Robustness of protein complexbased analysis of proteomics data

Wong Limsoon Joint work with Wilson Goh

National University of Singapore

© Copyright National University of Singapore. All Rights Reserved.

Using protein complexes to enhance proteomics: Basic ideas

Copyright © 2019 by National University of Singapore. All Rights Reserved

Intuition

Suppose the failure to form a protein complex causes a disease

If any component protein is missing, the complex can't form

Diff patients suffering from the disease can have a diff protein component missing *Construct a profile based on complexes?*

... and some math

Postulate: Chance of a protein complex being present \approx fraction of its member proteins being reported in the screen

Say a proteomics screen has 75% reliability; {A, B, C, D, E} is a complex; and screen reports A, B, C, D only

The complex has 60% (= 0.75 * 4 / 5) chance to be present

E has >60% chance to be present, as presence of complex implies presence of its constituents ... improving coverage

A, B, C, and D each has 90% (= 100% * 0.6 + 75% * 0.4) chance of being present, i.e. >75% ... removing noise

Reference complexes

In this talk, human complexes (of size at least 5) from CORUM are used as reference complexes

It is possible to use subnetworks generated from pathway and PPI databases. However these such subnetworks vary significantly depending on databases and generation algorithms used

So I do not consider these...

Improving consistency in proteomic profile analysis

Proteomic profiles sometimes not sufficiently consistent

A human kidney tissue, digested in quadruplicates, analyzed in triplicates

Guo et al. *Nature Medicine*, 21(4):407-413, 2015

Correlation betw replicates is not good (~0.4)

Technical replicates of the same biological replicate are not tightly clustered

qPSP, a simple use of complexes

Features are complexes

Feature values are fuzzy weighted proportion of proteins in a complex $score(C,S_i) =$ $\Sigma_{p\in C} fs(p,S_i) / |C|$

 $\begin{array}{l} Complex \ C \ is \ significant \ if \\ \{score(C,S_i) \mid S_i \in A\} \ is \ very \\ different \ by \ t-test \ from \\ \{score(C,S_i) \mid S_i \in B\} \end{array}$

Fig. 1 Schematic demonstrating qPSP's fuzzification procedure. First, alpha1 at top 10 % was defined. An alpha2 was defined from top 10-20 %. To place less confidence in the lower-scoring alpha2, proteins that fall within this range were grouped into 5 bins with descending weights. The modulated hit-rates for each sample could then be used for generating each sample's proteomic signature profile

Goh et al. Quantitative proteomics signature profiling based on network contextualization. *Biology Direct*, 10:71. 2015

Justification for fuzzy scoring

Low-abundance proteins have very high coefficient of variation

They thus are very noisy

Fuzzy scoring mitigates this

False-positive rate analysis

12 kidney controls randomly assigned into two groups of equal size, and qPSP performed many rounds

False-positive rate well within the expectation levels *Sig Clusters (Abs) Exp: 19, Observed: 16 Sig Clusters (Ratio) Exp: 5%, Observed: 4%*

Consistency of qPSP

Clustering of benchmarking control data based on protein complexes (i.e. qPSP)

Correlation betw replicates is >0.95

Cf. 0.4 based on proteins

Also, technical replicates are better clustered

Application to renal & colorectal cancers

which demonstrates that the discrimination between sample classes based on qPSP hit-rates is highly stable

Further improving consistency in proteomic profile analysis

PFSNet, considering class factors

For irrelevant protein complex S, the two scores above for patient p_k should be roughly equal, regardless of class

:. Do a paired t-test on $\Delta(p_k, S) = \text{score}_1^{pk}(S) - \text{score}_2^{pk}(S)$ to decide whether S is relevant, get null distribution by permuting class labels

> Goh & Wong. Advancing clinical proteomics via analysis based on biological complexes: A tale of five paradigms. *Journal of Proteome Research*, 15(9):3167--3179, July 2016.

Copyright © 2019 by National University of Singapore. All Rights Reserved.

ESSNet, for small datasets & low-abundance proteins

Let g_i be a protein in a given protein complex

Let p_j be a patient

Let q_k be a normal

Let $\Delta_{i,j,k} = Expr(g_i, p_j) - Expr(g_i, q_k)$

Test whether $\Delta_{i,j,k}$ is a distribution with mean 0

Goh & Wong. Advancing clinical proteomics via analysis based on biological complexes: A tale of five paradigms. *Journal of Proteome Research*, 15(9):3167--3179, 2016

Null hypothesis is "Complex C is irrelevant to the diff betw patients and normals, and the proteins in C behave similarly in patients and normals"

No restriction to most abundant proteins

Potential to reliably detect low-abundance but differential proteins

Methods to compare with

Network-based methods Hypergeometric enrichment (HE) Direct group analysis (DG), similar to GSEA qPSP PFSNET ESSNET

Standard t-test on individual proteins (SP)

Simulated data

Simulated datasets from Langley and Mayr

Both D1.2 and D2.2 have 100 small-sized simulated datasets, each with 20% significant features

Effect sizes of these differential features are sampled from one out of five possibilities (20%, 50%, 80%, 100% and 200%), increased in one class and not in the other

Significant artificial complexes are constructed with various level of purity (i.e. proportion of significant proteins in the complex)

Equal # of non-significant complexes are constructed too

SP shows rather poor performance on simulated data

Can networkbased methods do better?

Supplementary Figure 1 Single protein (SP) precision-recall performance on D1.2. The f-score (pink), precision (blue) and recall (green) shows that SP performs abysmally on simulated data. HE is shown next to SP as a reference.

qPSP / PFSNET / ESSNET perform well on simulated data

Renal cancer control data (RCC)

12 runs originating from a human kidney tissue digested in quadruplicates and analyzed in triplicates

Excellent for evaluating falsepositive rates of featureselection methods

Randomly split the 12 runs into two groups

Report of any significant features between the groups must be false positives

All methods control false positives well

Dash line corresponds to expected # of false positives at alpha 0.05 (~30 complexes)

Renal cancer data (RC)

12 samples are run twice so we have technical replicates over 6 normal and 6 cancer tissues

Good for testing reproducibility of feature-selection methods

A good method should report similar feature sets between replicates

Can also test feature-selection stability

Apply feature-selection method on subsamples and see whether the same features get selected

ESSNET & PFSNET show excellent reproducibility

Number of terms	HE	DG	ESSNET	QPSP	PFSNET			
Replicate 1	4	1	35	86	45			
Replicate 2	6	2	29	75	46			
Overlaps	0.25	0.5	0.83	0.66	0.94			
HE	DG	ESSNET	QPSP	PFSNET				
1	0.5	0.71	0.86	0.71	HE			
	1	1	1	1	DG			
		1	0.93	0.98	ESSNET			
This table is composed on by applying the	uted	0.90	QPSP					
methods on the ful dataset	1	PFSNET						

ESSNET & PFSNET show excellent stability

ESSNET can assay lowabundance complexes that qPSP cannot

A: QPSP-ESSNET significantcomplex overlaps

B: P-value distribution for overlapping and nonoverlapping QPSP complexes.

C: Sampling abundance distribution. The left panel is a zoom-in of the right. The y-axis is the protein abundance while the four categories are the distribution of abundances of complexes found in QPSP, ESSNET, ESSNET unique (complement), and all proteins in RC.

ESSNET can assay lowabundance complexes that PFSNET cannot

Of the 5 ESSNET-unique complexes, PFSNET can detect 4; the missed complex consists entirely of low-abundance proteins.

If p-value threshold is adjusted by Benjamini-Hochberg 5% FDR, PFSNET can detect only 3 of the 5 ESSNET-unique complexes while ESSNET continues to detect them all. These methods work well on gene expression data too, using gene regulatory pathways instead of protein complexes

Reproducibility on gene expression datasets

Batch effects obfuscate –omics analysis

Copyright © 2019 by National University of Singapore. All Rights Reserved

Simulated data

Real one-class data from a multiplex experiment (no batches); n = 8

Randomly assigned into two phenotype classes D and D*, 100x

20% biological features are assigned as differential, and a randomly selected effect size (20%, 50%, 80%, 100% and 200%) added to D*

Half of D and D* are assigned to batch 1, and the other half assigned to batch 2. A randomly selected batch effect (20%, 50%, 80%, 100% and 200%) is added to all features in batch 1

Batch effects obfuscate

Batch-effect correction confound

P: Precision R: Recall F: F-measure

Feature selection via t-test

Providing batcheffect resistance in proteomic profile analysis

Protein complexbased feature selection is resistant to batch effects

Wilson Wen Bin Goh, Limsoon Wong. **Protein complex-based analysis is resistant to the obfuscating consequences of batch effects---a case study in clinical proteomis**. *BMC Genomics*, 18(Suppl 2):142, March 2017.

Batch effects "avoid" top **PCs** produced from protein complexes selected by **SNET &** FSNET

Copyright © 2019 by National University of Singapore. All Rights Reserved.

Batch effects "avoid" top protein complexes selected by **SNET & FSNET**

17.0

16.0

15.0

SNET 2

HE 2

14.0

13.0

20

normal

HE 3

rep1

rep2

cancer

0 normal cancer rep1 rep2

1.0 0.0 0 T normal cancer rep1 rep2

SNET 1

Recovering missing proteins from proteomic screen

Lots of missing values in real proteomics datasets

X	🚽 🎝 = (× -									nm	.3807-S4.)	kls [Read-	Only] [Co	ompatibili	ty Mode]	- Microso	oft Excel										-	ð ×
Fi	le Ho	me Inse	rt Page Layo	ut Form	nulas Da	ita Revie	w View	Acrobat) ۵) - 6
	🛛 🔏 Cut		Calibri	× 11	- A A	= = _	\$¥,	🖥 Wrap Te	xt	General				Norma		Bad	Goo	od	Neutra		alculation	-	e 🔿		Σ AutoSum		#		
Pas	💷 🗈 Cop	у т						Marga 8	Contor v	\$ - 9/	• •.0 .00	Conditio	nal Format	Check (Coll	Explanator		ut	Linked		lote	-	insert Delet	e Format	🛃 Fill 👻	Zu Sort &	Find &		
	🐪 🍼 Fori	nat Painter	b í <u>v</u>		<u>" A</u> '	= = =	3F 5F	menge o	center *	⊅ * 7o	7 .00 →.0	Formattir	ng ∞ as Table	*	i i i i i i i i i i i i i i i i i i i	.xpiunator	y	ut	LIIIKEU		Vote	_	* *	*	🖉 Clear 🔻	Filter *	Select *		
	Clipboard	G.	F	ont	- Fai		Alignme	nt	Fai	Numb	er 5	i 👘					Styles						Cells	5		Editing			
X30 - A NA																													
	А	В	С	D	E	F	G	Н	1.1	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC
		GeneSy		kidneyTis	s kidneyTis	s kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	s kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTi
1	protein	mbol	kidneyTisue1	ue2	ue3	ue4	ue5	ue6	ue7	ue8	ue9	ue10	ue11	ue12	ue13	ue14	ue15	ue16	ue17	ue18	ue19	ue20	ue21	ue22	ue23	ue24	ue25	ue26	ue27
2	P09110	ACAA1	288001.7778	46353.28	237958.5	30102.47	297711.2	37098.09	6/454.84	92200.62	231528.4	12617.18	263299.1	NA 120288 5	222387.2	NA 115120	1//211	27857.94	321565	43497.89	280540.3	//962.1/	235242.5	23827.06	302761.4	41190.07	125102	97756.44	122380.3
2	006800	GEM1	240067.73	70304.27 NA	20000.0	NA	72075 25	55060.05	64601.65	56015 20	200565.5	25176.2	236247.1	22060.2	204954.5	113156 NA	243353.5	22/01 9	49209 46	47050 34	240034.8	03477.35 NA	230475.3	1NA 22621 74	327733	41574.24 NA	2064 747	52610.00	67555 47
5	015417	CNN3	28364 89722	NA	40333.83 NA	NA	NA	MA156 47	52272.02	27128.03	10577.49	32524.27	1/171 12	23000.3	27592.38	/19821.32	23144 21	2/96/ 95	32/03	47838.24 NA	2/1907 9/	46053.92	NA	23031.74 NA	25129.86	129/18 /	2004.747	26438 35	23207 51
6	096506	S100A16	NA	35176.2	NA	66058 39	NA	30674.6	1804 538	21706.65	ΝΔ	NA	11359 64	NA	18677 58	41493 97	12617 18	22496 77	NΔ	NA	ΝΔ	36422 79	NΔ	75858 83	20589.93	31161.06	2064 747	20398 13	ΝΔ
7	P62820	RAB1A	NA	NA	NA	NA	NA	NA	54417.16	3130.811	NA	68503.39	NA	NA	NA	NA	NA	NA	NA	NA	32596.28	NA	NA	54839	NA	48748.28	2064.747	NA	NA
8	P27169	PON1	NA	47101.83	58436.31	18128.35	NA	33573.36	112930.6	NA	NA	NA	NA	59432.1	NA	39084.55	36282.92	16953.34	NA	NA	NA	45107.13	NA	19506.67	NA	38130.55	109838.9	NA	NA
9	Q9UL46	PSME2	33680.65278	99968.93	59047.33	145114.2	33256.26	141575.7	77962.17	75727.38	64365.04	121022.2	40286.83	114480.8	40567.01	104458.4	42876.78	83666.14	55954.92	62742.03	33768.27	111940.8	59915.42	151558.9	38443.16	113145.5	79024.33	73747.38	40140.37
10	P08237	PFKM	39644.09722	NA	54240.61	NA	136064	NA	1804.538	62845.97	141296.3	100616.3	137596.7	NA	140860.9	NA	96590.73	NA	92823.65	51085.24	155550.8	NA	47697.29	NA	136064	NA	2064.747	58618.05	143381.1
11	P04040	CAT	292456.0528	149632.6	239229.2	24964.95	258247.1	220764.4	540115.8	133921.9	284934.5	367784.7	293727.3	179981.9	259314.6	124294.3	204722.1	77070.33	109006.7	136875.9	290924.4	163095.2	237958.5	31389.75	271920.4	227900.3	499422.8	150524.5	294964.3
12	Q8WYA6	CTNNBL1	NA	NA	NA	NA	NA	NA	1804.538	NA	NA	NA	NA	NA	NA	NA	NA	27646.1	37621.73	26686.24	NA	NA	NA	NA	NA	NA	2064.747	NA	NA
13	Q9H0W9	C11orf54	454591.5833	77225.75	393512.7	55431.72	365975.5	180535.1	188742.5	77348.17	352898.9	119242.7	417999.9	263299.1	474797	229655.9	427428	143697	124568	146454.4	441856.5	74156.41	370040.5	44605.86	363784.6	187566.8	129074.8	104101.6	375463.4
14	P31948	STIP1	76018.00556	83236.9	83516.5	137596.7	75613.89	110367.2	98642.34	195146	77709.53	282315.9	65948.94	122386.3	81635.42	129969.2	67749.81	124568	108554.7	135737.2	69039.96	92656.4	85600.47	147792.9	65262.99	109273.7	91127.04	218888	122047.2
15	O94901	SUN1	57623.33889	NA	NA	NA	72273.86	NA	1804.538	NA	NA	NA	58063.49	NA	NA	NA	NA	NA	NA	NA	60013.66	NA	NA	NA	71252.19	NA	2064.747	NA	NA
16	Q99714	HSD17B10	175372.7444	114480.8	181096.8	75400.28	222387.2	91466.47	218888	269679.7	179177.4	165285.9	202618.2	117389.5	191537	41135.21	196208.5	151044.7	210269.6	294964.3	183893	82644.38	179981.9	102286.8	233372.9	91325.89	196996.8	293727.3	174540.8
17	Q15833	STXBP2	14224.84722	24264.99	14303.05	19690.86	16316.33	NA	1804.538	NA	14303.05	17309.98	11459.84	14224.85	12617.18	NA	14224.85	9837.458	21131.38	5634.228	13283.71	28846.59	20057.06	12924.71	17380.49	NA	2064.747	11880.63	13166.66
18	P08195	SLC3A2	50797.625	42825.82	63302.14	26628.24	85345.18	NA	1804.538	NA	77850.57	NA	100616.3	NA	76579.02	NA	44010.16	17146.31	NA	NA	80199.58	41362.6	72273.86	32198.97	75858.83	NA	2064.747	NA	76292.57
19	P26038	MSN	333342.6833	438752.3	421056.2	381249.5	241992.3	404349.8	164343.5	172028.6	446678.9	167923.7	367784.7	310472.5	404349.8	393512.7	292456.1	427428	390317.5	244865.7	273261.7	446678.9	404349.8	306071.8	222387.2	423963.5	191537	182241.6	441856.5
20	P09104	ENO2	NA	144058.2	NA	184650.5	NA	137596.7	126146.3	21831.56	NA	NA	NA	119650.8	NA	404349.8	NA	48438.29	57080.76	NA	NA	151558.9	NA	181096.8	NA	123793.9	2064.747	NA	NA
21	P07148	FABP1	1219163.714	34579.48	861796.3	NA	940142	NA	1804.538	NA	1130692	NA	1057986	NA	789446.1	NA	221565	NA	NA	NA	1162786	32336.43	805128.4	NA	970053.3	NA	2064.747	NA	1300718
22	Q96Q11	TRNT1	NA	NA	NA	NA	NA	NA	1804.538	NA	NA	NA	NA	NA	NA	NA	NA	NA	37098.09	35565.03	NA	NA	NA	NA	NA	NA	2064.747	NA	NA
23	015083	ERC2	NA	NA	NA	85740.42	NA 205055.4	NA	1804.538	NA	83390.33	NA	NA 1000C0 F	NA	NA	NA	NA	142306.8	NA	NA	NA	NA	NA	72396.48	NA	NA	2064.747	NA	70213.43
24	QIS9II	ZFHX3	NA	NA	1/8/45.3	393512.7	205865.1	082053.9	1804.538	NA 46154.90	243050.1	NA 54727.26	189860.5	NA 12642-28	NA 20517.17	NA	NA 40140.27	457756.2	NA	NA 10640-17	NA 24426-2	NA	NA 26056.08	NA 16652-10	NA 47050-24	NA	2064.747	NA 22002 64	252846.2
25	Q9BURS	APOU HACI1	35479.70278	NA NA	27200.11	15459.00	40140.37	INA 227161 7	1804.538	40104.89	30730.15	54737.30	47185.33	13042.38 NA	28517.17	NA 271920 4	226700.9	NA	NA	272495 6	34430.2	NA NA	2002175	10053.18 NA	47858.24	1NA 211072.9	2004.747	160917.6	20057.00
20		PDCD6IP	50008 50556	2/001 //	70504.27	50109 55	59047 22	/1611 19	24219 79	97140 59	56715.96	124561.7	52110 21	61552 77	67555 47	65262.99	69597.02	59927 29	72200.25	75049 44	64109.27	10250 20	70902.29	NA 49626-21	307203	27252 59	76579.02	76695 11	27296 22
27	D53597	SUCI G1	387432 1583	99433 59	228946.3	94932.09	310472 5	150524.5	187002.3	299487.5	275420.7	308775 7	299487 5	101732 7	245595.9	108554.7	270810.9	89524 72	192915.6	276628.6	357417.6	96737.9	205171.6	95793.82	288001.8	162300.5	193664.8	299487.5	245595.9
29	000186	STXBP3	NA	28468.21	NA	NA	NA	19019.68	1804.538	ΝΔ	ΝΔ	NA	NA	21949.83	NA	NA	NA	NA	NA	NA	15575.29	29005.53	ΝΔ	NA	NA	NA	2064.747	NA	NA
30	O8N335	GPD1L	52415.71111	NA	59328.51	NA	54240.61	21949.83	109838.9	91466.47	45427.61	109273.7	50443.03	NA	52700.48	22321.01	45502.32	NA	57623.34	41362.6	54737.36	NA	62380.69	NA	54839	23827.06	152627.3	71658.52	49636.31
31	P08621	SNRNP70	48594.65	51791.05	47269.07	86082.28	44306.32	53026.19	1804.538	NA	59432.1	54839	49636.31	60605.33	52477.21	NA	NA	72977.35	74546.25	82242.07	33003.64	60605.33	49636.31	93224.91	NA	56917.54	2064.747	NA	50797.63
32	Q969V6	MKL1	NA	91325.89	55954.92	NA	74269.09	80102.57	1804.538	NA	71906.43	NA	NA	152627.3	72497.5	72497.5	89662.88	51690.71	68707.95	41576.85	72021.55	92973.8	NA	NA	NA	88904.66	2064.747	NA	NA
33	P08311	CTSG	NA	NA	46154.89	NA	NA	67879.78	1804.538	NA	53026.19	NA	NA	68927.99	NA	NA	NA	NA	218057.1	78414.15	NA	NA	46895.88	NA	NA	56514.53	66379.24	NA	NA
34	Q9UKU7	ACAD8	46053.91944	31797.32	50179.16	NA	64601.65	NA	75160.02	49228.15	44010.16	28070.84	41974.24	NA	41840.21	NA	42678.39	NA	24335.52	32270.84	46053.92	NA	49467.07	NA	61900.08	NA	2064.747	46053.92	44605.86
35	Q86X76	NIT1	75613.88611	NA	61068.98	63988.55	80199.58	69590.71	1804.538	55745.15	70389.43	NA	84009.8	75506.47	78547.77	84980.21	76153.19	NA	57523.94	40935.27	70713.02	NA	59540.84	70713.02	78753.85	73278.36	55745.15	58932	52415.71
36	P05162	LGALS2	33491.8	NA	35565.03	NA	52415.71	36825.06	1804.538	23560.07	18592.77	NA	36763.92	72761.18	35479.7	50008.51	24907.94	NA	16653.18	22730.31	34916.06	NA	30730.15	NA	32815.68	71139.86	2064.747	NA	25737.06
37	P23946	CMA1	NA	NA	NA	NA	NA	NA	1804.538	NA	NA	NA	NA	NA	NA	NA	NA	NA	61155.07	14049.16	NA	NA	NA	NA	NA	NA	53240.82	NA	NA
38	P01834	IGKC	462133.8694	885197.1	692332.5	484624	296507.9	462133.9	1219164	319228.4	659554.4	351190.2	312295.6	524995.4	566103.9	692332.5	325019.6	494067.2	286640.3	263299.1	499422.8	1130692	706520.3	469971.2	322906.2	438752.3	913960	310472.5	643593
39	P14868	DARS	12567.36389	110112	54554.37	136875.9	30209.1	121022.2	1804.538	114195.5	43350.86	95493.71	29430.84	182241.6	61667.11	201171.9	81193.99	247871.5	161420	94484.9	76929.26	114678.3	54839	177772	50108.55	141996.6	2064.747	95951.08	53026.19
40	Q9H773	DCTPP1	NA	NA	NA	NA	NA	NA	1804.538	46303.49	NA	11589.48	NA	27509.79	NA	NA	NA	26314.17	87070.11	74656.39	NA	NA	NA	NA	NA	NA	2064.747	22251.11	NA
Dan	PPI STa	ible3 / legi	ena / 🍋 /																								100%	0	
ricd	uy I																										100%	0	

Copyright © 2019 by National University of Singapore, All Rights Reserved.

Guo et al. Nature Medicine, 21, 407, 2015

PROTREC

Recall this postulate:

The chance of a protein complex being present is proportional to the fraction of its protein members being correctly reported in the screen

Presence of complex implies presence of all member proteins

PROTREC: Rank predicted missing proteins by

Prob(Protein p is present but unreported) = Max_{complex C contains p} Prob(p is present | C is present) * Prob(C is present) + Prob(p is present | C is absent) * Prob(C is absent)

SWATH experiment

If there are technical replicates, they should have reported the same proteins. So we can run PROTREC on one replica, and see whether the predicted missing proteins show up in other replicas

Proteomics data used: Renal cancer *Guo et al. Nature Medicine, 21(4):407-413, 2015 6 pairs of normal vs cancer ccRCC tissues SWATH in duplicates* "Missing" proteins with high PROTREC scores are usually supported by at least one peptide in technical replicates

Closing remarks

Copyright © 2019 by National University of Singapore. All Rights Reserved.

What have we learned?

Contextualization into protein complexes can help with consistency & reproducibility issues in proteomic profile analysis

It can help with coverage issue too

It can also help with consistency & reproducibility issues in gene expression profile analysis

It can mitigate against batch effects

References

[qPSP] Goh et al. **Quantitative proteomics** signature profiling based on network contextualization. *Biology Direct*, 10:71, 2015

[PFSNET] Goh & Wong. Evaluating featureselection stability in next-generation proteomics. Journal of Bioinformatics and Computational Biology, 14(5):1650029, 2016

[ESSNET] Goh & Wong. Advancing clinical proteomics via analysis based on biological complexes: A tale of five paradigms. *Journal* of Proteome Research, 15(9):3167-3179, 2016

[NETPROT] Goh & Wong. NetProt: Complex-based feature selection. Journal of Proteome Research, 16(8):3102-3112, 2017

Goh & Wong. Protein complex-based analysis is resistant to the obfuscating consequences of batch effects---a case study in clinical proteomis. *BMC Genomics*, 18(Suppl 2):142, 2017

[PROTREC] Goh & Wong. Integrating networks and proteomics: Moving forward. *Trends in Biotechnology*, 34(12):951-959, 2016