Exciting promises and potential pitfalls
of big data in biology and medicine
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Forgotten assumptions
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et € (Hypothesis testing)
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« Commonly used statistical tests (T-test, 2 test,
Wilcoxon rank-sum test, ...) all assume samples
are drawn from independent identical
distributions (1.1.D.)
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— 574 Independent: Patients are not related

— FHIA 4> fAldentical: Similar # of male/female, young/old, ... in
cases and controls
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Thus sex, age, ... don’t need
to appear in the contingency
table
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Collection of suc
interactions in an
organism

Individual proteins come together
and interact @ |

* Proteins come
together & interact

* The collection of
these interactions
form a Protein
Interaction Network

Protein Interaction Network
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Yong, et al. Supervised maximume-likelihood weighting of composite protein
networks for complex prediction. BMC Systems Biology, 6(Suppl 2):S13, 2012 B & N US
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« H4&M (Composite network)
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Data source Database Scoring method
PPI BioGRID, IntACT, MINT lterative AdjustCD.
L2-PPI (indirect PPI) BioGRID, IntACT, MINT Iterative AdjustCD
Functional association STRING STRING
Literature co-occurrence PubMed Jaccard coefficient
Yeast Human
# Pairs % co-complex coverage # Pairs % co-complex coverage
PPI 106328 5.8% 55% 48098 10% 14%
L2-PPI 181175 1.1% 18% 131705 5.5% 20%
STRING 175712 5.7% 89% 311435 3.1% 27%
PubMed 161213 4.9% 70% 91751 4.3% 11%
All 531800 21% 98% 522668 3.4% 49%
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Yong, et al. Supervised maximume-likelihood weighting of composite protein

networks for complex prediction. BMC Systems Biology, 6(Suppl 2):S13, 2012 B8 & N US
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B Diagnostic ALL BM samples (n=327)
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More may not be better

CAUSAL GENES
BURE
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5"51%1'& Prostate | Top 10 0.30
Cancer | Top50 | 0.14

Top100 0.15

— Prostate cancer
« Lapointe et al, 2004
« Singh et al, 2002

— Lung cancer Lung Top 10 0.00
Cancer
. Garber et al, 2001 Top 50 | 0.20

« Bhattacharjee et al, Topl00 | 0.31

2001
— Top 10 0.20
DMD S p
« Haslett et al, 2002 Top 50 0.42
» Pescatori et al, 2007 Top100 0.54

Zhang et al, Bioinformatics, 2009
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Database Remarks N US
KEGG KEGG (http: //www.genome. jp/kegg) 1s one of the best known National University

pathway databases (Kanehisa ef al., 2010). It consists of 16 of Singapore

main databases, comprising different levels of biological infor-

mation such as systems, genomic, etc. The data files are down-

loadable in XML format. At time of writing it has 392 path-

WaYS.

. : . . N /,

WikiPathways WikiPathways (http://www.wikipathways.org) is a t_‘ tl:@ :[//ﬂ% /T:IZ:

Wikipedia-based  collaborative  effort among  various —

labs (Kelder et al., 2009). It has 1,627 pathways of which 369 b " "

are human. The content 1s downloadable in GPML format. IO | Og I Cal
Reactome Reactome (http:://www.reactome.org) is also a collaborative pathwa_yS)

Pathway Commons

PathwayAPI

effort like WikiPathways (Vastrik et al., 2007). It is one of the
largest datasets, with over 4,166 human reactions organized into
1,131 pathways by December 2010. Reactome can be down-
loaded 1n BioPax and SBML among other formats.

PN ETE

Pathway Commons (http://www.pathwaycommons.com) col-
lects information from various databases but does not y»ibetha S e

. . . ow Lomprenensiveness
data (Cerami ef al, 2006). It contains 1,573 pathway of Human Pathway Sources
564 organisms. The data 1s returned in BioPax format m—

N

7icn # of Genes Pairs

Human
pathways in
Wikipathways,

PathwayAPI (http://www.pathwayapi.com) contains ¢ s

unified human pathways obtained from a merge of N
WikiPathways and Ingenuity(®) Knowledge Base (Sol
2010). Data is downloadable as a SQL dump or as a

and is also interfaceable in JSON format.

of Pathways 20007

Unvted KEGG rgarusty ifod EGG  hgenut
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Goh, et al. Proteomics, 12(4-5):550-563, 2012. - :

c and C
Pathway Databases. BMC Bioinformatics, 11:449, 2010.
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Genes

ABCB1
G5TM
GSTP1
MSHE
SAA1
SLC19A1
TPMT
CYP3A4
UGT1A1
IL10
MTHFR
TYMS
CYP3AL
VDR
GSTM1
ME3CH

Threshold

Genes

ABCBA1
ST
GSTP1
MSHE
MTHFR
TYMS
CYP3AL
VDR
GSTM
MNE3C1

N US
%

= /\ *ﬁ of singapore
Binomial
estimation
GOClass1 | ---------- > Significant Class 1
GOClass2 | ---------- *> | Non Significant Class 2
| |
|| |
| |
‘( GOClassN | --------- & Significant Class N

ORA tests whether a pathway is significant by intersecting the
genes in the pathway with a pre-determined list of DE genes
(we use all genes whose t-statistic meets the 5% significance
threshold), and checking the significance of the size of the
intersection using the hypergeometric test

S Draghici et al. “Global functional profiling of gene expression”. Genomics, 81(2):98-104, 2003.
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Issue #1 with ORA

- HBM/EE(0ull hypothe-
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A biological pathway is a series of actions
among molecules in a cell that leads to a certain
product or a change in a cell. Thus necessarily
the behavour of genes in a pathway is more
coordinated than random ones
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Issue #2 with ORA

It relies on a pre-
determined list of DE
genes

This list is sensitive to the
test statistic used and to
the significance threshold
used

This list is unstable
regardless of the threshold
used when sample size is
small

variance

0.3

0.2

oA

0.0

N US
%

National University
of Singapore

t-test p.valus(s)

T T T
a2 3

T T T T T
4 &5 6 T 8
sample size (M)

RGP EIEE

Copyright 2014 © Limsoon Wong

SIAT, Shenzhen, 28 November 2014



Issue #3 with ORA
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 Big data can offer a

more complete picture,
fill in gaps, etc.

« More data can also
Introduce noise into an
analysis

* Unless you know how to
tame this noise, more

, BZHHIEF A
A@ﬁﬁﬁ?ﬁﬁéﬁﬁ data may not lead to a

better analysis
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