Progress on three challenges in predicting
dynamic protein complexes from a static
protein interactome
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 Overview of protein-complex prediction
* Detecting overlapping complexes
« Detecting sparse complexes

* Detecting small complexes
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. . EINUS
Protein-Interaction Networks 9% s

of Singapore

Collection of such
interactions in an
organism

Individual proteins come together
and interact |

 Proteins come
together & interact

* The collection of
these interactions
form a Protein
Interaction Network

or PPIN

) h,
Protein Interaction Network

Copyright 2015 © Limsoon Wong
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Detection & Analysis of NUS
Protein Complexes in PPIN

of Singapore

Space-time

info is lost

Entire module
might be involved
in the same
function/process

Individual complexes
(Some might share
proteins)

Identifying
embedded
complexes

Space-time info

PPIN derived from several is “recovered”

high-throughput expt Embedded complexes

identified from PPIN

Talk at University of Tehran, March 2015 Copyright 2015 © Limsoon Wong
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Chronology of ANUS

Protein-Complex Prediction Methods *

of Singapore

Mutual or

exclusive

interactions

COACH MCL-CAW®
(Wuet al.)

HUNTER.
Core- CORE Chinet al.)
attachment Biological insights (Leungetal) @
integrated with °
F I 1 1 ua et al.
snevens topology to identify ° PCP (Chua et sl
homogenity RNSC ()
complexes from PPIN (King et al.) DECAFF (Li etal.)

Evolutionary
conservation

@ HACO

Graph
P ® ® ® ® ® ® (Wang etal.)
clustering MCL MCL MCODE LCMA Puetal. Friedel etal. ® uc
{Dongen) (Dongen, Enright) (Bader et al.) (Li etal.) (Livetal)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

« As researchers try to improve basic graph clustering techs,
they also incorporate bio insights into the methods

Talk at University of Tehran, March 2015 Copyright 2015 © Limsoon Wong



Statistics of Yeast Com
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Figure 2.4: Statistics of the yeast reference complexes, from the CYC2008 database.
(a) The size distribution of the complexes. (b)EXT (number of highly-connected ex-
ternal proteins) and DENS (density) distributions of large complexes.
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a2 NUS
What current methods do badly ot s
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Figure 2.8: Performance of complex-discovery algorithims on yeast complexes, stratified by
size, DENS, and EXT. The x-axis of each chart corresponds to the different stratified groups
of complexes, given at the bottom of the figure.
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Challenges

 Recall & precision of protein complex prediction
algo’s have lots to be improved

« How to capture “high edge density” complexes
that overlap each other?

« How to capture “low edge density” complexes?

« How to capture small complexes?

Talk at University of Tehran, March 2015 Copyright 2015 © Limsoon Wong



Detecting Overlapping Protein Complexes
from Dense Regions of PPIN




Complexes formed by Cdc28p NUS

(a) Nine complexes formed by Cdc28p (b) Clusters from CMC (c) Cluster from MCL
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Figure 1.2: (a) Cde28p is involved in nine distinct complexes, which overlap and have
many extraneous edges. Three of the complexes are disconnected. (b) CMC includes

extraneous proteins in its clusters. (¢) MCL merges the complexes.
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Liu, et al. “Decomposing PPI Networks for Complex Discovery”. Proteome Science, 9(Suppl. 1):S15, 2011

Overlapping Complexes 9%z
In Dense Regions of PPIN

 Dense regions of PPIN often contain multiple
overlapping protein complexes

« These complexes often got clustered together
and cannot be corrected detected

Two ideas to cleanse PPl network
— Decompose PPI network by localisation GO terms

— Remove big hubs

Copyright 2015 © Limsoon Wong

Talk at University of Tehran, March 2015



Idea I: Split by Localization GO Ter b i

A protein complex can only be formed if its
proteins are localized in same compartment of
the cell

— Use general cellular component (CC) GO terms to
decompose a given PPl network into several
smaller PPI networks

« Use “general” CC GO terms as it is easier to
obtain rough localization annotation of proteins

— How to choose threshold Ng, to decide whether a
CC GO term is “general™?

Talk at University of Tehran, March 2015 Copyright 2015 © Limsoon Wong
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—=— ClusterCne
—a— G030
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Precision &
recall are
~me improved when
a suitable Ngq
IS used

—=— MCL
—a— G030
—— GO100

—=—Coach
—e— G030
—a— GO100
Yeast
GO300 Neo | #GO terms  #prots discarded  #PPlIs discarded
. 1,000 6 1,001 5,206
RAND 500 8 1,388 7,133
300 10 1,526 7,698
100 25 2,151 12,172
30 48 2,350 13,313

Figure 4.1: Precision-recall graphs for yeast complex prediction using GO decomposi-
tion at Ngo = 30, 100, 300, for the six clustering algorithms.
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ldea II: Remove Big Hubs

of Singapore

« Hub proteins are those proteins that have many
neighbors in the PPl network

 Large hubs are likely to be “date hubs”; I.e.,
proteins that participate in many complexes

— Likely to confuse protein complex prediction algo

— Remove large hubs before protein complex
prediction

— How to choose threshold N, to decide whether a
hub is “large™?

Talk at University of Tehran, March 2015 Copyright 2015 © Limsoon Wong
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Figure 4.3: Precision-recall graphs for yeast complex prediction using hub removal at
Ny, = 30,50, 100, for the six clustering algorithms.
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" ERAINUS
Decomposition by GO terms and/or 98z

hub removal nearly doubles F-
score and precision-recall AUC

F-Score Prec-Rec AUC
Matehthe | Orig HUBSJO HUB50 GO300 | Orig HUB50 HUB50 GO300
GO300 GO300
CMC D AbL5 615 533 .DhT A17 H08 AT9 AT0
.7H 275 391 330 347 204 278 243 251
ClusterOne | .5 213 A83 238 68 361 531 362 014
.TH 105 270 A07 255 200 223 104 210
IPCA 5 380 531 38 A60 564 560 549 572
.TH 143 .240 160 220 308 310 276 323
MCL 1) 3A8 .0h3 45 563 326 A96 315 514
.7H 192 328 162 336 A70 255 104 280
RNSC i) 606 636 .536 665 .00 560 455 564
.TH 355 ATT S21 422 239 284 200 305
Coach 5 372 573 A44 506 ATT 564 505 536
.7H 182 312 223 262 218 302 220 265

Table 4.4: Performance statistics for yeast complex discovery.

Talk at University of Tehran, March 2015 Copyright 2015 © Limsoon Wong



19

TINUS
(a) Match score (b) Match score (c) Median score W N U

- . iy . National University
(no decomposition) (with decomposition) improvement of Singapore
1 1 01
CcMC
08 - 08 4 0.05 -
0.6

é o 0! Decomposition
b H TS e 0 ) s effective in

ML ] a Im prOVi ng
N H % Z_iﬁ H prediction of
EXT ’ Lo Hi , | Lo Hi , IILO HI. ’ IL{l Hi E lLlIJ' Hi | | ILO I_'|-IJ > ILO Hi J LLl:)' Hi I ILU H|J Ove rI ap .pl n g
DENS | L; | IM1ed | Hli | L; Mled le L-:Ii Mled H1|' prOteIn

Figure 4.8: Match scores of the best clusters to yeast complexes in the six analysis Com plexes
strata, (a) without PPI decomposition, and (b) with PPI decomposition, generated by
various clustering algorithms. (c) shows the improvements score medians.
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Detecting Protein Complexes
from Sparse Regions of PPIN




The Consolidated # Total MIPS
(3.19) network complexesin
{Ccll.ins etal., the network:

2007); 123

#proteins: 1622;

#interactions: 9704

Main large —_ #MIPS

component complexesin

main large

#prot: 1034; component:

#int: 8377 89

Sparse
Complexes

#MIPS complexes
~ 25% sparse complexes — “scattered” or low density “scattered” in
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compeonents :
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ANY algorithm based solely on topological will miss these sparse complexes!!

Talk at University of Tehran, March 2015
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Yong et al. BMC Systems Biology, 6(Suppl 2):S13, 2012

 Key ideato deal with

Sparseness

Augment physical PPI
network with other
forms of linkage that
suggest two proteins
are likely to integrate

Talk at University of Tehran, March 2015

Supervised
Weighting of
Composite
Networks (SWC)

« Data integration

e Supervised edge
weighting

\- Clustering /

Copyright 2015 © Limsoon Wong




- TINUS
Overview of SWC 95 e
1. Integrate diff data « Advantages
sources to form — Data integration increases

density of complexes

 co-complex proteins are
likely to be related in other

composite network

2 Weight each edge ways even if they do not
Interact
based on probability — Supervised learning
that its two protelns « Allows discrimination betw
are co-complex, using co-complex and transient
analve Ba_lyes mOde_I — Naive Bayes' transparency
w/ supervised learning + Model parameters can be
analyzed, e.g., to visualize
: the contribution of diff
3. Perform clustering on evidences in a predicted
the weighted network complex

Talk at University of Tehran, March 2015 Copyright 2015 © Limsoon Wong



- NUS
1. Integrate Multiple Sources 9%/ e

« Composite network: Vertices represent proteins, edges
represent relationships between proteins

« Thereis an edge betw proteins u, v, if and only if u and v
are related according to any of the data sources

YEAST HUMAN

Data Description # pairs # distinct % complex | # pairs # distinct % complex

source proteins edges proteins edges

PPIREL PPIs, scored 48,286 5,030 13.6% 44,636 9,535 10.8%
by rehability

PPITOPO Topological score 274,277 5,469 3.4% 208,399 9,771 6.1%
of PPI edges

STRING Predicted functional | 175,712 5,964 5.7% 311,435 14,784 3.1%
association

PubMed Literature 161,213 5,109 4.9% 91,751 10,659 4.3%
co-occurrence

All 518,417 6,099 2.1% 636,966 17,945 3.4%

P

Talk at University of Tehran, March 2015 Copyright 2015 © Limsoon Wong



2. Supervised Edge-Weighting NUS

« Treat each edge as an instance, where features are data
sources and feature values are data source scores, and
class label is “co-complex” or “non-co-complex”

Iﬁ- L2PPI_| STRING

0.56 “co-complex”

0.1 0 25 0 “non-co-complex”

*  Supervised learning:

1. Discretize each feature (Minimum Description Length discretization’)
2. Learn maximum-likelihood parameters for the two classes:
- - N—¢ F=
P(F :f|(:o — (:on»;p] = n(;:: f P(F = f |non — c0 — (:omp] = nc f
—-C

C
for each discretized feature value f of each feature F

*  Weight each edge e with its posterior probability of being co-complex:
weight(e)
=P(co —comp|F, = f1,F2 =f5,...)
P(Fi = fi,F2 = fa, ... [co — comp)P(co — comp)
- Z
~ [1; P(F: = filco — comp)P(co — comp)
zZ

_ [1; P(F: = filco — comp)P(co — comp)
" T1; P(F: = filco — comp)P(co — comp)+ ]; P(F; = fi|lnon — co — comp)P(non — co — comp)
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3. Complex Discovery

Weighted composite network used as input to
clustering algorithms

— CMC, ClusterONE, IPCA, MCL, RNSC, HACO
Predicted complexes scored by weighted density

 The clustering algo’s generate clusters with low overlap
— Only 15% of clusters are generated by two or more algo’s
= Voting-based aggregative strategy, COMBINED:
— Take union of clusters generated by the diff algo’s

— Similar clusters from multiple algo’s are given higher scores

» If two or more clusters are similar (Jaccard >= 0.75), then use
the highest scoring one and multiply its score by the # of
algo’s that generated it

Talk at University of Tehran, March 2015 Copyright 2015 © Limsoon Wong
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Co-Complex Edge Prediction NUS
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* Precision-recall and complex coverage graphs for
classification of co-complex edges for yeast

 Only TOPO has higher precision than SWC, but
Its edges are clustered in very few complexes

Talk at University of Tehran, March 2015 Copyright 2015 © Limsoon Wong



(a) CMC (b) ClusterONE

Yeast Complex
Prediction U e
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Figure 3.3: Precision-recall AUC for yeast complex prediction, using the five weighting
approaches for each of the six clustering algorithms and the COMBINED clustering 3:' COMBINED LEGEMND
strategy, for k& = 10000 (lighter shade), and k& = 20000 (darker shade). For CMC, :n_s
MCL, IPCA, and HACO, different sets of clustering parameters are tried. The AUC .SWC . BOOST PPIREL

for match_thres = 0.5 and mateh_thres = 0.75 are shown in each bar. SWC achieves g5
highest precision-recall AUC for all clustering algorithms except IPCA and HACO,
where it performs about evenly with PPIREL at maich_thres = 0.5 but better at gag -
match_thres = 0.75. The COMBINED strategy achieves higher AUC compared to
using any single clustering algorithm alone. 0.2 -
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SWC gives better precision at NUS
similar or better recall

of Singapore

(a) match_thres = 0.5 (b) match_thres = 0.75
1
—+— SWC 20k
0.8
—=—BOOST 20k
5 5 06 PPIREL 20k
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& L 04
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Figure 3.5: Precision-recall graphs for yeast complex prediction using the five weight-
ing approaches with the COMBINED clustering strategy, using & = 20000 for SWC,
BOOST, PPIREL, and TOPO, and k& = 10000 for STR, at (a) match_thres = 0.5, (b)
match_thres = 0.75. At match_thres = 0.5, SWC achieves similar recall as BOOST,
PPPIREL, and STR. but with the higher precision at almost all recall levels. At the
stricter match_thres = 0.75, SWC achieves the highest recall with the highest preci-
sion at almost all recall levels. Thus it outperforms all other weighting approaches,
especially at predicting complexes with fine granularity.
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(a) PPIREL match score (b) SWC match score (c) Median score
of best cluster of best cluster improvement
cme l °
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Figure 3.9: Match scores of the best clusters to yeast complexes in the six analysis strata,
using (a) PPIREL, and (b) SWC, generated by various clustering algorithms. (c) shows the
improvements score medians. SWC gives bigger improvements among low- and medium-
density complexes for most clustering algorithms.

Talk at University of Tehran, March 2015 Copyright 2015 © Limsoon Wong



TANUS
Yeast BC1 Complex B s

PPI network Composite network

O protein from complex

O protein outside complex
— PP
STRING
= PUBMED
—— SWC weighted edge

predicted cluster

Likelihood network

RIPT]
_—

]

acr

Copyright 2015 © Limsoon Wong

Talk at University of Tehran, March 2015



3

TINUS

National University
of Singapore

Novel Predicted Complexes

(a) Number of unique, high-confidence, novel predicted yeast complexes

200 1200

180 mSWC Novel Predicted Yeast Complexes
1000 -
160 7 mBOOST Biological process # complexes
g 140 4 2 =00 - = PPIREL Protein metab‘olic process 39
5 120 1 % RNA metabolic process 25
g 100 - 5 600 - ETOPO DNA metabolic process 9
E 80 - g ®STR Small molecule metabolic process 16
2 60 - 2 400 1 Regulation of metabolic process 20
ag | 200 Regulation of gene expression 13
20 - Organelle organization 33
o . 0 Transport 44
Response to stress 16
Response to chemical stimulus 5
. Cell cyel 8
(b) Coherence of predicted yeast complexes c oyt proces
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Two Novel Predicted Complexes¥ mme=
(a) Yeast (b) Human
AT, p— — T T — PPI
MS22 o CN2 STRING
\ TR —— PUBMED

4 I >
RTT10 AR T T107 QCN

* Novel yeast complex: Annotated w/ DNA metabolic
process and response to stress, forms a complex
called Cul8-RING which is absent in our ref set

 Novel human complex: Annotated w/ transport
process, Uniprot suggests it may be a subunit of a
potassium channel complex

Talk at University of Tehran, March 2015 Copyright 2015 © Limsoon Wong



Conclusions NUS

National University
of Singapore

 Naive-Bayes data-integration to predict co-
complexed proteins

— Use of multiple data sources increases density of
complexes

— Supervised learning allows discrimination betw co-
complex and transient interactions

« Tested approach using 6 clustering algo’s

— Clusters produced by diff algo’s have low overlap,
combining them gives greater recall & precision

— SWOC is successful in Improving sparse complexes
prediction

Talk at University of Tehran, March 2015 Copyright 2015 © Limsoon Wong



Detecting Small Protein Complexes
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Motivation

« Size of protein complexes follows a power-law
distribution, meaning that most complexes are
small (ie. 2 or 3 distinct proteins)

Yeast complexes Human complexes
600 200
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500 1 160
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« Traditionally, complexes are predicted by
searching for dense clusters in a PPI network

 For small complexes, topological characteristics
like density are problematic

— A fully-dense size-2 complex is an edge
— A fully-dense size-3 complex is a triangle

— But there are many edges and triangles in the PPI
network that are not complexes

Talk at University of Tehran, March 2015 Copyright 2015 © Limsoon Wong
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Small Complexes, Big Challengewujs

« Sensitive to missing edges
— One missing edge disconnects a size-2 complex
— Two missing edges disconnect a size-3 complex

@ @A @
- © - @
® 0]
ab cannot be found! abc cannot be found!
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Small Complexes, Big Challengewujs

e Sensitive to extraneous edges

— Two extraneous edges embed a size-2 complex in
a size-3 clique

— Three extraneous edges embed a size-3 complex
In a size-4 clique

l ‘s\\\ l/' @ l'@\
(©)
ab cannot be found! abc cannot be found!
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Small Complexes, Big Challenge®% sz

 Predicted complexes are « Scores of small complexes
scored using their internal are sensitive to the correct
weights to give them some edge weights, since only
reliability measure, eg. one or three edges
using weighted density. weights are used

This reliability is averaged
out over the internal
weights of the candidate
complex

Size-2 complex: Score depends
Size-6 complex: Score is on just 1 edge weight. It is very
averaged over 15 edge weights sensitive to its value
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Small Complexes, Big Challengewujs

 Previously used data integration and supervised
learning successfully for predicting large
complexes (SWC2)

« It does not work well for small complexes

— Small complexes have different topological
features compared to large complexes

— Learned model corresponds to large complexes,
not small complexes, as large complexes have

much more edges

Copyright 2015 © Limsoon Wong
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Two-Stage Approach

1. Size-specific supervised weighting (SSS)

: L Learn likelihood Calculate posterior
Discretize initial 12 ‘ parameters for initial ‘ probabilities using
features 12 features initial 12 features

!

Re-calculate Learn likelihood Derive 1SO feature
posterior probabilities _ parameters for ISO _ discretize it
using all 13 features feature

2. Extract

Disambiguate

posterior probabilities ‘ Score each edge and
into size-2, size-3 triangle

components
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Stage 1: SSS 95 US>

1. Size-specific supervised weighting (SSS)

of Singapore

Discretize initial 12
features
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Discretize initial 12 features

« Each edge in PPIN is cast as a data instance, with
12 initial features

— 3 data sources
 PPI (BioGrid + IntAct + MINT)
« Functional associations (STRING)
« Co-occurrence in literature (PUBMED)

— 3 topological characteristics for each data source
 Degree
* Neighbourhood connectivity
« Shared neighbours

* Discretize based on Minimum Description Length
(MDL)
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Stage 1: SSS 95 US>

1. Size-specific supervised weighting (SSS)

of Singapore

Learn likelihood Calculate posterior

—) parameters for initial — probabilities using

12 features initial 12 features
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Learn likelihood
parameters for
Initial 12 features

=9 NUS
95 i

Likelihood models for
3 classes (small co-
complex, large co-
complex, non co-

complex)
n&’nl =
P(F = f|sm-comp) = =7
nS’f?l
’I'L[ ,F:
P(F = flig-comp) = ==L
g
Npon,F=f
P(F = flnon-comp) = =

Copyright 2015 © Limsoon Wong
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Calculate posterior pI’ObabI|ItIeSMH§
using initial 12 features

 Weight each edge with its posterior probability of
being small co-complex, large co-complex, or non
co-complex, using the naive-Bayes formulation

— Eg., probability that edge (a,b) is small co-complex
P((a,b) is sm-comp|Fy = f1,F5 = fa,...)

[1; P(F; = fi|l(a.b) is sm-comp)P(sm-comp)
Z(’lfmse{S'm—(’O'm.p,lg-(‘mnp.non,-(ﬁ()mp} Hl P(F’ = fil(a’ b) L5 ClCLSS)P(Cl(ISS)

« These three probabilities are abbreviated as
_ I:)(a,b),sm
~ Pabg
o I:)(a,b),non
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Stage 1: SSS 95 US>

1. Size-specific supervised weighting (SSS)

of Singapore

!

Derive I1SO feature,
discretize it
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Derive 1SO feature NUS
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 For each edge, derive a new feature, Isolatedness

— Prob that the edge is isolated, or is part of an
Isolated triangle

— Uses posterior prob calculated previously

1S0(a,b) = 1SO2(a,b) + ISO3(a,b)

ISOQ(CL b) — P((,,‘[))_sm, H P(.r.y).'n()n
z€{a,b},yEN. »

ISOs(a b) = Z <P(u,b).smP(n.(')..s'm P(b.(-)..c:m H P(:r.y).nun)

cEN,NN, x€{a,b,c},yEN4 b c

 This feature is also discretized using MDL
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Stage 1: SSS 95 US>

1. Size-specific supervised weighting (SSS)

of Singapore

Re-calculate Learn likelihood
posterior probabilities | s | parameters for SO | <u—
using all 13 features feature
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feature & Recalculate posterior prob
using all 13 features

« Likelihood parameters are learned for the ISO
feature in the same way as with the previous
features

* Posterior prob are re-calculated as before, this
time incorporating the new ISO feature

— P(a,b),sm = prob that (a,b) is small co-complex
— P(a,b),lg = prob that (a,b) is large co-complex
— P(a,b),non = prob that (a,b) is non co-complex

Copyright 2015 © Limsoon Wong
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Stage 2: Extract

2. Extract

Disambiguate
posterior probabilities
Into size-2, size-3
components
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Disambiguate P, p om , the prob that [ggNU3
(a,b) Is small co-complex, into
Size-2 and size-3 components

- If (a,b) Is part of a high-weighted triangle, then it is
likelier to be part of a size-3 complex, so reduce
Its size-2 component

/ -
P(a,b),.SfrnQ — P(a,,b),sm — erNamNb P(a,b),.S'mP(a,x),SWzP(b,:z:),sm

0.9 0.9
66 em
0.9\./0.8 0.1\/0.1
(© (©
(a,b) likelier to be part of a size-3 (a,b) likelier to be a size-2
complex abc than a size-2 complex ab complex than size-3 complex abc
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Disambiguate P, ¢m . the prob that § NUS
(a,b) Is small co-complex, into
Size-2 and size-3 components

- If (a,b) Is part of a high-weighted triangle, and is
part of another low-weighted triangle, then it is
likelier to be in a complex with the first triangle

/

P(a,b),mn?),abc — P(a,,b),.S'm o ZLBENaﬂNb\{c} P(a,b),.smp(a,;lz),.5772,P(b,:17),3m
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Stage 2: Extract

2. Extract

‘ Score each edge and
triangle
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Score each edge and triangle 9% s

 Every edge /triangle is taken as candidate size-2 /
-3 complexes

 Score each candidate complex, using edges
Inside the complex, as well as outgoing edges
from the complex

— For each candidate complex, its score is its
cohesiveness multiplied by its weighted density

e Cohesiveness:

Medge weights inside cluster
Medgeweights inside cluster+ Y outdoing edge weights from cluster
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The cohesiveness of a size-2 cluster (a, ) and a size-3 B8 & NUS
Cluster (a) b} C) respecti\FEIy are: W National University

of Singapore

Pf{a,b],smz

Pf(a,b],sm'z + Z (P{x:}’]:ﬁm + P(x,y},]g)
xefa,b},yeNa,b

Coh(a, b) =

Cﬂh(ﬂ, b, ﬁ] _ P'[.r,b],smlabf + P'{a,r]l,snr_’»,.::br + PF{IJ,(],:mE,.::FJr

Pi{:i.b},smi,abf + P (a.c),sm3,abc T PF[EI‘.C::I.SIH}.(IIJC T E {P{x,y},sm + P{x,;f].]g]
xe{a,b,.clyeNab.c

We then define the score of a cluster as its cohesive-
ness-weighted density, or the product of its weighted
density and its cohesiveness. The score of a size-2 clus-
ter (a, b), and a size-3 cluster (a, b, c¢) respectively are:

score(a, b) = Coh(a, b)PEa,b}

Ssm2

(P'(a, b), sm3, abc + P'(a, c), sm3, abc + P’(b, ¢), sm3, abc)
3

score(a, b, ¢) = Coh(a, b, c)
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Two-Stage Approach

1. Size-specific supervised weighting (SSS)

: L Learn likelihood Calculate posterior
Discretize initial 12 ‘ parameters for initial ‘ probabilities using
features 12 features initial 12 features

!

Re-calculate Learn likelihood Derive 1SO feature
posterior probabilities _ parameters for ISO _ discretize it
using all 13 features feature

2. Extract

Disambiguate

posterior probabilities ‘ Score each edge and
into size-2, size-3 triangle

components
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Benefits

« Groups of proteins may take on small-complex topological
characteristics in PPIN by chance

= Use multiple data sources & their topological features

* Unlikely that all data sources share small-complex
characteristics by chance

« Small-complex prediction is sensitive to noise in PPIN
— Reduce noise by data integration with supervised learning

 Other supervised-weighting complex-prediction approaches learn
features of large complexes

— Do not perform well for small complexes
= Size-specific weighting

 Scoring candidate small complexes is sensitive to correct edge
weights (very few edge weights used for scoring)

= Use also outgoing edges from candidate complex during scoring
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(a) @ SSS
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1 1
(b) ¢ SSS + Extract (C) +—SSS + Extract
. - PPIREL + Extract . 5
0.8 -4 0.8 & SSS + CMC
o PPIREL + CMC | SSS + ClusOne
c 0.6 PPIREL + ClusOne c 06 « SSS + IPCA
_§ »— PPIREL + IPCA _§ . SSS + MCL
£ 0.4 » PPIREL + MCL g 04 $SS + RNSC
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Recall Recall
Figure 2 Performance of small complex prediction in yeast, (a) precision-recall AUC, (b) and (c) precision-recall graphs.
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" ? M SSS + Extract
60 - ® PPIREL 4+ CMC
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50 a M PPIREL + ClusOne
] | c
3 =y H PPIREL + [PCA
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T 40 -
£ S M PPIREL + MCL
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=1
%20 § % PPIREL + PPSamp
j_ X
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Yeast DNA Replication Factor A% e

(a) PPIREL network (b) SSS network

* DNA replication factor A consists of 3 proteins
« Cannot be found by standard clustering algorithms on the PPl network
— Embedded within two size-4 cliques
— Also part of many other size-3 cliques
« After weighting by SSS, the internal weights of the complex remain high, while
extraneous weights are lowered = Can be found in all cross-validation rounds

Copyright 2015 © Limsoon Wong
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« Most complexes are small, so small-complex prediction is an
Impt part of complex prediction

« Many challenges in small-complex prediction
— Searching for dense clusters is ineffectual

— Sensitive to noise
— Scoring candidate complexes is sensitive to edge weights

« SSS + Extract
— Integrate 3 data sources w/ their topological features
— Size-specific edge weighting by supervised learning
— When scoring candidate complexes, incorporates outgoing
edges from clusters as well
= Much improved performance in yeast and human

Copyright 2015 © Limsoon Wong
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Putting Everything Together




Integrated System of SWC, NUS
Decomposition, & SSS

Com D

¢ SWC I " DECOMP - . {555 I
Hub remowval .
Supervised ! ; Size-specific
weighting “ supervised

GO decomposition weighting

| Alg, || Alg, | SHM Extract

| A, || ae | g || A,

Combine

Combine Combine

Recombine

Re-add hubs

Scale scores and
combine

Cowmers >
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Improvement in score median

Talk at Un

Performance of
Integrated System

(a) Yeast complexes
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