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Protein Function Prediction Approaches

• Sequence alignment (e.g., BLAST)
• Generative domain modeling (e.g., HMMPFAM)
• Discriminative approaches (e.g., SVM-PAIRWISE)
• Phylogenetic profiling
• Subcellular co-localization (e.g., PROTFUN)
• Gene expression co-relation
• Protein-protein interaction
• …
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Protein Interaction Based Approaches
• Neighbour counting 

(Schwikowski et al, 2000)

• Rank function based on freq 
in interaction partners

• Chi-square (Hishigaki et al, 2001)

• Chi square statistics using 
expected freq of functions in 
interaction partners

• Markov Random Fields (Deng 
et al, 2003; Letovsky et al, 2003)

• Belief propagation exploit 
unannotated proteins for 
prediction

• Simulated Annealing (Vazquez et 
al, 2003)

• Global optimization by 
simulated annealing 

• Exploit unannotated proteins 
for prediction

• Clustering (Brun et al, 2003; Samanta et al, 
2003)

• Functional distance derived 
from shared interaction 
partners

• Clusters based on functional 
distance represent proteins 
with similar functions

• Functional Flow (Nabieva et al, 2004)

• Assign reliability to various 
expt sources

• Function “flows” to 
neighbour based on 
reliability of interaction and 
“potential”
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Functional Association Thru Interactions
• Direct functional association:

– Interaction partners of a protein 
are likely to share functions w/ it

– Proteins from the same 
pathways are likely to interact

• Indirect functional association
– Proteins that share interaction 

partners with a protein may also 
likely to share functions w/ it

– Proteins that have common 
biochemical, physical properties 
and/or subcellular localization 
are likely to bind to the same 
proteins

Level-1 neighbour

Level-2 neighbour
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An illustrative Case of 
Indirect Functional Association?

• Is indirect functional association plausible?
• Is it found often in real interaction data?
• Can it be used to improve protein function 

prediction from protein interaction data?

SH3 Proteins SH3-Binding
Proteins
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Materials

• Protein interaction data from General Repository 
for Interaction Datasets (GRID)
– Data from published large-scale interaction 

datasets and curated interactions from literature 
– 13,830 unique and 21,839 total interactions
– Includes most interactions from the Biomolecular

Interaction Network (BIND) and the Munich 
Information Center for Protein Sequences (MIPS)

• Functional annotation (FunCat 2.0) from Compre-
hensive Yeast Genome Database (CYGD) at MIPS
– 473 Functional Classes in hierarchical order
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Validation Methods

• Informative Functional Classes
– Adopted from Zhou et al, 1999
– Select functional classes w/

• at least 30 members
• no child functional class w/ at least 30 members

• Leave-One-Out Cross Validation
– Each protein with annotated function is predicted 

using all other proteins in the dataset
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Over-Rep of Functions in Neighbours
• Functional Similarity:

• where Fk is the set of 
functions of protein k

• L1 ∩ L2 neighbours show 
greatest over-rep

• L3 neighbours show little 
observable over-rep
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Prediction Power By Majority Voting
• Remove overlaps in level-1 

and level-2 neighbours to 
study predictive power of 
“level-1 only” and “level-2 
only” neighbours

• Sensitivity vs Precision 
analysis

• ni is no. of fn of protein i
• mi is no. of fn predicted for 

protein i
• ki is no. of fn predicted 

correctly for protein i

⇒ “level-2 only” neighbours
performs better

⇒ L1 ∩ L2 neighbours has 
greatest prediction power

∑
∑= K

i i

K

i i

n

k
SN

∑
∑= K

i i

K

i i

m

k
PR

Sensitivity vs Precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision

Se
ns

iti
vi

ty

L1 - L2
L2 - L1
L1 ∩ L2



6

Lecture at Yang Ming National University, Taipei, June 2006

11

Copyright © 2006 by Limsoon Wong

• Functional distance between two proteins (Brun et al, 2003)

• Nk is the set of interacting partners of k
• X Δ Y is symmetric diff betw two sets X and Y 
• Greater weight given to similarity

⇒Similarity can be defined as 

Functional Similarity Estimate:
Czekanowski-Dice Distance
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Is this a good 
measure if u 
and v have very 
diff number of 
neighbours?
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Functional Similarity Estimate:
FS-Weighted Measure

• FS-weighted measure

• Nk is the set of interacting partners of k
• Greater weight given to similarity

⇒Rewriting this as
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Correlation w/ Functional Similarity 

• Correlation betw functional similarity & estimates

• Equiv measure slightly better in correlation w/ 
similarity for L1 & L2 neighbours
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Reliability of Expt Sources
• Diff Expt Sources have diff 

reliabilities
– Assign reliability to an 

interaction based on its 
expt sources (Nabieva et al, 2004)

• Reliability betw u and v 
computed by:

• ri is reliability of expt
source i,

• Eu,v is the set of expt
sources in which 
interaction betw u and v is 
observed

ReliabilitySource
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Functional Similarity Estimate:
FS-Weighted Measure with Reliability

• Take reliability into consideration when 
computing FS-weighted measure:

• Nk is the set of interacting partners of k
• ru,w is reliability weight of interaction betw u and v

⇒ Rewriting
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Integrating Reliability

• Equiv measure shows improved correlation w/ 
functional similarity when reliability of 
interactions is considered:
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Functional Similarity Estimate:
Transitive FS Weighted Measure

• If protein u is similar to w, and w is similar to v, 
then proteins u and v may be similar also

• Transitive FS weighted measure 
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Integrating Transitivity

• Equiv measure shows improved correlation w/ 
functional similarity when transitivity is 
considered:
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Improvement to 
Prediction Power by Majority Voting

Considering only 
neighbours w/ FS 
weight > 0.2
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Improvement to 
Over-Rep of Functions in Neighbours
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Use L1 & L2 Neighbours for Prediction

• FS-weighted Average

• rint is fraction of all interaction pairs sharing function
• λ is weight of contribution of background freq
• δ(k, x) = 1 if k has function x, 0 otherwise
• Nk is the set of interacting partners of k
• πx is freq of function x in the dataset
• Z is sum of all weights

( ) ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= ∑ ∑

∈ ∈u vNv Nw
TRTRxx xwwuSxvvuSr

Z
uf ,,,,1

int δδπλ

( ) ( )∑ ∑
∈ ∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

u vNv Nw
TRTR wuSvuSZ ,,1

Lecture at Yang Ming National University, Taipei, June 2006

22

Copyright © 2006 by Limsoon Wong

Performance of FS-Weighted Averaging

• LOOCV comparison with Neighbour Counting, 
Chi-Square, PRODISTIN

Informative FCs
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Performance of FS-Weighted Averaging

• Dataset from Deng et al, 2003
– Gene Ontology (GO) Annotations
– MIPS interaction dataset

• Comparison w/ Neighbour Counting, Chi-Square, 
PRODISTIN, Markov Random Field, FunctionalFlow

Cellular Role

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision

Se
ns

iti
vi

ty

NC
Chi²
PRODISTIN
MRF
FunctionalFlow
Weighted Avg

Biochemical Function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision 

Se
ns

iti
vi

ty

NC
Chi²
PRODISTIN
MRF
FunctionalFlow
Weighted Avg

SubCellular Location

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision 

Se
ns

iti
vi

ty

NC
Chi²
PRODISTIN
MRF
FunctionalFlow
Weighted Avg

Lecture at Yang Ming National University, Taipei, June 2006

24

Copyright © 2006 by Limsoon Wong

Performance of FS-Weighted Averaging

• Correct Predictions made on at least 1 function 
vs Number of predictions made per protein

Correct Predictions
vs Predictions Made - Cellular Role
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Performance of FS-Weighted Averaging

• Prediction performance further improves after 
incorporation of interaction reliability

Informative FCs
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Precison vs. Recall
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Incorporating Other Info Sources
• PPI Interaction Data

– General Rep of Interaction Data
– 17815 Unique Pairs, 4914 Proteins

– Reliability: 0.366 (Based on fraction 
with known functional similarity)

• Sequence Similarity
– Smithwaterman betw seq of all 

proteins
– For each seq, among all SW scores 

w/ all other seq, extract seq w/ SW 
score >= 3 standard deviations from 
mean

– 32028 Unique Pairs, 6766 Proteins

– Reliability: 0.659

• Gene Expression 
– Spellman w/ 77 timepoints
– Extract all pairs w/ Pearson’s > 0.7
– 11586 Unique Pairs, 2082 Proteins
– Reliability: 0.354 
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Conclusions

• Indirect functional association is plausible

• It is found often in real interaction data 

• It can be used to improve protein function 
prediction from protein interaction data

• It should be possible to incorporate interaction 
networks extracted by literature in the inference 
process within our framework for good benefit
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