Exploiting Indirect Neighbours and
Topological Weight to Predict Protein
Function from Protein-Protein Interactions
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Protein Function Prediction Approac

* Sequence alignment (e.g., BLAST)

* Generative domain modeling (e.g., HMMPFAM)

» Discriminative approaches (e.g., SVM-PAIRWISE)
* Phylogenetic profiling

* Subcellular co-localization (e.g., PROTFUN)

* Gene expression co-relation

* Protein-protein interaction
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Protein Interaction Based Approaches™

¢ Neighbour counting e Clustering @runetal, 2003; samanta et al,
(Schwikowski et al, 2000) 2003)
* Rank function based on freq * Functional distance derived
in interaction partners from shared interaction
. partners
. - SR
Chi squa_re (Hishigakl e_‘ a':m” . ¢ Clusters based on functional
* Chi square statistics using distance represent proteins
expected freq of functions in with similar functions

interaction partners
¢ Markov Random Fields (peng
et al, 2003; Letovsky et al, 2003)
« Belief propagation exploit

¢ Functional Flow (Nabieva et al, 2004)

« Assign reliability to various
expt sources

unannotated proteins for * Function “flows” to
prediction neighbour based on
. B reliability of interaction and
¢ Simulated Annealing (vazquez et “potential”

al, 2003)
* Global optimization by
simulated annealing
* Exploit unannotated proteins

for prediction
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Functional Association Thru Interactishs™

+ Direct functional association: Level-\l neighbour

— Interaction partners of a protein
are likely to share functions w/ it

— Proteins from the same >T\.

pathways are likely to interact o
* Indirect functional association

— Proteins that share interaction
partners with a protein may also

likely to share functions w/ it
— Proteins that have common o g
biochemical, physical properties

Level-2 ?eighbour

and/or subcellular localization ./f\.
are likely to bind to the same ©
proteins
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An illustrative Case of ._-@-_"'_é
Indirect Functional Association?

SH3 Proteins  SH3-Binding

Yii024c @ Proteins

Yvs167 ® Lasl7
Yscgd = uw @ Ypri7lw
Yorl36w !I ® Aci2

* Is indirect functional association plausible?
* |s it found often in real interaction data?

e Can it be used to improve protein function
prediction from protein interaction data?
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Materials O i

* Protein interaction data from General Repository
for Interaction Datasets (GRID)

— Data from published large-scale interaction
datasets and curated interactions from literature

— 13,830 unique and 21,839 total interactions

— Includes most interactions from the Biomolecular
Interaction Network (BIND) and the Munich
Information Center for Protein Sequences (MIPS)

* Functional annotation (FunCat 2.0) from Compre-
hensive Yeast Genome Database (CYGD) at MIPS

— 473 Functional Classes in hierarchical order
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Validation Methods ——
* Informative Functional Classes
— Adopted from Zhou et al, 1999
— Select functional classes w/

e at least 30 members
* no child functional class w/ at least 30 members

e Leave-One-Out Cross Validation

— Each protein with annotated function is predicted
using all other proteins in the dataset
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ZEINUS
Freq of Indirect Functional Associatiefr
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Functional Similarity:

Over-Rep of Functions in Neighbo <

E‘lé

e EnT

. |RnFy
(lil)—m

» where F, is the set of
functions of protein k

Fraction

L1 N L2 neighbours show
greatest over-rep

L3 neighbours show little
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Remove overlaps in level-1
and level-2 neighbours to
study predictive power of
“level-1 only” and “level-2
only” neighbours

Sensitivity vs Precision

analysis
K “k,
i SN = ZI [

2
PR S

K
* n,is no. of fn of protein i

m.

* m;is no. of fn predicted for
protein i

* k; is no. of fn predicted
correctly for protein i

Prediction Power By Majority Voti

Sensitivity vs Precision
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= “level-2 only” neighbours
performs better

= L1 N L2 neighbours has
greatest prediction power
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Functional Similarity Estimate: ,'E'.-_L_é
Czekanowski-Dice Distance
* Functional distance between two proteins euneta 20

D(U.v)= IN,AN, |
NG UN [N, N va'.

* N, is the set of interacting partners of k .
e X A Y is symmetric diff betw two sets X and Y.
* Greater weight given to similarity

= Similarity can be defined as

2X

S(u,v)=1-D(u,v) =

2X +(Y +2)
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Functional Similarity Estimate: E...._';é
FS-Weighted Measure

* FS-weighted measure

2N, NN, 2N, NN,|
S(U,V)I u v % u v
IN, =N, |+2N, AN, [N, =N,[+2N, "N, |

* N, is the set of interacting partners of k
* Greater weight given to similarity

= Rewriting this as

S(u, ) 2X 2X

V)= X
2X+Y 2X+Z
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Meighbours [CD-Distance [F5-Weight
1 0471810 0408743
=5 0.224705 1.208843
51w 5; 0224581 0.20629

ZINUS
‘&

Correlation w/ Functional Similaritye? =

» Correlation betw functional similarity & estimates

» Equiv measure slightly better in correlation w/
similarity for L1 & L2 neighbours
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IINUS
Reliability of Expt Sources —
» Diff Expt Sources have diff | source Reliability
rellabll,tles . Affinity Chromatography 0.823077
— Assign reliability to an — —
interaction based on its Affinity Precipitation 0.455904
expt SOUI'CES (nabieva et al, 2004) Biochemical Assay 0.666667
° Reliability betW u and Vv Dosage Lethality 0.5
computed by:
Purified Complex 0.891473
ru,v :1_ I I (1_ r| ) Reconstituted Complex 0.5
ieEu,v Synthetic Lethality 0.37386
* r;is reliability of expt -
source i, Synthetic Rescue 1
* E,, is the set of expt Two Hybrid 0.265407
sources in which
interaction betw u and v is
observed
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Functional Similarity Estimate: NUS

FS-Weighted Measure with Rellabmty

» Take reliability into consideration when
computing FS-weighted measure:

2 ZUWVW

S P S

wE(N ~N,)

2 Zuwvw

we(N, NN,

s }zsz

N, N

Sa(uv)=
=

* N, is the set of interacting partners of k
* 1, is reliability weight of interaction betw u and v

= Rewriting
S(uv)=_ 2K, 2X
2X+Y 2X+Z
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Integrating Reliability =
* Equiv measure shows improved correlation w/
functional similarity when reliability of
interactions is considered:

Neighbours [CD-Distance [F5-Weight [FS5-WeightR
= 0471810 N.408743 .532506
=5 0.224705 0208843 0373317
51w 52 0.224581 0.29629 N.363023
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Functional Similarity Estimate: ._-'E'.._L_E
Transitive FS Weighted Measure

 If protein u is similar to w, and w is similar to v,
then proteins u and v may be similar also

» Transitive FS weighted measure

weN,

Sia(u,v)= max(SR(u, v), max S, (u, w)Sg(w, v)j
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FINUS
Integrating Transitivity =

* Equiv measure shows improved correlation w/
functional similarity when transitivity is
considered:

Transitive FS-
Neighbours [CD-Distance [F5-Weight [FS5-WeightR| Weight R

= 0471810 408743 .532596 0.532626
52 0224705 0. 208843 0373317 0.381966
B1 1 82 0.224581 029629 0363023 0.369378
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Improvement to ,'E'.-_L_é
Prediction Power by Majority Voting

0.5
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Improvement to E___l_é
Over-Rep of Functions in Neighbours

o & ]
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Use L1 & L2 Neighbours for Predictieft

* FS-weighted Average

f (u)= %PM Py (STR(U,V)é(v,x)+ S (u,w)5(w,x)ﬂ

veN, weN,

* 1, is fraction of all interaction pairs sharing function
* ) is weight of contribution of background freq

* 8(k, x) =1 if k has function x, 0 otherwise

* N, is the set of interacting partners of k

* w, is freq of function x in the dataset

e Zis sum of all weights

Z =1+ Sr(u,v)+ > S (u,w)

veN, weN,
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FENUS
Performance of FS-Weighted Averagifig™

 LOOCV comparison with Neighbour Counting,
Chi-Square, PRODISTIN

Informative FCs
1
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» Dataset from Deng et al, 2003
— Gene Ontology (GO) Annotations
— MIPS interaction dataset

» Comparison w/ Neighbour Counting, Chi-Square,
PRODISTIN, Markov Random Field, FunctionalFlow

NUS

Performance of FS-Weighted Averag#ig—

Cellular Role

Biochemical Function

—o—NC

Precision

—#— Chiz

—&— PRODISTIN
e

—— FunctionalFlow
—— Weighted Avg

N
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—&— Chi2

—B— PRODISTIN
—>— MRF

—%— FunctionalFlow
—+— Weighted Avg

Zo06
s
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Precision

206

SubCellular Location

—6—NC
—A—Chiz
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—— FunctionalFlow
0.3 | —— Weighted Avg

0 01 02 03 04 05 06 07 08 09 1
Precision
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EBNUS

Performance of FS-Weighted Averagi#ig—

» Correct Predictions made on at least 1 function
vs Number of predictions made per protein

Correct Predictions

vs Predictions Made - Cellular Role

Correct Predictions
vs Predictions Made - SubCellular Location
1

Correct Predictictions
vs Predictions Made - Biochemical Function
1
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Performance of FS-Weighted Avera

» Prediction performance further improves after
incorporation of interaction reliability

Informative FCs

——NC

—A— Chi2

—8— PRODISTIN
—+— Weighted Avg
—*— Weighted Avg R

o o
© ©
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FINUS
Incorporating Other Info Sources~ =

¢ PPl Interaction Data
— General Rep of Interaction Data

— 17815 Unique Pairs, 4914 Proteins Precison vs. Recall
1.
_ R.ellablllty: 0.366 (Bgsgd gn fraction 0o JEs . Z(SBEADSimiIarity )
with known functional similarity) . » o Expression
e H 0.8 4 32&1%!2 sifm:es
* Sequence Similarity '
—  Smithwaterman betw seq of all 0741 %
proteins c 064 7
— For each seq, among all SW scores :§ 054 °
w/ all other seq, extract seq w/ SW | £ o
score >= 3 standard deviations from| %% o
mean 03]
— 32028 Unique Pairs, 6766 Proteins 021
— Reliability: 0.659 0.1
¢ Gene Expression 0 ‘ ‘ ‘ ‘ :
) ) 0 1000 2000 3000 4000 5000
— Spellman w/ 77 timepoints Correct Predictions

— Extract all pairs w/ Pearson’s > 0.7
— 11586 Unique Pairs, 2082 Proteins
— Reliability: 0.354
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Conclusions &z

* Indirect functional association is plausible
It is found often in real interaction data

It can be used to improve protein function
prediction from protein interaction data

It should be possible to incorporate interaction
networks extracted by literature in the inference
process within our framework for good benefit
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