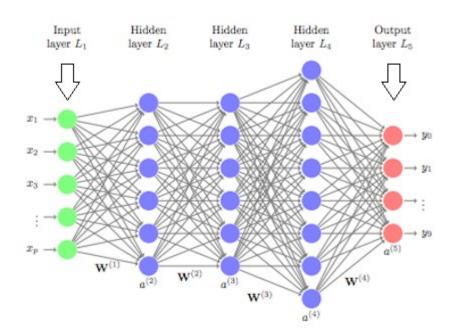


Image credit: University of Cincinnati

Accuracy does not correlate with classifier similarity

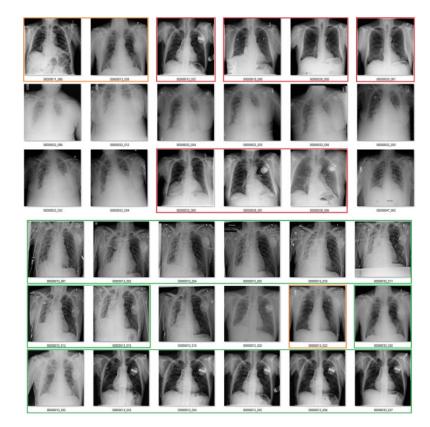
NN	NN Acc. (%)	Acc. t_1 -sparse (%)	Acc. t ₂ -sparse (%)	NPAQ r for t_1 -sparse (%)	NPAQ r for t_2 -sparse (%)	
ARCH1	74.00	78.00	81.00	20.31	62.50	
ARCH_2	62.00	73.00	78.00	12.50	65.62	
ARCH_3	76.00	82.00	83.00	⁴ Although t2	2-sparse and ARCH7 are b	
ARCH ₄	50.00	64.00	72.00		rate on the test set, they	
ARCH5	78.00	82.00	83.00	7 disagree	e on ~80% of future cases	
ARCH ₆	80.00	11.00	87.00	37.50	55.4	
ARCH ₇	87.00	89.00	89.00	6.25	79.69	

Table 2: First and second column refer to the baseline model where we use BNNs with 7 different architectures. The third and fourth represent the accuracies of sparsified models with $t_1 = 0.03, t_2 = 0.05$ sparsification thresholds. The last 2 columns show NPAQ estimates for the difference between each sparsified model and the orignal model.

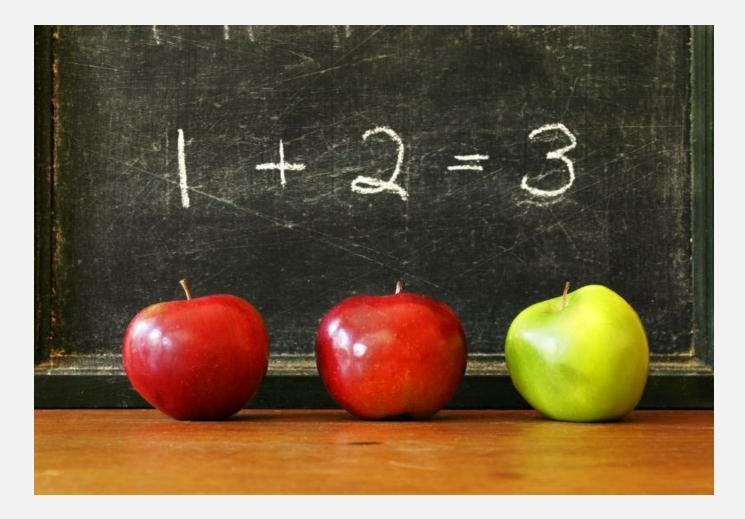
A very recent story

	Disease	taMap	Our Method					
L'ARCONC.		Precision / R	tecall / F	1-score	Precision /	Recall / F	1-score	
				enI				
	Atelectasis	87.37	96.57	91.7	88.7 /	96.5/	92.4	
	Cardiomegaly	100.0 /	85.5/	92.2	100.0 /	85.5/	92.2	
	Effusion	90.3 /	87.57	88.9	96.6/	87.57	91.8	
	Infiltration	68.0 /	100.07	81.0	81.0 /	100.0 /	89.5	
	Mass	100.0 /	66.7 /	80.0	100.0 /	66.7 /	80.0	
	Nodule	86.7 /	65.0/	74.3	82.4/	70.0/	75.7	
	Pneumonia	40.0 /	80.0 /	53.3	44.47	80.0/	57.1	
	Pneumothorax	80.0/	57,1/	26.3	80.0 /	57.1/	66.7	
	Consolidation	0.7/16.30			77.87		82.4	
	Edema	94.1/ 64.	.07	76.2	94	1.1/0/6	0483.3	
OSIS	10	00.0 / 100.	0/	100.0	100	0.0 / 10	0.07	100
PT	10	00.0 / 75.	0/	85.7	100	0.0/ 7	5.0/	85.7
Hernia	10	00.0 / 100.	0/	100.0	100	0.0 / 10	0.0 /	100.0
Total	1	77.2/ 84.	61	80.7	89	9.8/ 8	35.0/	87.3
		C	nestX-	ray14				
Atelectasis	; (88.6/ 98.	1/	93.1	96	5.6/ 9	07.37	96.9
diomeg	galy 9	94.1 / 95.	71	94.9	96	5.7/ 9	5.7/	96
		37.7/ 99.	61	93.3			92.5	
	Nodule /	59.7 / 90.	0/	78.6		02B1	88.2	
	Pneumonia	73.81	87.31	80.0	88.91	87.37	88.1	
	Pneumothorax	87.4/	100.07	93.3	94.37	98.8/	96.5	
	Consolidation	72.8 /	98.3/	83.7	95.2/	98.3/	96.7	
	Edema	72.1/	93.9/	81.6	96.97	93.97	95.43	
	Emphysema	97.67	93.2/	95.3	100.0 /	90.97	95.2	
	Fibrosis	84.67	100.0 /	91.7	91.7 /	100.0 /	95.7	
	PT	85.1/	97.6/	90.9	97.6/	97.67	97.6	
	Hernia	66.7/	100.0/	80.0	100.0 /	100.0 /	100.0	
	Total	82.8 /	95.5/	88.7	94.4/	94.47	94.4	

Really good results from a study published in CVPR 2017



Dataset bias - many pneumothorax cases were patients treated with chest drain



Closing remarks

Closing remarks

Resolve batch effects + control confounding factors + use informative features \Rightarrow simple analysis methods can give good results

But it takes some understanding to design good features

Current validation practices are quite weak Put more thoughts into here; test and test again

A "black box" produced by a machine learning method may not be what you think it is

Use w/ caution; avoid unless no choice