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Outline of the Master Class

 Brief overview of biological networks

e Using biological networks
— Gene expression profile analysis
— Proteomic profile analysis
— Protein function prediction
— Other applications

* Issues to be aware of in using biological
networks
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Why Biological Networks?

« Complete genomes * Proteins, not genes,  « Proteins function by

are now available are responsible for Interacting w/ other
- Knowing the genes is ~ Many cellular activities  proteins and
not enough to biomolecules

understand how
biology functions

“INTERACTOME”

GENOME
EN

{

PROTEOME

Slide credit: See-Kiong Ng
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http://www.genome.ad.jp/kegg/docs/slides/tutorial1/pg01.html

NUS
Types of Biological Networks

« Natural biological pathways
— Metabolic pathway
— Gene regulation network
— Cell signaling network

* Protein-protein interaction networks

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



Metabolic
Pathway

* A series of .'i_

biochem
reactions in
acell

— Catalyzed by enzymes

— Step-by-step modification of an initial molecule to
form another product that can

* be used /store in the cell
* initiate another metabolic pathway

Tutorial for WSMB 2012
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Gene Regulation Network

A GENE REGULATORY NETWORK

 Generegulation is

the process that
turns info from genes = I
into gene products =i ”f’%-‘ = ”C’
 Gives a cell control W %{/ S
over its structure & _
function ”°°“"”'

Image credit: Genome to Llfe

— Cell differentiation

“Mohogeness [ B P g
— Adaptability, ... \ o<y | e

ne. X
L -

Image credit: Natasa Przulj
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EGF
extracellular EGER

Cell Signaling Network e (1]
* |tis the entire set of changes induced = |
by receptor activation e T
— Governs basic cellular activities and ‘*":;.,.P*
coordinates cell actions ~

* Cells communicate with each other
— Direct contact (juxtacrine signaling) " A/“MAPK
— Short distances (paracrine signaling)
— Large distances (endocrine signaling) (#p}

 Errors result in cancer, diabetes, ... \ oytoplasm

Image credit: Wikipedia
g P transcription nucleus
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Protein Interaction Network (PPIN) 9%z

of Singapore

PPl usual refers to
physical binding
between proteins
— Stable interaction

* Protein complex
« ~70% of PPIs

— Transient interaction,
mOdlfylng a prOteln Visualization of the human interactome.
for further ac’uons Image credit: Wikepedia

 Phosphorylation
« Transportation
« ~30% of PPIs

 PPIN is usually a set
of PPIs; it is not put
Into biological context
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Using Biological Networks, Part 1.
Delivering Reproducible Gene Expression
Analysis




Part 1: Delivering
reproducible gene
expression analysis

 Basic gene expression
analysis

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



BB &
Gene Expression Measurement9g NUS
by Affymetrix GeneChip Array
Totl ANA conA T
Reverse ¢ in Vitro 4
“~~~. AAAA  Transcription \\ Transcription i
s~ AAAA *
TSN AAAA 4 ) - 4_
CN s
Fragmentation
\
—B
g
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Image credit: Affymetrix
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Diagnosis Using Microarray [ggNUS

of Singapore

Shining a aser light st GoneCivp couses tagged DNA fragesents ihat hybridized 10 glow

128 om <

- 3
(4
,

Actual size of GeneChip’ i i

Milions of DNA strands bullt wp in sech oell

Hybridized DNA

$00.000 cals on esch GaneChip™ array
Actusl strand = 75 Dase pars
- Image credit: Affymetrix
1) inter-ciass distance is too smail (1l) Intra-class distance is too large
00-0586- Ut 00-0586- L 00-0586- LS 00-0586- L 00-0586- L: Des criptions
Positive  |Megative  Pairs IndwiAwg Dif  |Abs Call
AFFHMur 5 2 19 297.5 A M1E7E2 Mause int
AFFH:Murl 3 2 19 554.2 A M37E97 Mouse int
AFFMurl 4 2 19 308.6 A M25892 Mus mus:
AFFHMur 1 3 19 141 A ME3E49 Mus mus:
AFF¥BioE 13 1 19| 93406 P J04423 E coli bioE
AFF%BioE 15 0 19| 128624 P J04423 E coli bioE
AFF%BioE 12 0 19| &871ES P J04423 E coli bicE
AFF¥Binl 17 0 19| 250425 P J04423 E coli bioC
(1) Inter- and intra-cass AFF¥Binl 16 0 20| 28838.5|P J04423 E coli binC
dstances of & good signal AFF%Binl 17 0 19| 257652 P J04423 E coli bioC
, AFF¥Biol 19 0 20 140113.2/P J04423 E coli bioC
o AFFCrex 20 0 20| 280036.6 P #03453 Bacteriopt
o AFFCrex 20 0 20 401741.8 P 03453 Bacteriopt
ol AFF%BioE 7 5 18 433 A J04423 E coli bicE
] AFF¥BinE 5 1 18 3137 A J04423 E coli bioE
! AFF¥%BioE 7 E 200 -1016.2|A J04423 E coli bioE
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Application: Disease Subtype Diagna

& S Singapore
genes

>
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Application: Drug Action Detection® ==

genes
>

0000000000000 00000 D
000000000000 000000 L.
000000000000 000000 D
0000000000000 00000 D9
0000000000000 00000® 0l
0000000000000 00000 0=l
0000000000000 00000® \oimal
| 00000000000 0000000 0m:l

conditions

Which group of genes are the drug affecting on?
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Typical Analysis Workflow

 Gene expression
data collection

: Signal Selection Basic ldea
« DE gene selection '

by, e.g., t-statistic

+ Choose a signal w/ low intra-class distance
« Choose a signal w/ high inter-class distance

e Classifier training

based on selected A He B
DE genes | T N 1
. Apply the classifier L7l peallltl B .:.335[?5:]
for diagnosis of Tt Tewr der TR T T
fu t ure cases Image credit: Golub et al., Science, 286:531-537, 1999
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Hierarchical Clustering

B Diagnostic ALL BM samples (n=327)

IIIMM

Genes for class distinction (n=271)

E2A- MLL T-ALL Hyperdiploid >50 BCR- Novel TEL-AML1

PBX1 ABL
B
30 <20 <l 0 lo 20 3o
o = std deviation from mean Image credit: Yeoh et al, Cancer Cell, 1:133-143, 2002
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"~ Hyperdiploid >50 BCQ;ABL

E2A-PBX1
./ TEL-AMLA1

Image credit: Yeoh et al, Cancer Cell, 1:133-143, 2002
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Part 1: Delivering
reproducible gene
expression analysis

« Some issues in gene
expression analysis

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



Some Headaches

« Natural fluctuations of gene expression in a
person

* Noise in experimental protocols
— Numbers mean diff things in diff batches

— Numbers mean diff things in data obtained from
diff platforms

— Selected genes may not be meaningful
— Diff genes get selected in diff expts

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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S

Sometimes, a gene expression study ™~ B2 &
may involve batches of data collected
over a long period of time...

National University
C C of Singapore
Time Span of Gene Expression Profiles a e S

Batchl DO
Batchl D8
Batch2 DO |
Batch2 D8 :
P Batch3 DO [-siiiidin, .,
%% Batch3 DB
® BachdDO|
¥ Batchd D5

DB & 2

s’ 15

BABLF

i

B Lo W% OO

05 04

03 02
0.1

« Samples from diff batches are groUpedﬂztogether,
regardless of subtypes and treatment response

Image credit: Difeng Dong’s PhD dissertation, 2011
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NS
Percentage of Overlapping Genes

of Singapore

« Low % of overlapping Datasets DEG POG
genes from diff expt in
general Prostate | Top10 | 0.30

Cancer Top 50 0.14
— Prostate cancer Top100 0.15

« Lapointe et al, 2004
* Singh et al, 2002
— Lung cancer
» Garber et al, 2001
« Bhattacharjee et al,

Lung Top 10 0.00
Cancer | Top50 | 0.20
Top100 0.31

2001
— Top 10 0.20
DMD DMD P
« Haslett et al, 2002 Top 50 0.42
* Pescatori et al, 2007 Top100 0.54

Zhang et al, Bioinformatics, 2009

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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Part 1: Delivering
reproducible gene
expression analysis

5

ANUS

Batch Effects

-  Batch effect &

Lt | 08 . .
vt P normalization

+ Samples from diff batches are grouped together,
regardless of subtypes and treatment response

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



FINUS
Approaches to Normalization

« AIm of normalization: e Transform data so

Reduce variance w/o that distribution of
increasing bias probe intensities is
same on all arrays

» Scaling method -Eg.,.(x-n)/o

— Intensities are scaled
so that each array
has same ave value

— E.g., Affymetrix’s

Quantile normalization

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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Quantile Normalization

Density of PM probe intensities for Spikein chips

« Given n arrays of length p,
form X of size p x n where
each array is a column

e Sort each column of X to
give Xgort

« Take means across rows 2 , |
of X, and assign this T e
mean to each elem in the
row to get X’

sort
« Get X, ormaiizeg DY @rranging | ¢ Implemented in some
each column of X’y to microarray s/w, e.g.,
have same ordering as X EXPANDER

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



After quantile
10

> Need normalization to correct for batch effect

A e

g e

Ao

o o e

4 B0

B &

NUS
9

National University
of Singapore

® BatchiDO|
% Batchl D8
® Batch2 D0
# Batch2 D8

Batch3 DO
X Batch3 D8
® Batchd DO
% Batchd D3|

iy g

Image credit: Difeng Dong’s PhD dissertation, 2011
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Caution: "Over
normalize” signals in
cancer samples

A gene normalized by quantile
normalization (RMA) was detected
as down-regulated DE gene, but
the original probe intensities in
cancer samples were higher than
those in normal samples

A gene was detected as an up-
regulated DE gene in the non-

expresson intensity

cXpression intensity

A]

normalized data, but was not
identified as a DE gene in the
guantile nornmalized data
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Wang et al. Molecular Biosystems, in press

Tutorial for WSMB 2012

Copyright 2012 © Limsoon Wong




National University
of Singapore

Part 1: Delivering

reproducible gene
expression analysis

EEaNUS
rcentage or wveriapping Genes
» Low % of overlapping | Datasets | DEG POG
genes from diff expt in
general Prostate | Top10 | 0.30
Cancer | Top50 & 0.14
- Prostate cancer | Top100 0.15
L-- rl% 2 Lung | Top10 [ 0.00
e RUER o Cancer | Top350 @ 0.20
Bhattacharjee et : | Top100 ! 0.31
2001 ; | | o I
— DMD owp | 1eP10 [ 020 n Ip rovin g
Haslett et ), 2002 | Top 50 0.42

| Top100 | 0.54 reprOdUCib”ity

Zhang et al, Bioinformatics, 2009
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Law of Large Numbers

e Supposeyou areina
room with 365 other
people

« Q: What is prob that a
specific person in the
room has the same
birthday as you?

* A:1/365 = 0.3%

Q: What is prob that
there is a person in
the room having same
birthday as you?

A: 1 - (364/365)3° =
63%

Q: What is prob that
there are two persons
In the room having
same birthday?

A: 100%

Tutorial for WSMB 2012
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o2 NUS
Individual Genes 9 s
e« Suppose  Prob(ageneis
— Each gene has 50% correlated) = 1/2°
chance to be high « #of genes on array =
— You have 3 disease 100,000
and 3 normal — E(# of correlated
samples genes) = 1,562

« How many genes ona = Many false positives

microarray are + These cannot be
expected to perfectly eliminated based on
correlate to these pure statistics!
samples?

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



=AANUS
Group of Genes s
e« Suppose  Prob(group of genes
— Each gene has 50% correlated) = (1/2°)°
chance to be high — Good, << 1/25%
— You have 3 disease  « # of groups = 100000C_
and 3 normal — E(# of groups of genes
samples correlated) = 100000C
 What is the chance of (1/25)°> = 2.6*1012

a group of 5 genes
being perfectly
correlated to these
samples?

— Even more false
positives?

 Perhaps no need to
consider every group

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



FINUS
Gene Regulatory Circuits

Anti-Apoptotic Pathway : :
. -. > BAD Apoplosis

PI3K PTEN
Apoplosis
Growh  Growth  TRADD  TRAF2 NIK ‘
factors factor
receptors AP Apoplosis

« Uncertainty in selected
genes can be reduced by
considering biological
processes of the genes

« Each disease phenotype
has some underlying
cause

« Thereis some unifying
biological theme for genes
that are truly associated
with a disease subtype

 The unifying biological
theme is basis for inferring
the underlying cause of
disease subtype

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong




Taming false positives by RN US

considering pathways instead of B o
all possible groups

NUS- # of pathways =
Group of Genes R - =
; 1000
* Suppose * Prob(group of genes
— Each gene has 50% correlated) = (1/2%)°

chance to be high — Good, << 1/26 E(# of path\/_vays

You have 3 disease Hef-gretps=toung. correlated) =
) . v 6)5 =
and 3 normal . Effofe : = 1000 * (1/2%)> =

9.3*10”/

samples coTTEtatet =0
+ What is the chance of ( -
a group of 5 genes
being perfectly
correlated to these
samples?

= Even more false
positives?

« Perhaps no need to
consider every group

Copynght 2011 Limsoon Wong
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« ORA
— Khatri et al
— Genomics, 2002
« FCS
— Pavlidis & Noble
— PSB 2002
« GSEA
— Subramanian et al
— PNAS, 2005
e SNet
— Soh et al

— BMC Genomics, 2011

—

35

NUS

National University
of Singapore

B &

Towards More Meaningful Gene %

—

= Overlap Analysis

= Direct-Group Analysis

= Network-Based Analysis

Tutorial for WSMB 2012
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Overlap Analysis: ORA

Threshold Binomial
Genes Geones estimation : —
ADCH1 . > [ ) GOClass1 | -------- Significant Class 1
GSTT GSTT K
GSTP1 GSTP1 /!
MSH6 /
SAAT mf:gg « | GO Class2 | -------- Non Significant Class 2
SLC19A1 TYMS ,’
TPMT CYP3A5
CYP3A4 VDR . .
UGT1A1 GSTM1 = -
IL10 NR3C1 . .
MTHFR
TYMS
CYP3AS
VDR "( GOClassN | ------- Significant Class N
GSTM1
NR3C1

S Draghici et al. “Global functional profiling of gene expression”. Genomics, 81(2):98-104, 2003.

Tutorial for WSMB 2012

Copyright 2012 © Limsoon Wong




.

Genes

ABCBA1
ST
GSTP1
MSHG
SAA1
SLC19A1
TPMT
CYP3A4
UGT1A1
IL10
MTHFR
TYMS
CYP3AL
VDR
GSTMA1
MNR3CH

Direct-Group Analysis: FCS

GOClass 1

4 GO Class 2

¥ GO Class N

=BNUS
ﬁ National University
of Singapore

Significant Class 1

Non Significant Class 2

Permutation
Test
------ » | Scorel il
------ > | Score 2 il
| |
| |
| |
------ » | Score 3 -

Significant Class N

P Pavlidis et al. “Using the gene ontology for microarray data mining: A comparison of methods and application to age

effects in human prefrontal cortex”. Neurochem Res., 29(6):1213-1222, 2004.

Tutorial for WSMB 2012
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FCS: Key variations

« “Correlation score”

— Score of a class C = average pair-wise correlation
of genes in the class C

« “Experimental score”

— Score of a class C = average of log-transformed p-
values of genes in the class C

* Null distribution to estimate the p-value of the
scores above is by repeated sampling of random
sets of genes of the same size as C

Pavlidis et al., PSB 2002

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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of Singapore

te.0s E Brain Data

=yreplc imremilsdon
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1e-05 [/ T An example
° @
rul.n:-umsB .' Illm-:rah dergdrakre b aS e d O n

0 0001 Emnghu = ® meduin birding

f./""'““ ‘ FCS

l’_
0.0071 ‘r

rbhcsome blogere A=

Experiment score

= A prokein oTibos ane
- redhderydrogenss uhiguirone rhosome
I:I . I:I 1 B uhiqul Irrdeperderd pro R degradakon
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@ \
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I| rm helas hea shodk e ores c
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I |II Erore real #wd prokein
MR P
1 0.1 001 0001 o.o0oo1 1e-05 1e-06 1e-07

_omelation score

Pavlidis et al., PSB 2002
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Goeman & Buhlmann. “Analyzing gene expression data in terms of gene sets:
Methodological issues’. Bioinformatics, 23(8):980-987, 2007 B ® N US
@ National University
of Singapore

A problem w/ FCS
 Its null hypothesis:

as proposed by
— “genes in C are indepen-

Pavlidis et al In
dently expressed & not
PSB 2002 diff from other genes

o) But_"

—— FINUS .
i N — Genes in a pathway are
» “Correlation score” :
- Scor'etof a class C = average pair-wise correlation nOt Independent
of genes in the class C -
— Becomes over sensitive

» “Experimental score”
— Score of a class C = average of log-transformed p-
values of genes in the class C

« Solution: generate null

@ibution to estimate the p-value ofth>
scores above is by repeated sampling of random " I I -
e o distribution by randomi

zing patient class labels

Copyright 2012 © Limsoon Wong
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p-value (logyg)

National University
of Singapore

FCS: Why do we
estimate p-value
using a null
distribution based
on repeated
sampling of
randomized gene
sets / patient
sets?

N US
9

Venet et al. “Most random gene expression signatures are
significantly associated with breast cancer outcome”. PL0S
Computational Biology, 7(10):e1002240, 2011.

Copyright 2012 © Limsoon Wong



Direct-Group Analysis: GSEA

Rank Genes

Genes p-values
ABCBA1 0.0040
N 1GSTT 0.0051
Pul8el) | GsTP 0.0126
MSHG 0.0135
SAAT 0.0386
SLC19A1 0.0410
TPMT 0.0423
CYP3A4 0.0500
UGT1A1 0.0610
IL10 0.0626
MTHFR 0.0756
TYMS 0.0871
CYP3A5 00879
VDR 0.0906
GSTMA 0.0949
NR3C1 0.0991

Assign score to each
class based on gene
rank

GO Class 1

«| GO Class 2

,///l Phit(SZ’i) Pmiss(SZ’i)

/ 7/ | |
7
/ ||
4
’ ||
\l
ZARN

_%| GO Class N

P(Syi)  Priss(Sy.i)

B &

NUS

National University

Permutation test

maX(Phit(Sll i)_ Pmiss(Sl' '))

Significant Class 1

I:)miss (Sl' I)

Non Significant Class 2

Significant Class N

Subramanian et al. “Gene set enrichment analysis: A knowledge-based approach for interpreting genome wide
expression profiles”. PNAS, 102(43):15545-15550, 2005

Tutorial for WSMB 2012
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EBANUS

GSEA: Key Points gﬁ R

- “Enrichment score” -l 1 T
A B |
- The degree th at the G(:ls Correlation with Phenotype
genes in gene set C are ey

—— _ Random Walk

e
ES(S)I i~ ——

Ranked Gene List

Maximum deviation Gene List Rank

enriched in the extremes
of ranked list of all genes i g
S— ennchment score ES(S)

—_ M eaS u re d by Fig. 1. A GSEA overview illustrating the method. (A) An expression data set
sorted by correlation with phenotype, the corresponding heat map, and the
“gene tags,” i.e., location of genes from a set S within the sorted list. (8} Plot

KO m Og O rOV- S m I rn OV of the running sum for Sin the data set, including the location of the maximum

enrichment score (£5) and the leading-edge subset.

statistic .
Subramanian et al., PNAS, 102(43):15545-15550, 2005

« Null distribution to estimate the p-value of the
scores above is by randomizing patient class

labels

Copyright 2012 © Limsoon Wong
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Wong. “Using Biological Networks in Protein Function Prediction and Gene
Expression Analysis”. Internet Mathematics, 7(4):274--298, 2011.

National University
of Singapore

A problem W/  Its enrichment score
considers all genes in C
GSEA J

 But...

— Not all branches of a
YT - large pathway have to
S “go wrong”

2 S | 1551 o :
~annenecas I B L — Cannot detect if only a

enriched in the extremes AN 5 e

of ranked list of all geneg” 3 Z';’?*'—_‘— Sma” part Of a. pathway
" Komogorov-Smimov Sl e malfunctions

statistic

* Null distribution to estimate the p-value of the

scores above is by randomizing patient class
labels

Subramanian et al.. PNAS. 102(43).15545-15550. 2005 ° SOIUtlon: Break pathways
INnto subnetworks

Tutorial for WSMB 2012
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Soh et al. “Finding Consistent Disease Subnetworks Across Microarray
Datasets”. BMC Bioinformatics, 12(Suppl. 13):S15, 2011. B ® N US

National University

Network-Based Analysis: SNet

 Group samples into type D and —D
« Extract & score subnetworks for type D

— Get list of genes highly expressed in most D samples
 These genes need not be differentially expressed!

— Put these genes into pathways

— Locate connected components (ie., candidate
subnetworks) from these pathway graphs

— Score subnetworks on D samples and on —D samples

 For each subnetwork, compute t-statistic on the two
sets of scores

 Determine significant subnetworks by permutations

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



Soh et al. BMC Bioinformatics, 12(Suppl. 13):S15, 2011.
National Universit
SNet: Score Subnetworks

Step 2: Subnetwork Scoring We assign a score vector 5V -79°" with

sn,d
respect to phenotype d to each subnetwork s» within SN 2*** according to
Equation 1.

U_SaOTE isaore i_sacrs isaors
g = <SN n,l,d )S sr,2.d 0 )S } (1)

s ,d 5 sty d
Where + is the number of patients in phenotype d. The formula & Njfﬁ?f
for the ** patient (also the " element of this vector) is given by:

q
isaors Sa0 e
& sn,t,d E :Gsn,j,d (2
i=t
(F5eore

s, g, d
sv for phenotype d. (This score &

simply given by:

refers to the score of the %" gene (say, gene ) in the subnetwork

Sa0rs 3 3 ] 1
o 44 18 given by Equation 3) and is

smrgd = k7 (3)

Where % 1s the number of patients of phenotype o who has gene x highly
expressed (top %) and » is the total number of patients of phenotype d. The
entire Step 2 1s repeated for the other disease phenotype —d, giving us the
score vectors, SN:?;E;QWE and SN;‘ff;i‘f;E for the same set of connected
components. The t-test is finally calculated between these two wvectors,

creating a final t-score for each subnetwork s» within SNy ;¢

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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National University

SNet: Significant Subnetworks

« Randomize patient
samples many times

« Get t-score for
subnetworks from the
randomizations

e Usethese t-scores to
establish null
distribution

* Filter for significant
subnetworks from real
samples

Soh et al. BMC Bioinformatics, 12(Suppl. 13):S15, 2011.
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Key Insight # 1 8 s
/ « SNet does not require
@ all the genes in subnet

\@ to be diff expressed

Genes A, B, C are high in * It only requires the
phenotype D subnet as a whole to

be diff expressed
Ais high in phenotype ~D but B

and C are not

« Able to capture entire
Conventional techniques: Gene relationship,

B and Gene C are selected. : :
Possible incorrect postulation postulating a mutation

of mutations in gene B and C In gene A

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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Key Insight # 2 :rsx;z;zx vvvvv v

@ A branch within pathway
consisting of genes A, B, C, D and

/ @ E are high in phenotype D

Genes C, D and E not high in
@ phenotype ~D

30 other genes not diff expressed

30 other genes

Conventional techniques: Entire
network is likely to be missed

« SNet: Able to capture the subnetwork branch
within the pathway
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Key Insight # 3 :rsx;z;zx vvvvv v

Pathway 1 / Pathway 2
oy >
e e

Genes A, B and C are present in Conventional techniques:
two separate pathways

Both pathways are scored equally.
A, B and C are high in phenotype | | So both got selected, resulting in
D, but not high in phenotype ~D pathway 2 being a false positive

« SNet: Able to select only pathway 1, which has
the relevant relationship

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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Let’'s see whether SNet gives us
subnetworks that are

(1) more consistent between
datasets of the same types of
disease samples

(1) larger and more meaningful

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



Soh et al. BMC Bioinformatics, 12(Suppl. 13):S15, 2011.
EBNUS

Better Subnetwork Overlap & 5

Table 1. Table showing the percentage overlap significant subnetworlks
between the datasets. Each row refers to a separate dizeasze (as indicated
in the first column). Each dizeaze iz tested against two datasets depicted in
the second and third column. The overlap percentages refer to the pathway
overlaps obtained from running SMet {column 4) and GEEA {column 3) The
actual mimber of overlaps are parentheszized in the same columns.

Disease | Dataset 1 | Dataset 2 s INet GSEA
Leuk (3olub Armstrong | 83.3% 200 | 0.0% ()
subtype | Eoss Yeoh 47.6% (1 | 23.1% (6)

DMD Haslett Pescatori | 58.3% (' | 55.6% (10)
Lung Bhatt Garber 00.9% () | 0.0% ()

 For each disease, take significant subnetworks
from one dataset and see if it Is also significant in
the other dataset
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Soh et al. BMC Bioinformatics, 12(Suppl. 13):S15, 2011.
EBNUS

Better Gene Overlaps 95 e

Table 2. Table showing the number and percentage of =ipgnificant
overlapping genes. -y refers to the mumber of genes compared against and
iz the mumber of unique genes within all the significant subnetworks of the
dizeasze datasets. The percentages refer to the percentage gene overlap for the

corresponding algorithms.
hsease | v | SNet | GSEA | SAM | t-test
Leuk 8d | 91.3% | 24% | 22.6% | 143%
subtype | 73 | 93.0% | 40% | 493% | 373%
DMD 45 | 69.2% | 28.9% | 42.2% | 200%
Lung 65 | 31.2% | 4.0% | M4.6% | 262%

 For each disease, take significant subnetworks
extracted independently from both datasets and
see how much their genes overlap

Copyright 2012 © Limsoon Wong
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Soh et al. BMC Bioinformatics, 12(Suppl. 13):S15, 2011.
NUS
Larger Subnetworks

Table 3. Table comparing the size of the subnetworks obtained from the
t-test and from SNet. The first column shows the disease and the second
column shows the number of genes which comprizsed of the subnetworks,
The third and fourth column depicts the mumber of genes present within
each subnetwork for the t-test and SNet respectively. So for instance in the
lenkemia datazet, we have 8 subnetworks with size 2 genes, 1 subnetwork
with size 3 genes for the t-test. For SNet, we have 2 subnetworks with size
5 genes, 3 subnetworks with size 6 genes, 2 subnetworks with size 7 genes
and 1 subnetwork with a size of > 8 genes

Disease | - | Num (enes (t-testy | Num Genes (SNet)
2 3 4 5 5 6 T =8
Leuk 8418 1 0O 0 23 2 1
subtype | 73 (5 1 1 1 1 O 1 &
DMD 4513 1 0O 0 1 O O 35
Lung 65|13 2 1 0 5 3 0 1
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What have we learned?

« Common headaches in gene expression analysis
— Natural fluctuation, protocol noise, batch effect

« Use of biological background info to tame false
positives

 Overlap analysis = direct-group analysis =
network-based analysis

 SNet method yields more consistent and larger
disease subnetworks
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From pathways to models,
From static to dynamic:

A couple of very recent papers that are worth your leisure reading...

« Geistlinger et al. From sets to graphs: Towards a realistic
enrichment analysis of transcriptomic systems. Bioinformatics,
27(13):1366—i373, 2011

« Zampieri et al. A system-level approach for deciphering the
transcriptional response to prion infection. Bioinformatics, 27(24):
3407--3414, 2011

Fig. 1. System respoase inference: a toy genetic network consisting of six
genes exemplifies the advantoges of using a system-level data companison
(), Standard sttistical tests (¢, 7-test) unveil significant fold change in
gene expression varations for each transeript individually (b, neglecting
the underlying regulatory network. Such statistical test can identify whether
the expression level of a transcript is significantly changed with respect to
a reference. Putative gene expression changes are reported in panel (¢). In
this specific example, two genes are identified to be overexpressed [red/+
nodes] and one downregulated (green/- node), while the remaining three do
nol show any changes {grey nodes). By knowing the corresponding genetic
regulatory network (d), we can discriminate the coberent variations from the
unexpected ones. As shown in the example, two of the genes that showed
a significant expression vianations are consistent with model predictions i.¢
the expression changes of genes x and v can be explained by the vasiation of
gene 2. This is reflected by a skew distribution of discrepancies (i.e. residues),
between model predictions and observed data, centered around O (1), At the

same time, one transcripl, w, 15 not responding coherently 1o the imtind model
The fact that its expression is unchanged, when it should have been increased.
| might relate 10 an anomalous direct elfect of the pathology, preventing a
synergistic response between all the genes in the system, Hence, the fist of
o

‘perturbed genes’ can be seasibly different from the standard DEGs identified
from individunl fold change analysis (bie).

Statistical

Fold changes

I

1

test
(c)

genez W Differently expressed genes (DEGs)

(f) Fitting residues

.| Perturbed genes
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* First, some basics of proteomic MS...
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Typical Proteomic MS Experimen

Sample ,LpePUde
preparation/ Protein ~ Peptide Sample Mass Mass spectrum Data
@ fractionation digestion 7~ separation ionization spectrometr = analysis
g s\ sep A pec y z | y
® @. SDS-PAGE * Trypsin * HPLC * Electrospray  'Peptide * Quadrupole E ol * PeptideSearch
Cell culture * 2D-gel * Lys-C » lon exchange ionization ions « Time of flight » Sequest i
electrophoresis * Asp-N « MALDI » Quadrupole ion traps » Mascot A—a
* Glu-C * FTICR

Figure 1 | The mass-spectrometry/proteomic experiment. A protein population is prepared from a biological source — for
example, a cell culture — and the last step in protein purification is often SDS-PAGE. The gel lane that is obtained is cut into several
slices, which are then in-gel digested. Numerous different enzymes and/or chemicals are available for this step. The generated
peptide mixture is separated on- or off-line using single or multiple dimensions of peptide separation. Peptides are then ionized by
electrospray ionization (depicted) or matrix-assisted laser desorption/ionization (MALDI) and can be analysed by various different
mass spectrometers. Finally, the peptide-sequencing data that are obtained from the mass spectra are searched against protein
databases using one of a number of database-searching programmes. Examples of the reagents or technigues that can be used at
each step of this type of experiment are shown beneath each arrow. 2D, two-dimensional; FTICR, Fourier-transform ion cyclotron
resonance; HPLC, high-performance iquid chromatography.

Source: Steen & Mann. The ABC’s and XYZ'’s of peptide sequencing.
Nature Reviews Molecular Cell Biology, 5:699-711, 2004
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Diagnosis Using Proteomics

Technology-dependent Technology-independent

a) peptide and protein
identification from PSMs

c) peptide significance analysis e) class discovery g) data integration

A
é‘l \ peptide spectrum protein -
g | \ matches names 2
NI \ > 2 ) &
| \ "
mawchal,ge |y HALENFKK =3 Axx1 o NeS ¢ light 8 s
o ] de s @ & I~ ¥
._] / 1DOSETWR = Bxx2 o © e g g-t‘"ﬂe
| / o . S ol fomt’
rerrioe || LOMCDDE = Cxx3 2 P&Q‘l@l—-—!) & 3
DATABASE © haavy .
&| o—peptidel o{ 2
| = ]
L = _8' > [ ;3 R NI

3 ; )
s : - R | 2 # & ED>
5 2 18] el Esee 8 [ 7 ™
2 8 18| ok a@r.t B i
= S IR TR '
g g B Eel " ZEp
5 TR ey
g | B
2 - log fold change » - \ 2
-g, (practical significance) 1-specificity
b) feature detection, quantification, R, . — .
) 9 d) protein significance analysis f) class prediction h) pathway analysis

annotation, and alignment

Image credit: Kall and Vitek, PLoS Comput Biol , 7(12): €1002277, 2011
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set of proteomic |
profiles:of S
leukemia i
patie NSt it i | |

o ottt |
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75
5
25 I : J
0 5 Arse i Al :
AML
75
5
25 I | |I|
ﬂ —l-_“ i, - ==, = T ey, ]
4000 &000 E000 10000

Figure 1 ":]:IH'JM frgm SELDETOF S amabysisof REH, 697, M4 11, and Kasumi cell lines. Protein {4 gg) from each ol b was anabyred on
5AK2 Prodend. |'||]:l Agraya, ALL cal] lines shown are REH and 697, the MLL cell line is MVa:11, and the AML cell line is Kxomi. The agersk
indicates the differentially expresed protein at 53 da.

Source: Hegedus et al. Proteomic analysis of childhood leukemia. Leukemia, 19:1713-1718, 2005
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Protein Identification by Mass Spec

[ ] \ S#: 1708 RT:54.47 AV:1 NL:5.27E6
T: +cdFullms2 638.00 [165.00 - 1925.00]
n
100
95

MS/MS Instrument

850.3
687.3
90
85
80 588.1
75
70
65
g 60
3
‘g 55 4250 851.4
50

Database search D T
- Sequest, Mascot, InSpect ‘ l
de Novo interpretation gl
* Lutefisk, Peaks, PepNovo

s

1048

Source: Leong Hon Wai
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Tandem Mass-Spectrometry

2 — -2~

Cells N\
Protein Proteolytic Partial Separation
Extract Fragments by HPLC

Tandem Mass Spectrometer

— ——

_D‘ Mass . M v

Cell to ass | — Bed § | %

Analyzer ’Fragmenl Analyzer > l l
Electrospray Peptide sall JL.:., )

2o B |
L 1 peak selected Peptlc_ie Spectrum &

for sequencing Partial Sequence

)] - |
Repeatuntilall ~ Match spectrum
mz peaks sequenced  adainst database

Spectrum of
Peptide Mixture

Source: Leong Hon Wai
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Breaking Protein into Peptides, 8
and Peptides into Fragment lons

 Proteases, e.g. trypsin, break protein into
peptides
« A Tandem Mass Spectrometer further breaks the

peptides down into fragment ions and measures
the mass of each piece

« Mass Spectrometer accelerates the fragmented
lons; heavier ions accelerate slower than lighter
ones

« Mass Spectrometer measures mass/charge ratio
of an ion

Source: Leong Hon Wai
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Peptide Identification by Mass Spe
g D

MS/MS instrument s )
nderstandlng an

-MS/MS Spectrum
= /

Database search
- Sequest, Mascot, InSpect =
de Novo Interpretation = =
* Lutefisk, Peaks, PepNovo | ‘

1048

Source: Leong Hon Wai

Copyright 2012 © Limsoon Wong
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Peptide Fragmentation B ™
Collision Induced Dissociation
H...-HN-CH-CO "~
|
N\ Ri-lj \_ _J
Y YT
Prefix Fragment Suffix Fragment

* Peptides tend to fragment along the backbone

 Fragments can also loose neutral chemical
groups like NH; and H,O

Source: Leong Hon Wai
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Bafna & Edwards. “On de novo interpretation of tandem mass

spectra for peptide identification”. RECOMB 2003, pp. 9-18 BE® N US
- - @ Nati_onal University
Peptide Fragmentation o
1
NH—C — COOH
- (a)
%
: I
S R .
ITL i i i + R ~termunus
N'I‘%—C' J:— cO -:—NH—E—C' —C0O . NH-C —C0O —NH—-C — COOH
e | B |
N-terminus | ! IR R
| : :
a_l___l ___E i fb}
G :
o E
|
NH—-C—-CO - NH—-C— CO—-NH—-C— COOH
| |
R R (c)

Figure 1: (a) The structure of an amino-acid. (b) An ionized peptide. (c) yn'_._ ion
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NS
. and fragments due to neutral losses™
b,-H,O bs- NH;
a, : b a; : bg
-1 n n
[ HQ NH,I
| j |
R, 1 O R, © Rsp O R,
| o P |
H-N--C--C-N--C-CfN--C- C-f-N - C -- COOH
| | | | | | |
H H H H H H H
| | |
Y3 Yo Y1
Y5 -H,O Y2 - NH,

Source: Leong Hon Wai
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Mass Spectra

S

0
« The peaks in the mass spectrum:

— Prefix  and Suffix Fragments
— Fragments with (-H,0, -NH,)
— Noise and missing peaks

Source: Leong Hon Wai
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Bafna & Edwards. “On de novo interpretation of tandem mass
spectra for peptide identification”. RECOMB 2003, pp. 9-18 BE & N US

Example MS/MS Spectrum 95 oo

a8 145 292 405 534 663 778 924 b-ions
S z F L E E D K
924 837 780 633 520 391 262 141 y-ions
100 — %
. P28+
£ b, ¥
z Y F .
S
c
e A
=
he bs b,
z b e e ol il lly
200 400 600 300
m/z

Figure 2: MS/MS spectrum for peptide SGFLEEDK.
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Intensity

Protein Identification with MS/M @

Peptide
MS/MS |dentification

» Mass
()

Source: Leong Hon Wai
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Peptide Identification by Mass

n
S#: 1708 RT:54.47 AV:1 NL:5.27E6
T: +cdFullms2 638.00 [165.00 - 1925.00]
1

/Step 3: Computational Fv&%ethogos )
Database search
Sequest, Mascot B
de Novo interpretation ‘ l H ‘ r
Lutefisk, Peaks, PepNovo e --';c.,;l-- b L

Source: Leong Hon Wai
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Database Search Algorithms

« Database search
— Used for spectrum from known peptides
— Rely on completeness of database

 General Approach
— Match given spectrum with known peptide

— Enhanced with advanced statistical analysis and
complex scoring functions

* Methods
— SEQUEST, MASCOT, InsPecT, Paragon
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Theoretical Spectrum for a Peptld

« Given this peptide

« Its theoretical spectrum is

| | | 1 0 I o

I & & & & & & >

0
 Theoretical spectrum is dependent on

— Set of ion-types considered
— Larger if multi-charge ions are considered

Source: Leong Hon Wai
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Database Search Algorithm

Database SN

Database of Match
known peptides ’ 1

MDERHILNM, KLQWVCSDL, I I I I I I
PTYWASDL, ENQIKRSACVM,

TLACHGGEM, NGALPQWRT, - :
HLLERTKMNVV, GGPASSDA, / 0  Theoretical Matching Score
GGLITGMQSD, MOPLMNWE, spectrum for this peptide

ALKIIMNVRTL AVGELTK, V/
HEWAILFE, GHNEAANNAE:
GVEGSVLRA, EKLNKAATYIN..

Repeat for all the peptides Iin
the Database

Source: Leong Hon Wai

Copyright 2012 © Limsoon Wong
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De Novo Sequencing Algorithms

« Given a spectrum
— Build a spectrum graph
— Peptides are paths in this graph
— Find the best path

Source: Leong Hon Wai
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Spectrum Graph for a Peptide

I I I I I)I | I)I I » mass

0

« Connect peaks together

— If their mass difference = mass of an amino acid
 Theoretical spectrum is dependent on

— Set of ion-types considered

— Larger if multi-charge ions are considered

Source: Leong Hon Wai
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Building a Graph from a Spectrunt™ ="
u
q e
S e u g
e
n
C n
: e
e q c
> ul e n ell, s
C
el ,
| | ‘ | 1T

Source: Leong Hon Wai
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Frank, et al. “De Novo Peptide Sequencing and Identification with
Precision Mass Spectrometry”. J. Proteome Res. 6:114-123, 2007 BE & N US

National University

De Novo Sequencing Algorithms

_
Relative Al ce R

b r NN @ W A A DD D @ NN R e 0o B oan
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Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



8

SBINUS

National University

De Novo vs. Database Search

Database De Novo

4250
£ s
£ 40
3260
35 5249
30
25 5892
2o 2269 3071
15 asg.1
10
. ‘
o ' L f u
200 00

Database of
known peptides

o

MDERHILNM, KLQWVCSDL,
PTYWASDL, ENQIKRSACVM,
TLACHGGEM, NGALPQWRT,
HLLERTKMNVV, GGPASSDA,
GGLITGMQSD, MQPLMNWE,

ALKIIMNVRT, AVGELTK,
HEWAILF, GHNLWAMNAC,
GVFGSVLRA, EKLNKAATYIN..

\ AVGELTK ,

Source: Leong Hon Wai

Copyright 2012 © Limsoon Wong
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De Novo vs. Database Search: A Parsgigi:

 The database of all peptides is huge = O(20")

 The database of all known peptides is much
smaller = O(109)

« However, de novo algorithms can be much faster,
even though their search space is much larger!

— A database search scans all peptides in the
search space to find best one

— De novo eliminates the need to scan all peptides
by modeling the problem as a graph search

Source: Leong Hon Wai
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Protein ldentification

« After all the peptides have been identified, they
are grouped into protein identifications

 Peptide scores are added up to yield protein
scores

 Confidence of a particular peptide identification
Increases Iif other peptides identify the same
protein and decreases if no other peptides do so

* Protein identifications based on single peptides
should only be allowed in exceptional cases

Source: Steen & Mann. The ABC’s and XYZ'’s of peptide sequencing.
Nature Reviews Molecular Cell Biology, 5:699-711, 2004
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Cf. Gene Expression Profile Analy

 Oncethe proteins are identified, the proteomic
profile of a sample can be constructed

— l.e., which protein is found in the sample and how
abundant it is

« Similar to gene expression profile. So gene
expression profile analysis techs can be applied

« Some key differences
— Proteomic profile has much fewer features
— Proteomic profiling study has much fewer samples

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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Part 2: Delivering . common issues in
more powerful proteomic profile
proteomic profile analysis
analysis

Distribution of counts in mod Distribution of counts in poor

250

1

200

150

Frequency
Frequency

100 150 200 250 300
1 1 ]

100

1

50

50
1
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Peptide & protein identification by MS Is
still far from perfect

e

« ... peptides with low scores are, nevertheless, \
often correct, so manual validation of such hits
can often ‘rescue’ the identification of important
proteins.”

Steen & Mann. The ABC’s and XYZ’s of peptide sequencing.
\ Nature Reviews Molecular Cell Biology, 5:699-711, 2004 /
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Typical ;-
frequency
distribution of #

. g R g \8— 7
proteins i i
— g
. 8 4 - \
detected In
. 3 ' 8 i
proteomic :
profiles e hS 123 8w 7
mod$Counts poor$Counts
Only 25 out of 800+ proteins are
common to all 5 mod-stage HCC
Image credit: Wilson Goh patients!
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Issues In Proteomic Profiling

« Coverage = Thresholding
« Consistency — Somewhat arbitrary
| — Potentially wasteful
REfonl1  maente  Peliedy :E"_“f'_"ff'f"_"f ___________________ . » By raising threshold,
‘ ' i some info disappears

Moderate Threshold

. Detected
protein
. Present but

undetected
protein

Image credit: Wilson Goh
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Part 2: Delivering
more powerful
proteomic profile

analysis | |
* Improving consistency

— PSP
— PDS
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An inspiration from gene expression NUS

profile analysis

11
EINUS
Gene Regulatory Circuits <+
. . o O
‘-‘v ::’ VI'-;A(' "-;". - ' l.
Ty o Axgr. 1 2
Taming false positives by EaNUS
Each disease phenotype ~ * Uncertainty in selected considering pathways instead of W
has some underlying genes can be reduced by :
cause considering biological all pOSSIble groups
processes of the genes o)
. o o DRI L2 NUS # of pathwavs =
+ There is some unifying s o5 _ Group of Genes 1000
biological theme for genes * The unifying biological
that are truly associated theme is basis for inferring ' Sup;:?se e ) c";f,':,‘g:ﬁ:fffﬁ;ﬁ}fs
with a disease subtype the underlying cause of - ?:;': {-‘_inebi";. ol e F(# of pathwavs
disease subtype A i correlated ) =
~ You have 3 disease (00 # 1618 =
and 3 normal LODOF(R/2%)
samples 9.3%10

* What is the chance of
a group of 5§ genes
being perfectly
correlated to these
samples?

= Even more false
positives?

* Perhaps no need to
consider every group

Contextualization!

opynght 2011

2 Limsoon Wong
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We try an adaptation of SNet on
proteomics profiles...

“Proteomic Signature Profiling” (PSP)
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Goh et al. Proteomics signature profiling (PSP): A novel contextualization
approach for cancer proteomics. Journal of Proteome Research. 15t revision. B & N US

National University

“Threshold-free” Principle of PSP #

|
Hitrate ina !
ref complex

Cluster dendrogram with AU/BP values (%)

1.0

s
3 . |
= U 1] 1] |
5 5|5 £//8 § 8 5|8 g||8 =
— - o~ ~N - o~ - - - o~ - -
Distance: euclidean
Cluster method: ward
MS-Detected proteins Proteomics Signature Profile Functional Analysis
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Goh et al. Proteomics signature profiling (PSP): A novel contextualization
approach for cancer proteomics. Journal of Proteome Research. 15t revision. B2 & N US

National University

Applying PSP to a HCC Dataset
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Goh et al. Proteomics signature profiling (PSP): A novel contextualization
approach for cancer proteomics. Journal of Proteome Research. 15t revision. BB ® N US

Consistency: Samples segregate by 9% o
their classes with high confidence

Cluster dendrogram with AU/BP values (%)

™~
b
oD
w 100
g -
= =
- 100 L 100
o
P ”"*’i‘l L8 "'--’"‘.l 1620 100 100 100 | 10
I R e e D e
T B B E||B B B B B OE B B

Distance: euclidean
Cluster method: ward
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Goh et al. Proteomics signature profiling (PSP): A novel contextualization

approach for cancer proteomics. Journal of Proteome Research. 15t revision. B2 & N US
- National University
Feature Selection
Patient 1 Patient 2 Patient 3

Mod Cancer

Poor Cancer

Protein t_score= — where g _ (m =08y, " +(n =DSy
Undetected SwimJ—+— 458 U m+n —2
Protein ’ noom
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Goh et al. Proteomics signature profiling (PSP): A novel contextualization
approach for cancer proteomics. Journal of Proteome Research. 15t revision.

Top-Ranked Complexes

=BNUS
ﬁ National University
of Singapore

Cluster ID mod score DOOr score cluster name

5179

5235
1193

159

2657

3067
1226

5176

1189
5251
2766

0.000300541

0.000300541
0.000300541

0.008815869

0.00911641
0.013323983

0

0.513951977

0.513951977
0.513951977

0
0.715352108

0.513951977

0.513951977
0.513951977
0.513951977

3.159758312

3.159758312
3.159758312

2.810927655

2.55616281

2.55616281
2.420592827

2.339059313

2.339059313
2.339059313
2.339059313

NCOAG6-DNA-PK-Ku-
PARP1 complex
WRN-Ku70-Ku80-PARP1
complex

Rapl complex

Condensin I-PARP-1-
XRCC1 complex
ESR1-CDK7-CCNH-
MNAT1-MTA1-HDAC2
complex

RNA polymerase II
complex, incomplete (CDK8
complex), chromatin
structure modifying

H2AX complex |
MGC1-DNA-PKcs-Ku
complex

DNA double-strand break
end-joining complex

Ku-ORC complex
TERF2-RAP1 complex

Tutorial for WSMB 2012
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Goh et al. Proteomics signature profiling (PSP): A novel contextualization
EBNUS

approach for cancer proteomics. Journal of Proteome Research. 15t revision.
National University

Top-Ranked GO Terms

No. of

GO ID Description clusters

G0O:0016032 | viral reproduction 36
GO:0000398 | nuclear mRNA splicing, via spliceosome 34
GO:0000278 | mitotic cell cycle 28
G0O:0000084 | S phase of mitotic cell cycle 28
GO:0006366 | transcription from RNA polymerase 11 promoter 26
G0O:0006283 | transcription-coupled nucleotide-excision repair 22
GO:0006369 | termination of RNA polymerase II transcription 22
GO:0006284 | base-excision repair 21
GO:0000086 | G2/M transition of mitotic cell cycle 21

regulation of cyclin-dependent protein kinase
GO:0000079 | activity 20
GO0:0010833 | telomere maintenance via telomere lengthening 20
G0O:0033044 | regulation of chromosome organization 19
GO:0006200 | ATP catabolic process 18
G0:0042475 | odontogenesis of dentine-containing tooth 18
G0:0034138 | toll-like receptor 3 signaling pathway 17
GO:0006915 | apoptosis 17
DNA strand elongation involved in DNA
GO:0006271 | replication 17

Tutorial for WSMB 2012
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A Shortcoming of PSP 9%

 Protein complex databases are still relatively
small & incomplete...

— Augment the set of protein complexes by protein
clusters predicted from PPl networks!

 Many protein complex prediction methods
— CFinder, Adamcsek et al. Bioinformatics, 22:1021--1023, 2006
— CMC, Liu et al. Bioinformatics, 25:1891--1897, 2009

— CFA, Habibi et al. BMC Systems Biology, 4:129, 2010

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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Another Shortcoming of PSP

* Protein complexes provided a biologically-rich
feature set for PSP

— But it is only one aspect of biological function

« The other aspect is biological pathways

— But coverage issue of proteomic profiles create
lots of “holes”

« Can we extract and use subnets from pathways?

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong




National University

Another adaptation of SNet on
proteomics profiles...

“Pathway-Derived Subnets” (PDS)

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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aaaaaaaaaaaaaaaa

Pathway-Derived Subnets (PDS) o

 l|dentify the set S; of proteins detected in more
than 50% of samples having phenotype P,

— Do this for each phenotype P4, ..., P,
* Overlay u; S, to pathways

 Remove nodes not covered by u; S,
—=This fragments pathways into subnets

« Use these subnets to form “proteomic signature
profiles”

— The rest of the steps is same as PSP

Source: Wilson Goh

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



ANUS
95

National University
of Singapore

PDS consistently segregates
mod vs poor patients

c i response 1o toxin

10

K gluconeogenesis

« liver development
W response to lipid

& xenobiotic metabolic process

 activation of MAPKK activity

100

i MyD88-dependent toll-like receptor
signaling pathway

U epidermal growth factor receptor
signaling pathway
blood vessel development

100 | 100 100 | 1 100

]
s

4T cell receptor signaling pathway

120_poor —a
203_mod —— =
207_poor —— =
215_poor —

|
3

131_mod —
199 mod —
200_mod —
157_poor ——

organ regeneration

reactive oxygen species metabolic
process

S U ————

Distance. euclidean
' Ciluster method: ward

Source: Wilson Goh

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



What have we learned?

« Contextualization (into complexes and pathways)
can deal with consistency issues in proteomics

« GO term analysis also indicates that context-
based methods (PSP, PDS) select clusters that
play integral roles in cancer

« Context-based methods (PSP, PDS) reveal many
potential clusters and are not constrained by any
prior arbitrary filtering which is a common first
step in conventional analytical approaches

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



Part 2: Delivering
more powerful
proteomic profile
analysis

Non-tumor

Expanded
I HCC Natwork HCC Network

!
I |
I I
I ‘ [
': | | R
3 ‘ i !
—“‘ l-» > o
: " | ll‘lixl 11 : = e
[ " 1 2 oy
|
1
I
N
1
|
I
I

. * Improving coverage
“ Liver . : ‘ iTRAQ- - CEA
resection | Integrated Analysis Pipeline

1 2DLC-MS/MS

— PEP
— Max Link
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Patient 1

Image credit: Wilson Goh

Tutorial for WSMB 2012

Patient 2

Patient 3

ypical proteomic
profiling misses
many proteins

Need to improve
coverage!

Detected

. protein

Present but
undetected
protein
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ﬁ National University
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Basic Approach

 Rescue undetected proteins from high-scoring
protein complexes

« Why?

Let A, B, C, D and E be the 5 proteins that function as a complex
and thus are normally correlated in their expression. Suppose only
Ais not detected and all of B-E are detected. Suppose the screen
has 50% reliability. Then, A's chance of being false negative is
50%, & the chance of B—E all being false positives is (50%)4=6%.
Hence, it is almost 10x more likely that A is false negative than B—
E all being false positives.

 Shortcoming: Databases of known complexes are
still small

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong




Li et al. Network-assisted protein identification and data interpretation

in shotgun proteomics. Mol. Syst. Biol., 5:303, 2009. B ® N US
National University
C EA of Singapore

 Generate cliques from PPIN

 Rescue undetected proteins from cliques with
containing many high-confidence proteins

 Reason: Cligues in a PPIN often correspond to
proteins at the core of complexes

« Shortcoming: Cliques are too strict
— Use more power complex prediction methods

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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Goh et al. A Network-based pipeline for analyzing MS data---An application

towards liver cancer. Journal of Proteome Research, 10(5):2261--2272, May 2011 B2 & N US
€ Map high-confidence proteins to PPIN D

« Extract immediate neighbourhood & predict
protein complexes using CFinder

* Rescue undetected proteins from high-ranking
\_ predicted complexes Y

 Reason: Exploit powerful protein complex
prediction methods

« Shortcoming: Hard to predict protein complexes
— Do we need to know all the proteins a complex?

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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SAINUS
MaxLink oo™

Goh et al. A Network-based maximum-link approach towards MS. APBC 2012

‘. Map high-confidence proteins (“seeds”) to PPm

« ldentify proteins that talk to many seeds but few
non-seeds

« Rescue these proteins
N : Y

 Reason: Proteins interacting with many seeds are
likely to be part of the same complex as these
seeds

« Shortcoming: Likely to have more false-positives

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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National University

“Validation” of Rescued Proteins

 Direct validation

— Use the original mass spectra to verify the quality
of the corresponding y- and b-ion assignments

— Immunological assay, etc.

 |Indirect validation

— Check whether recovered proteins have GO terms
that are enriched in the list of seeds

— Check whether recovered proteins show a pattern
of differential expression betw disease vs normal
samples that is similar to that shown by the seeds

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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An example using the PEP approach
to recover undetected proteins ...
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Background

« HCC (Hepatocellular carcinoma)

— Classified into 3 phases: differentiated, moderately
differentiated and poorly differentiated

« Mass Spectrometry

— ITRAQ (Isobaric Tag for Relative and Absolute
Quantitation)

— Coupled with 2D LC MS/MS

— Popular because of ability to run 8 concurrent
samples in one go

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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Poor and mod proteins are widely sNUS

Interspersed

* Inthe subnet of
reported proteins
In mod and poor,
poor and mod
genes are well
mixed

Mod and Poor
® Poor only

Image credit: Wilson Goh

Copyright 2012 © Limsoon Wong
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Identify the “seeds”
Ratio < 0.8 and > 1.25 for Mod (min 3 patients)
Ratio < 0.8 and > 1.25 for Poor (min 4 patients)

PEP Workflow

Goh et al. A Network-based pipeline for
analyzing MS data---An application towards
liver cancer. Journal of Proteome Research,
10(5):2261--2272, 2011

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



Goh et al. A Network-based pipeline for analyzing MS data---An application
towards liver cancer. Journal of Proteome Research, 10(5):2261--2272, 2011 BB ® N US

Expansion to include neighbors
greatly improves coverage

Mod Network
Expanded Network
Integrated
Analysis
Poor Network Pipeline
W/o expansion, A | After expansion,
4 k3 cligues were returned ~120 clusters were returned

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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Returning to Mass Spectra

« Test set: Several proteins (ACTR2, CDC42,
GNB2L1, KIF5B, PPP2R1A, PKACA and TOP1)
from top 34 clusters not detected by Paragon

 Thetest: Examine their GPS and Mascot search
results and their MS/MS-to-peptide assignments

 Assessment of MS/MS spectra of their top ranked
peptides revealed accurate y- and b-ion
assignments and were of good quality (p < 0.05)

= In silico expansion verified

Goh et al. Journal of Proteome Research, 10(5):2261--2272, 2011

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



Goh et al. Journal of Proteome Research, 10(5):2261--2272, 2011
EBNUS

Successful Verification ) ez

ACTR2 CDC42
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Using Biological Networks, Part 3:
Protein Function Prediction Without
Informative Sequence Homologs

National University
of Singapore

TN US
%




Part 3: Protein
function prediction
w/o informative
sequence homologs

National University

« Basic protein function
prediction

Copyright 2012 © Limsoon Wong
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A proteinis a ...

A protein is alarge
complex molecule
made up of one or
more chains of
amino acids

* Protein performs a
wide variety of
activities in the cell

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



Function Assignment to Protein Sequs?

SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR
YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE
ONTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD
VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG
TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCOMVOTDMQOYVFEFIYQALLEHYLYGDTELE

vT

« How do we attempt to assign a function to a new
protein sequence?

Copyright 2012 © Limsoon Wong
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National University

invariant and Abductive Reasoning ==

* Function is determined  — Abductive reasoning
by 3D struct of protein & — If those invariant

environment protein is in properties are seen in a
protein, then the protein

_ _ IS homolog of this protein
« Constraints imposed by

3D struct & environment
give rise to “invariant”
properties observed in

Entailment A = B

. . Hypothesis Observation/
protelns ha_V|ng the Fact A Conclusion B
ancestor with that
function

= “Guilt by association”

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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In the course of evolution...
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ZANUS
Guilt-by-Association e

Good Sequence Alignment il

Compare T with seqs of
known function in a db

» Good alignment usually has clusters of
extensive matched positions

= The two proteins are likely to be homologous

Poor Sequence Alignment

T 5gi | 13476732 | ¢ unkoown protain [Mesorkizobiam loti]
£il114027402 1 4bj i3 upknown protein [Mesorhizobium leti)
3 12t Length
» Poor seq alignment shows few matched positions v .
Scora = 105 hivs (262), Expact = le-22
i i ldentities = 617106 (57%), Poritives = 73/105 (5B%), Gap: = 1/106 (OR)
= The two proteins are not likely to be homologous o b s T e P
Qeecy: | MEPORLAS [ALA [ IFLPMAVFAHAAT 1K [TMERLV [ SPTEVSAXYGIT [RFVEEDVEAHT &0
WGL o MA FA AATIE#T+» LV 5P W AKVGITL WVN DV ANT
Allgnmem by FASTA of the sequences of amlcyanln and domain 1 of Svjee: | WEAGAL TRLEVLAAL AL MAAP ARAAT |EVT IDELVFSPATVEAKVGIT [EFVRDVVANT 50
ascorbate oxidase 200 tch between
Amicvamn a1 known M. loti protein
i 0 80 100

Aricyanin MPHNVHEVAGVLGEAALEGPHHERKEQAY SLTFTEAGTYDYHCTI HPFMRGEVVY.

Ascorbate Oxidase ILORGTPWIDGTASISQCAINPCGETPFYNPTIVDNPGTFPYHOHLOMORSAGLYG
74 80 20 100 11C

Assign to T same
ch betwee .
SRR function as homologs

No obviow

Amicyanin an

Discard this function _ _ _
as a candidate Confirm with suitable
wet experiments

Tutorial for WSMB 2012
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Guilt-by-Association: Caveats

* Ensure that the effect of database size has been
accounted for

 Ensure that the function of the homology is not
derived via invalid “transitive assignment’’

 Ensure that the target sequence has all the key
features associated with the function, e.g., active
site and/or domain

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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Law of Large Numbers

e Supposeyou arein aroom Q: What is the prob that
with 365 other people there is a person in the
room having the same

« Q:What is the prob that a birthday as you?

specific person in the * A:1-(364/365)%*>=63%
room has the same
birthday as you? « Q: What is the prob that
« A:1/365=0.3% there are two persons in
the room having the same
birthday?
 A:100%

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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Interpretation of P-value

« Se(.comparison progs, « Suppose the P-value of an
e.g. BLAST, often alignment is 10°
associate a P-value to
each hit « |If database has 107 segs,

then you expect 107 * 10® =
10 seqgs in it that give an

 P-valueis interpreted as .
equally good alignment

prob that a random seq

has an equally good

alignment — Need to correct for
database size if your seq
comparison prog does not
do that!

Exercise: Name a commonly used method
Note:P=1-eF for correcting p-value for a situation like this

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



Lightning Does Strike Twice!

 Roy Sullivan, a former park ranger from Virgina,
was struck by lightning 7 times

— 1942 (lost big-toe nail)

— 1969 (lost eyebrows) ol
— 1970 (left shoulder seared) -

— 1972 (hair set on fire)

— 1973 (hair set on fire & legs seared)
— 1976 (ankle injured)

— 1977 (chest & stomach burned)

= o1

« September 1983, he committed suicide  caroon:Ron Hipschman

Data: David Hand
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Effect of Seq Compositional Bias

 One fourth of all residues in protein seqs occur in
regions with biased amino acid composition

« Alignments of two such regions achieves high
score purely due to segment composition

= While it is worth noting that two proteins contain
similar low complexity regions, they are best
excluded when constructing alignments

 E.g., by default, BLAST employs the SEG algo to
filter low complexity regions from proteins before
executing a search

Source: NCBI
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Effect of Sequence Length

60 | ] 1
\ | | | U-sets
\
\
50 - —— -
|
e 53
= 40- T
g
-
& 30— HEEEENEEN s ——
= ' HSSP(+3%)
8 ' 40
=
5 1%
=l 4%
g 20%
10
Abagyan RA, Batalov S. Do
aligned sequences share

[
200
sequence length (L)

the same fold? J Mol Biol.
1997 Oct 17;273(1):355-68
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Examples of Invalid Function Assignment:

BE ®

WNUS
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The IMP Dehydrogenases (IMPDH

18 entries were found

D | Organism \ PIR | Swiss-Prot/TrEMBL | RefSeq/GenPept
21582300 inosine-S-monophosphate
: - Ef4381 conserved hypothetical protein . . dehydrogenase (guab)
NEOO181857 Methanococcus jannaschi — |prnee 1633 _METIA Hypothetical protein MI0853 NP_247637 inosine-5-monophosphate
dehyrdrogenase (guab)
369355 LIS homolog AF0E47 22649734 inosine monophosphate
. LALT MAMES: inosine-monophosphate 020411 INOSINE MONOPHOSPHATE dehyrdrogenase (guab-1)
NEQO1E7788 | Archaeoglobus fulgidus dehydrogenase (guab-1) homolog DEHYDROGENASE (SUAB-1) HP_069681 inositie monophosphate
[trisniomer) dehydrogenase (guab-1)
F&8514 wheV homolog 2 226428410 inosine monophosphate
. LALT MAMES: inosine-monophosphate 028162 INOSINE MONOPHOSEFHATE dehydrogenase (guabB-2)
NFO0188267 |Archaeoglobus fulgidus dehydrogenase (guab-2) homolog DEHYDROGENASE (3UAB-2) HP_070943 inosine monophosphate
[tristiomer] dehydrogenase (guaB-I)
. - : ophosphate
NFoo182607|acchae. A PArtial list of IMPdehydrogenase misnomers .
g S 7 e
In Complete genomes remaining in some —
: mophosphate
NFo0197776 Thermo PUDIIC databases R
1 protein
nophosphate
Ifethanothermobacter T 027204 INOSINE-5-MONCOPHOSPHATE dehiydrogenase related protein V
MNF00414709 thermantotrophicus ‘jLT—NMES ‘inosine-monophosphate DEHYDROGENASE RELATED PROTEIN ¥ HP_276354 inosine-5-monophosphate
ehydrogenase related protein V [misnomer) ) e e s
DaR035 MT1232 protein homolog MTH126 2621166 inosine-J-monophosphate
NE00414311 Idethanothermobacter |ALT NAMES: innsine-5-monophosphate (026220 INOSINE- 5 MONOPHOSPHATE dehydrogenase related protein VII
——[thermautotrophicus dehydrogenase related protein VII DEHYDROGEN ASE RELATED PROTEIN WII MP_275269 inosine-5-monophosphate
[isniomer) dehyrdrogenase related protein VII
; 22623093 inosine-J-monophosphate
Methanothermobacter HG9u34 MI1Z35-related protein MTHD22 127073 INOSINE-* MONOPHOSPHATE debydrogenase related protein 13
Or0g P
NEO0414537 A ALT MAMES: nosine-3-monophosphate T
thermautotrophicus deterds 1 8 ; DEHYDROGENASE FELATED FROTEIN [ MP_276127 inosine-3-monophosphate
ehydrogenase related protein IX [misnomert] delydrogenase related protein IX
2622697 inosine-S-monophosphate
Methanothermobacter BEANTT yhe¥ homolog 2 037616 INOSINE- 5 MONOPHOSPHATE dehydrogenase related protein X
MEOD4 14969 LALT NAMES: inasine-monophosphate
= W ermautotrorhicus — : : . DEHYDROGENASE RELATED FROTEIN X NP _276687 inosine-5-monophosphate
F dehydrogenase related protein X [misnomer) raT— .
dehyrdrogenase related protein X

Tutorial for WSMB 2012
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IMPDH Domain Structure

dpip FCMWOOGEY: PDOCOO391, IMP dehydrogenase £ GMP reductase signature
e PFOO47S: IMF dehydrogenase / GMFP reductase C terminus
e FFOOS71: CBS domain
= PFO1381: Helixtum-heliz
L] PFO157<: IMP dehydrogenase / GMP reductase N terminus
bl PFO2195: ParB-like nuclease domain
AZ1007 .
’V(SF':":'DH':') Fihjel b o ek Jerlpul ot Joid s spopodoljodogodole dojodojodololok = 14
E70218 . ;
CSFON0AZ) e putjos oo o s pfes} 04 <\
EG4321 , ; ; ; P
(SFO04696) Ty e R R 194 <::I IMPDH Misnomer in Methanococcus jannaschii
GEOIES , <::|
(SFODABOE)  wolobolodolobok  #alabolotololok 188
FEO514 ) - i i
Al 183 <Z== IMPDH Misnomers in Archaeoglobus fulgidus
BG2407 ,
(SFOD4B89)  ohobhoihobde AAoiAodobok 2% (I

 Typical IMPDHs have 2 IMPDH domains that form
the catalytic core and 2 CBS domains.

 Aless common but functional IMPDH (E70218)
lacks the CBS domains.

« Misnomers show similarity to the CBS domains

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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National University

Invalid Transitive Assignment

Root of invalid transitive assignment

iphosphonbosyl-AMP cyclohydrolase (EC \ ‘ ' §
B!::) ™ H70468 |SFO01258 051440 3.5.4.19) / phosphoribosyl- ATP pyrophosphatase | Aquifex aeolicus Prok/other [594.3 |4.8e-26 (205 39.086 (197 | sosSe—"
(EC 3.6.1.31) [similarity] Fq | |

phosphonbosyl- AMP cyclohydrolase (EC ‘ ; [l
I™ 876963 |SF001258 039935 3.5.4.19) / phosphonibosyl- ATP pyrophosphatase  |Synechocystis sp {Prok/gram- [557.0 |5.7e-24 (230139175 |194 | we—
((EC 3.6.1.31) [similanty]

™ T35073 §8F029243 005738 Eprohah]e phosphonbosyl- AMP cyclohydrolase gsn'eptomyces coelicolor  |Prok/gram+ ’399.3 ’3.5&-!5 ﬁ 342.157 1102 ’—

iphosphonbosyl-AMP cyclohydrolase (EC [ ]
13.5.4.19) / phosphoribosyl- ATP pyrophosphatase
053349 |i5F001257 1001188 (EC 3.6.1.31) / histidinol dehydrogenase (EC

11.1.1.23)

A A E ‘ phosphonbosyl-AMP cyclohydrolase (EC 1 \ [
::) [T E69493 ESFUZ9243 005738 3.5.4.19) [similasity] iAICh«:CDglObUS fulgdus fuchac 396.8 [4.8e-15 108 ‘47.778 0 e

\Saccharomyces cerevisiae [Euk/fungt 3341 |2.5e-14 (799 31.867 |204 | e—

3 [
C::) I G64337 [SFO06833 (030827 gh;“’;li’“bs";ﬂﬁw syrophosphatase (EC Methanococcus jannaschil }Archae 2469 |1.1e-06 95 36.842 (95

ohefphonbosyl-ATP pyrophosphatase (EC
gﬁ 1.31) NMB0603 [similanty]
fhosphonbosyl- ATP pyrophosphat A>B>C = A>C
/3.6.1.31) NMAOS07 [sunilarity]

Ichann meninoitidic }prnldur:m. 7390 [7 Ae-NA 17135 997 !22/ JE—

[
M D81178 |SF006833 101491
[

" G81925 |SF006833 §10149l

B (SF001258)

=

A (SF029243)

No IMPDH domain 4

, 3.5.4.19) f phosphontbosyl-ATP py
[§51513 | SF001257 [? 88 ['EC 3.6.1.31) / histidino] dehydrog

1.1.1.23)
I\/Iis—assignmént
of function

C (SF006833)
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Part 3: Proteln
function prediction
w/o Informative

sequence homologs -« <“Guilt by association”
of other properties

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



What if there is no useful seq homolsg?*

* Guilt by other types of association!
— Domain modeling (e.g., HMMPFAM)
v' Similarity of phylogenetic profiles
v' Similarity of dissimilarities (e.g., SVM-PAIRWISE)

— Similarity of subcellular co-localization & other
physico-chemico properties(e.g., PROTFUN)

— Similarity of gene expression profiles

v' Similarity of protein-protein interaction partners

— Fusion of multiple types of info

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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B &

NU
Similarity of Phylogenetic Profile

aaaaaaa | University
of Singapore

 Proteins carry out their function within the
context of biological pathways

« Genes coding for proteins participating in the
same pathway are present together

By abduction,

« Genes (and hence proteins) with identical
patterns of occurrence across phyla participate in
the same pathway and function together

= Phylogenetic profiling

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong




E. ool

(EC)

Genomes: |

B. zubtiliz (BS)

H. influcnzae (H))

|
¢!
P3
P=
Ps
P
P7

hvd

Profile Clusters:

SC

Phylogenetic Profile:

EC

BS HI
0 1
10
| |
0o 0
1 l
| l
1 0

10 0]

I

Im o0

7 | | H
-_-> [P 1 0 1}—{Ps O |

Conclusion: #2 and P7 are functionally linked .
P13 und PH aee fenctionally linked

B &

95

NUS

National University
of Singapore

Phylogenetic
Profiling:
How It Works

Pellegrini et al., PNAS, 96:4285--4288, 1999

Copyright 2012 © Limsoon Wong




Phylogenetic Profiles: EvidencemNnHmsy

of Singapore

No. of non- .HD‘ .HG‘
homologo  neighbors  neighbors
us proteins in keyword in random
Keyword in group group group
Ribosome i 197 27
Transcription 36 17 10
tRNA synthase and ligase 26 11 3
Membrane proteins® 25 89 3
Flagellar 21 89 3
Iron, ferric, and ferritin 19 3l 2
Galactose metabolism 18 3l 2
Molybdoterin and Molybdenum,
and molybdoterin 12 6 |
Hypothetical 1,084 10%,226 8,440

* E. coli proteins grouped based on similar keywords
In SWISS-PROT have similar phylogenetic profiles

Pellegrini et al., PNAS, 96:4285--4288, 1999

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong




Wu et al., Bioinformatics, 19:1524--1530, 2003
ERANUS

National University

Phylogenetic Profiling: Evidence

> 0.9
® o

o s 0. hamming distance y

S o = #lineages X occurs + JKEGG

c8 #lineages Y occurs — 0 COG
» -g c 0. _ 2 * #lineages X, Y occur
— .2 O LD
T o
2 5 £ 0.4
2E5 ., ob
cEO0Q -
(@)) (@) b

£ ® 0.:
58 09
Oc =@ 01 | "Boossssannanans
c— ®
o O g
.S ou
T (
&= < s £ hamming distance (D)

* Proteins having low hamming distance (thus highly similar
phylogenetic profiles) tend to share common pathways

Why do proteins having high hamming
distance also have this behaviour?
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I\II,S

niversity

Similarity of Dissimilarities ”
il I]B

#
I'-'-
: N
Differences ‘
Of uunknownn O?rangel ': .\Bananal
to other fruits ' '
are same as Apple, Color =red vs orange Color =red vs yellow
. y - Skin = smooth vs rough Skin = smooth vs smooth
apple to ’ Size = small vs small Size = small vs small
other fruits Shape =round vs round Shape = round vs oblong
— Orange, Color = orange vs orange | Color = orange vs yellow
Skin =rough vs rough Skin =rough vs smooth
o Size = small vs small Size = small vs small
Shape =round vs round Shape = round vs oblong
Unknown, Color =red vs orange Color =red vs yellow
" ” . Skin = smooth vs rough Skin = smooth vs smooth
unknown @ Size = small vs small Size = small vs small
IS an Shape = round vs round Shape =round vs oblong
“apple”!
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Li & Noble. JCB, 10(6):857-868, 2003 =) N US
National University

of Singapore

SVM-Pairwise Framework

Training Training Features
Data
Feature StS2 S Support Vectors
S1 Generation , S, fu fi, fiz .. Training > | Machine
S2
Sz T T fos (Radial Basis
S3 Sy fy fyp fy3 ... Function Kernel)
—
fglis the local / cee eee e l
alignment score
between S; and S, Trained SVM Model
(Feature Weights)
Testing Testing Features l
Data
Feature St S; Sg .
T1 Generation | Ty fy f figo Classification | RBF
T2 T, fy 3 Tos ... Kernel
T3 } fy o fag oo l
fSliSthe|Oca| 1 - ... v e e - —
. Discriminant
alignment score Scores
between T;and S;

Image credit: Kenny Chua
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Li & Noble. JCB, 10(6):857-868, 2003 =) N US

National University

performance of SVM-Pairwise & 7

SVM paim'/i-se —_—
. SVM-Fisher --—s—-
TN -

alrwise - oo

No. of families with given performance

ROC

 Receiver Operating Characteristic (ROC)

— The area under the curve derived from plotting true positives as a
function of false positives for various thresholds.

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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Part 3: Protein
function prediction
w/o informative
sequence homologs

 Protein function

Level-1 neighbour Level-2 neighbour .
AlEd = prediction from PPlIs

S

O
o
\Q
©)
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i B ® N
Main Hypotheses of US
PPIN-Based Function Prediction
* Proteins with similar * Proteins with similar
function are topolog- function have interac-
ically close in PPIN tion neighborhoods
— Direct functional that are similar
association
— Indirect functional
association
A pair of proteins that participate When proteins in the neighbor-
In the same cellular processes hood of a protein X have simi-
or localize to the same cellular lar functions to proteins in the
compartment are many times neighborhood of a protein Y,
more likely to interact than a then proteins X & Y likely
random pair of proteins operate in similar environment

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



Functional Association Thru Interactiet

« Direct functional association:

— Interaction partners of a protein
are likely to share functions w/ it

— Proteins from the same
pathways are likely to interact

* Indirect functional association

— Proteins that share interaction
partners with a protein may also
likely to share functions w/ it

— Proteins that have common
biochemical, physical properties
and/or subcellular localization
are likely to bind to the same
proteins

148

CE? aNUS
\ National University
Singapore

Level—\l neighbour

p

Level-2 ?eighbour

o g

]

Image credit: Kenny Chua
Copyright 2012 © Limsoon Wong
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NUS
Majority Voting
Precision VS Recall
* Proteins with similar 05 1 asinss
function are topolog- o o1 -0z
ically close in PPIN :
é 0a 1 A
3 %
a 1 Fi
0.2 Fe) ¢¢¢| i
e
S I ﬁ%w
c . uﬂ D.:E El:.li 'Di.ﬁ 'D:.E 1
 Assign a protein a Recall
function that is over » Shortcomings

represented among its

. . — L1 is not sensitive
Interaction partners

— L2 is noisy

Hishigaki et al. Yeast, 18:523-531, 2001
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National University
of Singapore

Why iIs L1 not sensitive?

YALOL2W
[1.1.6.5
[1.1.9
| | [ |
YJRO91C YMR300C YPL149W YBRO55C YMR101C
[1.3.16.1 [1.3.1 |114.4 [11.4.3.1 142.1
[16.3.3 [120.9.13 I
|42.25
'—‘—‘ [14.7.11 YDR158W
[1.1.6.5
YPLO8SW YBR293W 1.1
2.16 16.19.3 . . .
:1.1.9 }42.25 Simred Functions with Fraction
[1.1.3
[1.1.9 YBL0O72C
R Level-1 neighbours exclusively 0.016338
| I iEevet=2 mepghbours exclusively 0226574
YBR0O23C YLR330W YBLOG61C YLR14 0 evigl-1MRATT avtel-2 115-_.;11':1;:111-5 0 463060
110.3.3 1.5.4 |1.5.4 [ |11.4. i : o
132.1.3 }34.11.3.7 110.3.3 Level-L oz Level-2 neighbours 0706872
134.11.3.7 [41.1.1 [18.2.1.1 [16.7
142.1 143.1.3.5 [32.1.3 T20.1.10
143.1.3.5 143.1.3.9 142.1 120.1.21
143.1.3.9 143.1.3.5 120.9.1
[1.5.1.3.2 l 11.5.1.3.2
| YKLOO6W | | |
|12.1.1
YOR312C 116.3.3 YPL.193W YDLO081C YDR0O91C YPLO13C
112.1.1 112.1.1 112.1.1 11.4.1 [12.1.1
7 |12.1.1 |142.16
112.4.1
116.19.3

Chua et al. Bioinformatics, 22:1623-1630, 2006.
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National University
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Why Is L2 noisy?

PPI Detection Assays
Sprinzak et al., JIMB, 327:919-923, 2003
« Many high-throughput

assays for PPIs

Woom |

poon |

oo |

Generating large amounts

Experimental method category*

Number of interacting pairs Co-localization® (%) Co-cellular-role” (%)

EZ: Immunological, indirect
2M: Two different methods
3M: Three different methods
4M: Four different methods

of expt data on PPIs can be All: All methods 9347 64 19

- Y2H A: Small scale Y2H 1861 73 62

done with ease Alk GYZH Uetz et al. (published results) 95 66 15

- TAP Al: GY2H Uetz et al. (unpublished results) 516 53 B

A2 GY2H Ito et al. (core) 798 64 40

AJ GY2H Tto et al. (all) 3655 11 15

— Synthetic lethality B: Physical el 1 9 9

C: Genetic methods 1052 77 75

o0 ¢ D1: Biochemical, in vitro 614 87 79
e | Growth of BioGrid I._?Z: Bmchemlca!, chrn_mamgraphy 648 93 88
EL: Immunological, direct 1025 90 90

Large disagreement between experiments!

Tutorial for WSMB 2012
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Chua & Wong. Increasing the Reliability of Protein Interactomes.
Drug Discovery Today, 13(15/16):652--658, 2008 B2 ® N U S

Dealing with noise in PPIN 95 e

« Two proteins participating
In same biological process

are more likely to interact :
« CD-distance

- Two proteins in the same  FS-Weight
cellular compartments are
more likely to interact
Cf. ave localization coherence of protein pairs in DIP < 5%
ave localization coherence of PPl in DIP < 55%
1 98
v - AdjustCD (k=2)
CD-distance & FS-Weight: Based g U T gy AmcO=)
on concept that two proteins with s 09 | RREx  CDdistance
many interaction partners in S 085 | TBag.
common are likely to be in same 2 il oy
biological process & localize to g "
the same compartment s we '
07 °¢

0 500 1000 1500 2000 2500 3000
Zinteractions

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong




NUS

ngp

Czekanowski-Dice Distance

 Functional distance between two proteins
IN,AN, |
IN, UN,|[+|N, "N ‘

D(u,v)=

* N, is the set of interacting partners of k
« XAY is symmetric diff betw two sets X and Y,
« Greater weight given to similarity

= Similarity can be defined as

S(u,v)=1-D(u,v) = 2X

2X +(Y +2)

Brun, et al. Genome Biology, 5(1):R6, 2003

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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FS-Weighted Measure e
 FS-weighted measure

2N, NN, | 2N, NN, |

S(u,v)=

N, N+ 2N, AN, [N, ~N,[+2N, AN,

* N, is the set of interacting partners of k
« Greater weight given to similarity

= Rewriting this as

S(u,v): 2 X 2 X

X
2X+Y 2X+”Z

Chua et al. Bioinformatics, 22:1623-1630, 2006

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



EANUS

National University

Correlation w/ Functional Similarit

* Correlation betw functional similarity & estimates

Neighbours [CD-Distance [FS-Weight

S 0.471810 0.498745
S, 0.224705 0.298843
S;w S, 0.224581 0.29629

 FS-Weight is slightly better in correlation w/
similarity for L1 & L2 neighbours

Chua et al. Bioinformatics, 22:1623-1630, 2006

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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=N US
9

National University
of Singapore

Reliability of Expt Sources

« Diff expt sources have diff | source Reliability
I‘e|labl|l.tleS o Affinity Chromatography 0.823077
— Assign reliability to an — S
interaction based on its Affinity Precipitation 0.455904
expt sources Biochemical Assay 0.666667
* Reliability betw u and v Dosage Lethality 05
computed by:
Purified Complex 0.891473
ru,v — 1_ | | (1_ I"|) Reconstituted Complex 0.5
ek, , Synthetic Lethality 0.37386
* r1,is reliability of expt Sunthetic R 1
source i, ynthetic Rescue
* E,,Is the set of expt Two Hybrid 0.265407
sources in which

Interaction betw u and v is
observed

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong




FS-Weighted Measure with Reliabilf&

« Take reliability into consideration when
computing FS-weighted measure:

2 ZUWVW 2 ZUWVW

SR(U,V)Z NmN % NmN

T Znbez Ton [ o Snbone To,

weN, -N, (N,AN,) weN,—N

* N, is the set of interacting partners of k
* Iyw IS reliability weight of interaction betw u and v

= Rewriting
S(0.v) 2X_2X
2X+Y 2X+/7

Chua et al. Bioinformatics, 22:1623-1630, 2006

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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W National Universi ity

of Singapore

Integrating Reliability

« FS-Weight shows improved correlation w/
functional similarity when reliability of
Interactions is considered:

Neighbours |[CD-Distance [FS-Weight [FS-Weight R

S 0.471810 0.498745 0.532596
S, 0.224705 0.298843 0.375317
S; S, 0.224581 0.29629 0.363025

Chua et al. Bioinformatics, 22:1623-1630, 2006
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=N US
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National University
of Singapore

Improvement to
Prediction Power by Majority Voting

05

s + Neighbour Counting Aw weight Z Considering only

' & Neighbour Counting Av weights neighbours w/ FS
04 } o Neighbour Counting weight > 0.2
*r

035 B .
é 03 F a A <
= 025 F a
3 a .
0‘: o o

0.2 B4 = a &&"’

0.15 st

: Y .
04 } s
i“
-
005 } <
0
0 0.2 04 085 03 1
Recall

Chua et al. Bioinformatics, 22:1623-1630, 2006
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Improvement to NUS
Over-Rep of Functions in Neighbours

of Singapore

o o) o
Fraction of neighbour pairs with Functional Similarity Fraction of neighbours with Functional Similarity
at FSWeight threshold 0.2
! os1-82 1
0.9 0 s2- 81 0.9 - os1.-52
g-?' — m 5152 0.8 o522 -51
"] B All Pairs 0.7 - BS1n S2
g %81 _ £ 0.6 0
E g'i | o ﬁ 0.5 {7 )
= 0.3 1 = 04 -
' 0.3 ~
o2 0.2 -
0.1
0.1
I:I T T T T T
0 1 2 3 4 5 0 ' ' ' ' '
) 0 1 2 3 4 5
MIPS Annotation Level
MIPS Annotation Lewvel

o o o

Chua et al. Bioinformatics, 22:1623-1630, 2006

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



16

NUS

Na t|onaI Uni vvvvv ity

Use L1 & L2 Neighbours for Predictigi™

1

 FS-weighted Averaging (FWA)

0)= 2+ 3 Sulelon) o)

veN weN,

i IS fraction of all interaction pairs sharing function
A is weight of contribution of background freq

d(k, x) = 1if k has function x, 0 otherwise

N, is the set of interacting partners of k

m, 1S freq of function x in the dataset

Z is sum of all weights

Z=1+ Y| Sa(u,v)+ > S (u,w)

veN, weN,
Chua et al. Bioinformatics, 22:1623-1630, 2006
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NUS

National University

Performance of FS-Weighted Averagfig=

« LOOCV comparison with Neighbour Counting,
Chi-Square, PRODISTIN

1 Informative FCs

Tutorial for WSMB 2012

Jlt“:..e o N:
0.9 “xn & Chi
0.8 " o PRODISTIN
= = FunctionalFlow
074" . » F3 Weighted Avg
064 oo "
E 1 o og =
2 05 4 *
E 0.4 = Hﬁ
x= o =
03t e . g
o K:
0.2 4 I“*t,hq e,
D1 g xﬁft&%::f'ﬂ rx”:ﬂ:x
T gﬁﬁhﬂﬂh:}{“kﬂx
] B BB n R KR e

o 01 02 03 04 05 06 07 08 09 A

Recall

Chua et al. Bioinformatics, 22:1623-1630, 2006

2
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. . . BE &
Freq of indirect functional NUS
association in other genomes

D. melanogaster

Functional Coverage Funciional Coverage Funciional Coverage
(Binlogical Process) Molecular Function] (Cellular Component)
| OBLAST  OFPI ®indirect Interactions | | OBLAST OPFl M indirect Interactions | OBAST  ©PPl mlndract Interactions
1 1 14
0E& A 0s - 08 -
% & - %DE % 0g -
Z 04 5 04 - ¢ 0]
BT R
i 2 _d _F & -0 0 -2 —4 -5 = -0 1] - —4 1 -4 -0
log(E-*alue Cutaff) log(E-value Culnf) I B alue Cutoff)
Genome Annotation | 5;-5, Sa-5y =015, S{US,
5. cerevisiae MIPS 0.007193 0226574 | 0463960 | 0.706872
D. melanogaster GO 0.008801 0.168622 0138138 | 0.315561
C. elegans GO 0.007193 0.031237 0.061080 | 0.119310

Chua et al. Using Indirect Protein Interactions for the Prediction of
Gene Ontology Functions. BMC Bioinformatics, 8(Suppl 4):S8, 2007
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Precision vs Recall (Worm / GO Level 3)

1 1
Effectiveness of
08"
. . 0.7
FSWeighted Averaging  £os] _ o,
| SR
in other genomes B N S,
. _y
0.1 -
0 I 1 I I Hqﬁ
0 0.2 0.4 0.6 0.8 1
Recall
Precision vs Recall (Fly / GO Level 3) Precision vs Recall (Yeast / GO Level 3)
0 5123 0 :-3 ‘HFH-”""'H"'H'I-H.H
g:g : 081 o o ;"""';;r
506 - EB;E_ % 8o 0™ 5
204 804
8-03 - 057
0.2 - 0.2 -
0.5 i I I I I 0.8 i
0 02 04 06 08 1 | | | |
¢ Neighbour Counting Recall 0 0.2 0'4Recall : 0.8 1

x NC (Weighted)
O NC {(\Weighted + L2)
+ Weighted Avg

Chua et al. Using Indirect Protein Interactions for the Prediction of

Gene Ontology Functions. BMC Bioinformatics, 8(Suppl 4):S8, 2007

Tutorial for WSMB 2012
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What have we learned?

* Proteins with similar function are topologically
close in PPIN

— Assign protein to a function that is over
represented in its neighborhood

— Indirect neighbors are useful

 PPIN is noisy
— Not are neighbors are “real”
— Need to clean up the PPIN before “voting”

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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=N US
95

National University
of Singapore

But genes ¢
sharing -
annotations & «
do not always
interact... 5w

Network Shortest Path Distance

 Similar functions are
sometimes at large network
distances

Source: Bogdanov & Singh. TCBB, 7:208-217, 2010
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s
Labeled Motifs
. . . . J/;\H
* Proteins with similar ‘/g
function have interaction Gaf— 2
neighborhoods that are
similar Network motif ‘g” \.*

« Assign a protein a
function based on
“network motif”’ that
Its neighborhood
matches 4 occurrences of ‘g’ in this PPIN

Image credit: Chen et al. ICDE2007, pp. 546-555
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Chen et al. ICDE2007, pp. 546-555 BB & N US

National University

LaMoFinder

l =2 W T T L
~— Labelled Motif
09 | « MRF --X -
. o
e _-A >§< Prodistin —-fl—- |
\
0.7 | -1
N\
0.6 - —
g
| 05F -
2
o
04 -
03 =
02 | -
0.1 -
0 L1 11 L1 11 I
0 01 02 03 04 05 06 07 08 09 |1

Recall

« Shortcoming

— Works only for
proteins in subnets
that can be mapped to
network motifs
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Pattern-Based Annotation Prediction “"4 ﬁ’%m

K Kirac & Ozsoyoglu, RECOMB2008, pp 197-213 \

 Find the best pairwise graph alignment of the
functionally labeled subgraph rooted at the
unknown protein to functionally labeled
subgraphs rooted at other nodes in the protein
\_ Interaction network /

e Shortcoming
— Rely on topological matching of subnetworks
—Sensitive to noise & missing edges in PPIN

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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aaaaaaa | University

Functional Neighborhood Feature® ==
(. R

Bogdanov & Singh. TCBB, 7:208-217, 2010

* Predict function of an unknown protein v by
weighted voting of the k proteins having most
similar functional profiles to v

« Affinity of protein u to protein v

— P, = Prob of random walks from u to v
« Affinity of protein v to function a

- Sf(a) = 2P, ,, over all proteins u having function a
* Functional profile of a protein v

- [Sf,(a,), ..., Sf,(a,)], normalized

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong
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Comparisons

2 MAJ BKNN k=10 OJIND B PAP 0O Actual

MAJ = Majority Voting
KNN = Functional Neighborhood Features
IND = FSWeight

‘41l + Functional
it neighborhood
features is
slightly better

Fig. 10. Number of TP per GO molecular function (FYI, T = 20). The top th an
two functions are considered as predictions for each of the methods. .
The horizontal bars represent the total number of TPs for each GO term. FSWG' 9 ht

Bogdanov & Singh. TCBB, 7:208-217, 2010
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What have we learned?

* Proteins with similar function can be far apart

« If the functional neighborhood features of two
proteins are similar, they may have similar
function

— Assign protein to a function based on network
motif (and generalizations thereof) that it matches
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INUS
Part 4: Other . Epistatic interaction
applications of mining
biological |
« Disease causal gene
networks prioritization
R + Protein complex
s / prediction
Q \*dz
|43
\m
a5
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Emily et al. European Journal of Human Genetics, 17(10):1231-1240, 2009.

Epistatic Interaction Mining

« GWAS have linked many SNPs to diseases, but
many genetic risk factors still unaccounted for

* Proteins coded by genes interact in cell

— Some SNPs affect the phenotype in combination
with other SNPs; i.e., epistasis

 Exhaustive search for epistatic effects has to test
many combinations (>100,000%) of SNPs

— Hard to get statistical significance
— Take long time to run on computers

— Use biological networks to narrow the search for
two-locus epistasis
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Vanunu et al. PLoS Computational Biology, 6(1):e1000641, 2010

National University
of Singapore

Disease Causal Gene PrioritizatioR

 Genes causing the &
same or similar
diseases tend to
lie close to one
another in PPIN

 Given disease Q.

LOO k N PPI N for Figure 1. lllustration of the PRINCE algorithm. A query disease,
. denoted @, has varying degrees of phenotypic similarity with other
p r0t6| ns th at diseases, denoted d 1-d5 (marked with maroon lines, where thicker lines

. . represent higher similarity). Known causal genes for these similar diseases
Interact Wlth many are connected by dashed blue lines and used as the prior information.
p1-pl1 comprise the protein set of a protein-protein intemction network,

cau Sal g enes Of where interactions are marked with black lines and thicker lines denote
. ) ) edges with higher confidence. A scoring function that is smooth over the
network is computed using an itermtive network propagation method. At

d ISEASES SImI I ar to every iteration of the algorithm, each protein pumps flow to its neighbors
Q and receives flow from them. Protein colors comespond to the flow they
receive in a specific iteation, the darker the color the higher the flow. (A}:
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Liu et al. Bioinformatics, 25(15):1891-1897, 2009

Protein Complex Prediction

 Nature of high-throughput
PPI expts

— Proteins are taken out of
their natural context!

« Can a protein interact with
SO many proteins
simultaneously?

178

=N US
9

National University
of Singapore

A big “hub” and its
“spokes” should probably
be decomposed into
subclusters

— Each subcluster is a set
proteins that interact in
the same space &time;
viz., a protein complex

Many complexes have
highly connected cores In
PPIN = Find complexes
by clustering

Issue: How to identify low
edge density complexes?

Tutorial for WSMB 2012
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How good are
avallable sources - Sources of pathway &
of pathway & PPI PPIN

Network? — Comprehensiveness

— Consistency

o che — Compatibility
1‘~E 15 EI
=i
= SR
-1:5 :ﬁ] _____ [l

= - —
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Sources of Protein Interactions & ==

Database # nodes, URL Build Reference
# edges Focus
BioGRID 10k, 40k http://thebiogrid.org Literature  (Stark et al., 2006)
DIP 2.6k, 3.3k http://dip.doe-mbi.ucla.edu Literature  (Xenarios et al., 2002)
HPRD 30k, 40k http://www.hprd.org Literature  (Prasad ef al., 2009)
IntAct 56k, 267k  http://www.ebi.ac.uk/intact Literature  (Aranda et al., 2010)
MINT 30k, 90k http://mint.bio.uniroma2.it/mint Literature (Chatr-arvamontri et al., 2007)
STRING 5200k, ? http://string-db.org Literature, (Szklarczyk et al., 2011)
Prediction
and Protein Complexes
« CORUM

— http://mips.helmholtz-muenchen.de/genre/proj/corum
— Ruepp et al, NAR, 2010

Copyright 2012 © Limsoon Wong
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Database Remarks %@ N US

KEGG KEGG (http://www.genome. jp/kegg) is one of the best known gf;iizgzlpté?;versity
pathway databases (Kanehisa et al., 2010). It consists of 16
main databases. comprising different levels of biological infor-
mation such as systems, genomic, etc. The data files are down-
loadable in XML format. At time of writing it has 392 path-

ways.

WikiPathways WikiPathways (http://www.wikipathways.org) is i S O U rce S
Wikipedia-based  collaborative  effort among  various
labs (Kelder et al., 2009). It has 1.627 pathways of which 369 Of

are human. The content 1s downloadable in GPML format.

Reactome Reactome (http:://www.reactome.org) is also a collaborative B I O I Og I Cal
effort like WikiPathways (Vastrik et al., 2007). It is one of the
largest datasets, with over 4,166 human reactions organized into P a_t hwayS
1,131 pathways by December 2010. Reactome can be down-
loaded in BioPax and SBML among other formats.

Pathway Commons Pathway Commons (http://www.pathwaycommons.com) col-
lects information from various databases but does not unify the
data (Cerami et al., 2006). It contains 1,573 pathways across
564 organisms. The data is returned in BioPax format.

PathwavAPI PathwayAPI (http://www.pathwayapi.com) contains over 450
unified human pathways obtained from a merge of KEGG,
WikiPathways and Ingenuity® Knowledge Base (Soh et al.,
2010). Data is downloadable as a SQL dump or as a csv file,
and is also interfaceable in JSON format.
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Low Comprehensiveness NUS
of Pathway Sources

of Singapore

Wikipathway_s\_,_;:a S T T KEGG .
B k& 70000 # of Genes Pairs
:,-"gnﬁ;_,‘ 60000 -
Human 20007
. i 40000 -
pathways in
I Wl 30000
Wikipathways,
20000
KEGG, & )
Ingenuit o
g y 0 T T T -_\
Unified KEGG Ingenuity Wiki
Ingenuity
500 7 # of Pathways 25000 # of Genes
450
400 20000 -
350
300 15000 -
250
200 10000
150 -
100 A l 5000 - l
50 -
: . . ; . -
Unified KEGG Ingenuity Wiki Unified KEGG Ingenuity Wiki

Soh et al. Consistency, Comprehensiveness, and Compatibility of
Pathway Databases. BMC Bioinformatics, 11:449, 2010.
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Gene Pair Overlap

Unique

Unique—

F— Overlap

~—— Overlap

Wiki vs KEGG Wiki vs Ingenuity KEGG vs Ingenuity

Gene Overlap

Unique Unique

Uniqug———mm

Owverlan S 1 o)
Overlap % oot
Overlap Overlap

Wiki vs KEGG Wiki vs Ingenuity KEGG vs Ingenuity

Soh et al. BMC Bioinformatics, 11:449, 2010.
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Example: Apoptosis Pathway

Apoptosis Pathway

Wiki x KEGG | Wiki x Ingenuity | KEGG x Ingenuity
Gene Pair Count: 144 vs 172 144 vs 3557 172 vs 3557
Gene Count: 85 vs 80 85 vs 176 80 vs 176
Gene Overlap: 38 28 30
Gene % Overlap: 48% 33% 38%
Gene Pair Overlap: 23 14 24
Gene Pair % Overlap: 16% 10% 14%

Soh et al. BMC Bioinformatics, 11:449, 2010.
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Pathway sources
are curated. They
are incomplete;
but they have few
errors. = Makes
sense to combine
them. But...

Data Format Variations

| =—— | API Call ' SOAP Data Format

Widpalhu)iy

~  Parse GPML

GPML Data Format

Ingenuity

Manual Graphical Format

Extraction

Image credit: Donny Soh’s PhD dissertation, 2009

SBINUS

National University

Incompatiblility Issues

Data extraction method
variations

Format variations

Data differences

Gene/GenelD name
differences

Pathway name differences

Tutorial for WSMB 2012
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The preceding analyses hide an intricate
ISsue...

The same pathways in the different
sources are often given different names.

So how do we even know two pathways
are the same and should be compared /
merged?
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How good are
avallable sources
of pathway
Information?

An ([
A op
{O//r\

* Integration

— Pathway matching
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Possible Ways to Match Pathway

« Match based on name (LCS)

— Pathways w/ similar name should be the same
pathway

— But annotations are very noisy
—=Likely to mismatch pathways?
—Likely to match too many pathways?

 Arethe followings good alternative approaches?
— Match based on overlap of genes
— Match based on overlap of gene pairs
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LCS vs Gene-Agreement Matching ==

« Accuracy « Completeness

— 94% of LCS matches — Let Pi be pathway in
are in top 3 gene db A that LCS cannot
agreement matches find match in dbo B

— 6% of LCS matches — Let Qi be pathway In
not in top 3 of gene db B with highest gene
agreement matches; agreement to Pi
but their gene-pair — Gene-pair agreement
agreement levels are of Pi-Qi is much lower
higher than pathway pairs

matched by LCS

LCS is better than gene-agreement based matching!
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LCS vs Gene-Agreement Matching ==

2

Soh et al. BMC Bioinformatics, 11:449, 2010.

Gene-pair overlap

ercentage
P Al g
0.6 - / -
+
05 1 .
* e & ¥ .
04 - .
* >
0.3 .
5 o
02 - S .
& X % " ¢ mg
0.1 A * ™ > . m
: I i & * e .
0 — ; —_— e : gene overlap
0 0.2 0.4 06 0.8 1 percentage

 LCS consistently has higher gene-pair agreement
= LCS is better than gene-agreement based matching!
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Soh et al. BMC Bioinformatics, 11:449, 2010.
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LCS vs Gene-Pair Agreement Match#ig

ErbB signaling pathway JAK/Stat Signaling
. Calcium signaling pathway Synaptic Long Term Potentiation
G ene- P alr Apoptosis Tol-like receptor signaling pathway
_VEGF signaling pathway _| Axonal Guidance Signaling .
O I Gap junction PPAR-alpha/RXR-alpha Signaling
L CS V er a.p Natural killer cell mediated cytotoxicity | Fc Epsilon Rl Signaling
T cell receptor signaling pathway | Axonal Guidance Signaling
B cell receptor signaling pathway Axonal Guidance Signaling
Olfactory transduction cAMP-mediated Signaling
GnRH signaling pathway | B Cell Receptor Signaling
Melanogenesis Wnt Signaling Pathway and Pluripotency
Type |l diabetes mellitus Insulin Recpetor Signaling
Colorectal cancer | Toll-like receptor signaling pathway
Renal cell carcinoma Axonal Guidance Signaling
Pancreatic cancer PTEN Signaling
Endometrial cancer | PTEN Signaling
Glioma ERK/MAPK Signaling
Prostate cancer JAK/Stat Signaling
Basal cell carcinoma | Wnt Signaling Pathway and Pluripotency
Melanoma FGF Signaling
Chronic myeloid leukemia GM-CSF Signaling
_Acute myeloid leukemia | PTEN Signaling
Small cell lung cancer Toll-like receptor sngnaimg pathway
Non-small cell lung cancer GM-CSF Signaling
Regulation of actin cytoskeleton Regulation of Actin Cytoskeleton The 24 pathway pal IS Si ng Ied OUt
Wnt signaling pathway Whnt Signaling Pathway i _ 1
T cell receptor signaling t cell receptor Signaling by ma‘XImaI gene palr Overlap
VEGF signaling VEGF Signaling
MAPK signaling _MAPK Cascade | . .
Apoptosis Apoptosis Note: We consider only pathway pairs that have at
Apoptosis Apoptosis Signaling least 20 reaction overlap.
Toll-like receptor Toll-like receptor signaling pathway
The 8 pathway pairs singled out by LCS
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LCS vs Gene-Pair Agreement Matc ki

 Gene-pair agreement match will miss when

— Pathway P in db A has few overlap with pathway P In
db B due to incompleteness of db, even if pathway
name matches perfectly!

— Example: wnt signaling pathway, VEGF signaling
pathway, MAPK signaling pathway, etc. in KEGG
don’t have largest gene-pair overlap w/ corresponding
pathways in Wikipathways & Ingenuity

— Bad for getting a more complete unified pathway P
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LCS vs Gene-Pair Agreement Matc ki

 Pathways having large gene-pair overlap are not
necessarily the same pathways

« Examples

— “Synaptic Long Term Potentiation” in Ingenuity vs
“calcium signalling” in KEGG

— "PPAR-alpha/RXR-alpha Signaling” in Ingenuity vs
“TGF-beta signaling pathway” in KEGG

= Difficult to set correct gene-pair overlap threshold
to balance against false positive matches
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... S0 we match pathways by LCS

 Having found a good way to match up pathways
In different datasources, we proceeded to build a

big unified pathway db

PathwayAPI
= KEGG
+ Wikipathways
+ Ingenuity

Donny Soh, Difeng Dong, Yike Guo, Limsoon Wong. Consistency, Comprehensiveness,
and Compatibility of Pathway Databases. BMC Bioinformatics, 11:449, 2010.

Copyright 2012 © Limsoon Wong
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What have we learned?

« Significant lack of concordance betw db’s
— Level of consistency for genes is 0% to 88%
— Level of consistency for genes pairs is 0%-61%

— Most db contains less than half of the pathways in
other db’s

 Matching pathways by name is better than
matching by gene overlap or gene-pair overlap
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How good are
avallable sources
of pathway & PPI

Network?
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O

r

* PPIN cleansing
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%,
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PPl Detection Assays

 Many high-throughput

Generating large amounts
assays for PPIs

of expt data on PPIs can be

- Y2H done with ease
— TAP
— Synthetic lethality . But .
150000 1 Growth of BioGrid +throy 7
oo Shput
— Crifice . Proaches
200000 < s & Ilmlted q al,ty for qUant
| e - Faren Diased coy 1ty:
e Humanr Brotein (b) z.e negatiVes & rage:
so00 '9h error rate.
D false pe iti =
20‘06 2(;07 20r08 20'09 20'10 20'11 es
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Noise in PPl Networks

Experimental method category* Number of interacting pairs Co-localization®” (%) Co-cellular-role® (%)
All: All methods 9347 64 49
A Small scale Y2H 1861 73 62
Al GYZH Uetz et al. (published results) 956 i 45
Al: GYZH Uetz et al. (unpublished results) 516 53 33
A2 GY2H lto et al. (core) 798 64 40
AJ: GYZH lto et al. (all) J6hR5 41 15
B: Physical methods 71 98 95
C: Genetic methods 1052 o 7o
D1: Biochemical, in vitro 614 87 79
D2: Biochemical, chromatography H48 93 88
El: Immunological, direct 1025 a0 a0
E2: Immunological, indirect ey 100 Q3
2M: Two different methods 2360 87 85
AM: Three different methods 1212 92 94
4M: Four different methods 570 95 93

Sprinzak et al., JIMB, 327:919-923, 2003 .
Large disagreement betw methods

« High level of noise
= Need to clean up before making inference on PPI networks
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Chua & Wong. Increasing the Reliability of Protein Interactomes.
Drug Discovery Today, 13(15/16):652--658, 2008 B2 ® N U S

Dealing with noise in PPIN 95 oo

« Two proteins participating
In same biological process
are more likely to interact

« CD-distance

« Two proteins in the same  FS-Weight
cellular compartments are

more likely to interact

CD-distance & FS-Weight: Based on concept that two proteins with
many interaction partners in common are likely to be in same
biological process & localize to the same compartment
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Brun, et al. Genome Biology, 5(1):R6, 2003

Czekanowski-Dice Distance

« Given a pair of proteins (u, v) in a PPl network
— N, = the set of neighbors of u
— N, = the set of neighbors of v

2‘Nuﬁ\|v
No|+[ Ny

« CD(u,v) =

« Consider relative intersection size of the two neighbor
sets, not absolute intersection size

— Case 1. |N,| = 1, IN,|= 1, [N,~N,|=1, CD(u,v)=1
— Case 2: |N,| = 10, |N,|= 10, [N,~N,|=10, CD(u,v)=1
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Liu et al. GIW2008, pp. 138-149

lterated CD-Distance

 Variant of CD-distance that penalizes proteins with
few neighbors

2|Nuva|
WL(u.v) = |Nu|+ﬁu+| Nvl-l-/1v
A, = max{0, ch;l NX|_|N |},xv—max{ , ;lNXl | |}
Vi Vi

« Suppose average degree is 4, then
— Case 1: [Ny | =1, [IN,|= 1, IN,AN,|=1, wL(u,v)=0.25
— Case 2: [Ny| =10, |N,|= 10, [IN,nN,|=10, wL(u,v)=1
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A thought... @ i

2 | ¢\Tu () ¢\T1
+Aut| Ny

wL(u,v) =

| J.N';r?«f ‘|‘/"‘1 vV

« Weight of interaction reflects its reliability

— Can we get better results if we use this weight to re-
calculate the score of other interactions?
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Liu et al. GIW2008, pp. 138-149

lterated CD-Distance

« wLOu,v)=1Iif (u,v)eG, otherwise wL°u,v)=0
| NuﬂNvl-l-l Nuf\Nvl

° 1 —
Wl (U,V) | Nu | +Au+ | Nv | +Av
k-1 k-1
* wLk(u,v) = xeNZW;x\VIL ) xENZw;x\vIL )
D WU X) + A D> W (v X) + A
xeNu xeNv
D> WX, y)
. }"ku — max{O, xeV yelev | B ZWLk_l(U,X) }
xeNu
> WX, )
° }\’kv = maX{O, xeV yeleV | . ZWLk_l(V, X) }
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 DIP yeast dataset

— Functional homogeneity is 32.6% for PPIs where
both proteins have functional annotations and
3.4% over all possible PPIs

— Localization coherence is 54.7% for PPIs where
both proteins have localization annotations and
4.9% over all possible PPIs

 Let’s see how much better iterated CD-distance
IS over the baseline above, as well as over the
original CD-distance/FS-weight
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Liu et al. GIW2008, pp. 138-149

How many iteration Is enough?

Cf. ave functional homogeneity of protein pairs in DIP < 4%
ave functional homogeneity of PPI in DIP < 33%

1 .
1 k=1 ——
k=2 %o
Z o} z 0.2 'r'% k=10 &
B S 0sf k=50 ---i3---
% 0.3 % t
i 0.7 r -
5 5 b
3 = 08} Ry
g g 05} WhiGgg ]
5 05t 5 e SN ﬂh"-ﬂ-lum
L Li o4 | —|--.|__|_,__|_+___
|:|5 1 1 1 1 =] D_3 1 1 1 1
0 0.1 0.2 0.2 0.4 0s 0.g 0 1000 2000 3000 4000 o000
Coverage #predicted interactions

 Iterated CD-distance achieves best performance
wrt functional homogeneity at k=2

« Ditto wrt localization coherence (not shown)
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How many iteration is enough?

Liu et al. GIW2008, pp. 138-149

noise level | k |#common PPIs | avg_rank_diff | avg_score_diff

100% 1 53669 540.21 0.10
2 5870 144 86 0.02

20 S840 67.00 0.01

300% 1 5322 881.77 0.18
2 3664 36745 0.06

20 5007 240 83 0.02

300% 1 5081 101314 0.23
2 5502 62546 0.12

20 5008 31733 (.05

1000% | k=1 4472 1187.10 0.28
k=2 3101 1021.68 0.27

k=20 3264 614.66 0.13

» lterative CD-distance at diff k values on noisy network
—=# of iterations depends on amt of noise

Tutorial for WSMB 2012 Copyright 2012 © Limsoon Wong



209

SBINUS

National University

Identifying False Positive PPIs

Cf. ave localization coherence of protein pairs in DIP < 5%
ave localization coherence of PPI in DIP < 55%

> AdusStCD (k=2) K AdiustCD (k=2) ¥
£ 09 AdjustCD (k=1) U @ 0.95 Slive AdjustCD (k=1) ER
c T K
o) FSweight S o9 el FSweight
2 08/ CD-distance — v - % - X, CD-distance — v —
o 5
= g 0.85 | _y ]
c 0.7 S B= SN
2 © ' ¥
7 06 18
- 075 - 1
0.5 L L L ‘

0 1000 2000 3000 4000 5000 6000  O-7
#interactions

0 500 1000 1500 2000 2500 3000
#interactions

 Iterated CD-distance is an improvement over
previous measures for assessing PPI reliability

Liu et al. GIW2008, pp. 138-149
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ldentifying False Negative PPIs
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Cf. ave localization coherence of protein pairs in DIP < 5%

ave localization coherence of PPI in DIP < 55%
> 17 AdjustCD (k=2) x| 1?2 AduSiCD (k=2) ¥
= AdjustCD (k=1) = 3 AdjustCD (k=1) -
c AN\ [
\\ K : 1% .
% 0.8 v . FSweight % KKy FSweight
= o Cal@-dlgpanc%fvg S B o 'Cﬁ)-dls;@nce%,fzz_} ’
206 o = = x 208 7\\ = = R
('_5 g 9 \\
C E \
o N0.6 | 1
— L 4 = \\ N
2 0.4 8 \ //WN\ %//V Vi
7 —V— 1 9 . T~V i
T — 7 =10.4 \
0.2 - ] - 1
I I V// I I O 2 \ | | | )
0 200 400 600 800 1000 " ¢ 200 400 600 800 1000
#predicted interactions

#predicted interactions
 Iterated CD-distance is an improvement over
previous measures for predicting new PPIs

Tutorial for WSMB 2012
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5-Fold Cross-Validation

 DIP core dataset
— Ave # of proteins in 5 groups: 986
— Ave # of interactions in 5 training datasets: 16723
— Ave # of interactions in 5 testing datasets: 486591
— Ave # of correct answer interactions: 307

 Measures:
— sensitivity =TP/(TP + FN)
— specificity =TN/(TN + FP)
« #negatives >> #positives, specificity is always high
« >97.8% for all scoring methods

— precision =TP/(TP + FP)
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5-Fold X-Validation
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1 raN
AdjustCD (k=2) K
0.8 K AdjustCD (k=1) ] |
L o\ FSweight
5 06 - %% CD-distance ——+—
N2
2 X
a 0.4 -
0.2 -
0 / "W % VAN VAN ZAN NVANN/AS N AN AN AT
0 0.1 0.2 0.3 0.4 0.5
Sensitivity

« lterated CD-distance is an improvement over
previous measures for identifying false positive &

false negative PPIs

Liu et al. GIW2008, pp. 138-149

Tutorial for WSMB 2012
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* PPIN prediction
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Shoemaker & Panchenko. PLoS Computational Biology, 3(4):e43, 2007
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PPI Prediction Methods & ===

Method Name Protein/Domain Physical Interaction/
Interaction Functional Association

Gene co-expression
Synthetic lethality
Gene duster and gene neighbor
Phylogenetic profile
Rosetta Stone
Sequence co-evolution
Classification
Integrative

Domain association
Bayesian networks
Domain pair exclusion
p-Value

W)

-

You can also use our
earlier topology scores,
e.g, CD-distance to
predict novel PPIs

~

o
-

OCDPDUV®DOVT VOO
(W o i )
DV TV DS "Nk M M

Second column shows if method is designed to predict protein (P) or domain (D)
interactions (note that predicted domains can also be used for verifying protein
interactions).

Third column shows if the method can be used to infer direct physical interaction (P} or
indirect functional association (F).
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PPI Prediction by Gene Clusters

* Gene clusters or
operons encoding co- correqultior ,
regulated genes are h_“ s EEC

usually conserved,

despite shuffling Gene neighborhood
effects of evolution
/:> Find conserved gene - NN
clusters s — 0 N —
» Predict the genes to
| interact & form operons ke & P herko
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PPI Prediction by Phylogenetic Profig“"gap‘"e

« Components of com-
plexes and pathways
should be present

simultaneously in order

to perform their
functions

K Functionally linked and
Interacting proteins co-
evolve and have ortho-
logs in the same subset
of fully sequenced

\ organisms

~

/

Genomes

216

SBINUS

National University

Proteins| EC HI B

P1 0 1 1
F1 and P4

P2 0 0 ‘ +arefur1cti|:|na|:.-'
linked

P3

P4

Image credit: Shoemaker & Panchenko.
PL0oS Comp Biol, 3(4):e43, 2007
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PPl Prediction by Rosetta Stone

« Some interacting proteins have homologs in
other genomes that are fused into one protein
chain, a so-called Rosetta Stone protein

« Gene fusion occurs to optimize co-expression of
genes encoding for interacting proteins

Genome 1 Domain A

Genome 2 r PrediCt A&B interact

Rosetta Stone protein

Image credit: Shoemaker & Panchenko.
PLoS Comp Biol, 3(4):e43, 2007
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PPI Prediction by Seq Co-Evolutiorp =

Praten Family & Pratein Family B

* Interacting proteins — — =
co-evolve L

—

— Changes in one
protein leading to —
loss of function are —
compensated by
correlated changes
In another protein

_'|_
0 Co-evolution Is N
guantified by correlation
of distance matrices sy

used to construct the
trees
\ / Image credit: Shoemaker & Panchenko.

PLoS Comp Biol, 3(4):e43, 2007
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PPI Prediction by Iterated CD-Distart¢e™

Cf. ave localization coherence of protein pairs in DIP < 5%
ave localization coherence of PPI in DIP < 55%

Liu et al. GIW2008, pp. 138-149

1.2 7 AdjustCD (k=2) — * |
o] AdjustCD (k=1) =
& 1% -
= | ATk . FSweight
< = £ Cb-distance, —
3 g1 A
c 08 e
Q
©
N 06 ro |
= \ - ////W‘—\\, o
g \ - x\\\\ - V/W v —
- 04 - 7 .

0.2 | | | |

0 200 400 600 800 1000
#predicted interactions
whkuy)= 2w @+ Y wl vy * Predict (u,v) interact if
xe NuNv xe Nu Ny
3wt x) + At Y Wit (v, x) + A WLk(u,V) IS Iarge
xeNu xe Ny
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