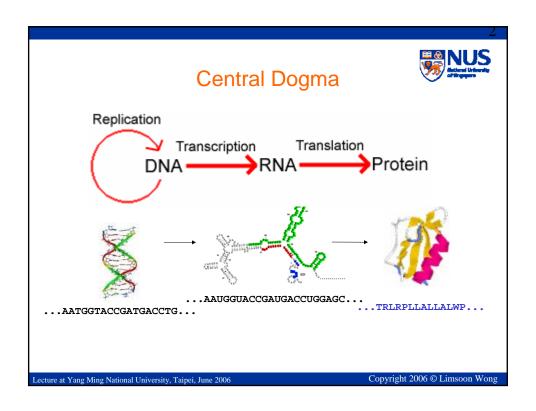
For written notes on this lecture, please read Chapters 4 and 7 of *The Practical Bioinformatician*

Knowledge Discovery Techniques for Bioinformatics, Part III: Applications to Gene Feature Recognition

Limsoon Wong

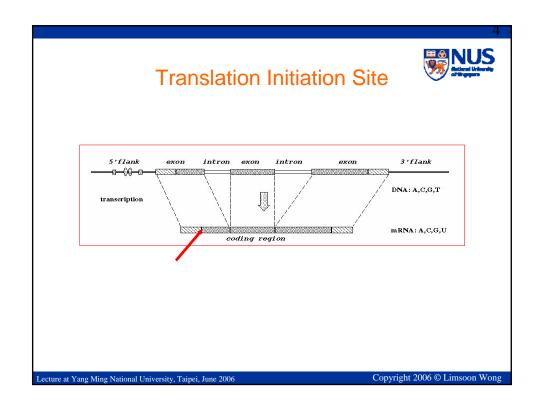
Lecture at Yang Ming National University, Taipei, June 2006



Recognition of Translation Initiation Sites

An introduction to the World's simplest TIS recognition system

Lecture at Yang Ming National University, Taipei, June 2006



A Sample cDNA

299 HSU27655.1 CAT U27655 Homo sapiens	
$\tt CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCC{\color{red}\underline{ATG}} GCTGAACACTGACTCCCAGCTGTG$	80
$\tt CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGC{\color{red}\underline{ATG}} GCTTTTGGCTGTCAGGGCAGCTGTA$	160
$\tt GGAGGCAG{\color{red}\underline{ATG}} AGAAGAGGGAG{\color{red}\underline{ATG}} GCCTTGGAGGAAGGGGAAGGGGCCTGGTGCCGAGGA$	240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT	
	80
ieeeeeeeeeeeeeeeee	160
EEEEEEEEEEEEEEEEEEEEEEEE	240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	

What makes the second ATG the TIS?

Lecture at Yang Ming National University, Taipei, June 2006

Copyright 2006 © Limsoon Wong

Approach

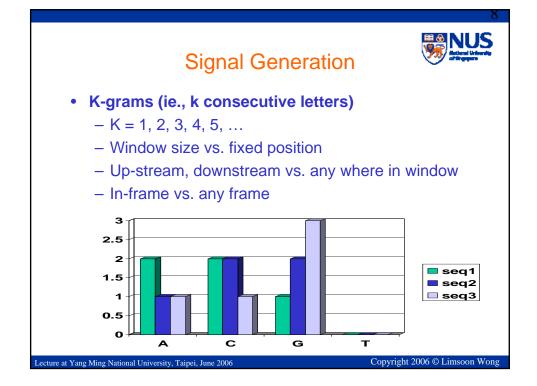
- Training data gathering
- Signal generation
 - k-grams, distance, domain know-how, ...
- Signal selection
 - Entropy, χ2, CFS, t-test, domain know-how...
- Signal integration
 - SVM, ANN, PCL, CART, C4.5, kNN, ...

Lecture at Yang Ming National University, Taipei, June 2006

Training & Testing Data

- Vertebrate dataset of Pedersen & Nielsen [ISMB'97]
- 3312 sequences
- 13503 ATG sites
- 3312 (24.5%) are TIS
- 10191 (75.5%) are non-TIS
- Use for 3-fold x-validation expts

Lecture at Yang Ming National University, Taipei, June 2006



Signal Generation: An Example

299 HSU27655.1 CAT U27655 Homo sapiens

 $\textbf{CGTGTGCAGC} \underline{\textbf{AGCCTGCA}} \underline{\textbf{GCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG}}$ 80 160 CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA $\underline{GGAGGCAGATGAGAAGAGGGAGGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCC}\\ GAGGA$ 240 $\tt CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT$

- Window = ± 100 bases
- In-frame, downstream

· Any-frame, downstream

• In-frame, upstream

- -GCT = 3, TTT = 2, ATG = 2...
- -GCT = 2, TTT = 0, ATG = 0, ...

Exercise: Find the in-frame downstream ATG

Exercise: What are the possible k-grams (k=3) in this sequence?

cture at Yang Ming National University, Taipei, June 2006

Copyright 2006 © Limsoon Wong

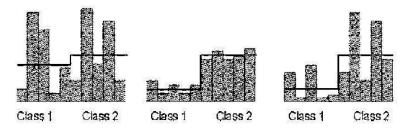
Too Many Signals

- For each value of k, there are 4^k * 3 * 2 k-grams
- If we use k = 1, 2, 3, 4, 5, we have 24 + 96 + 384 +1536 + 6144 = 8184 features!
- This is too many for most machine learning algorithms

cture at Yang Ming National University, Taipei, June 2006

Signal Selection (Basic Idea)

- Choose a signal w/ low intra-class distance
- · Choose a signal w/ high inter-class distance



Lecture at Yang Ming National University, Taipei, June 2006

Copyright 2006 © Limsoon Wong

Signal Selection (e.g., t-statistics

The t-state of a signal is defined as

$$t = \frac{|\mu_1 - \mu_2|}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}}$$

where σ_i^2 is the variance of that signal in class i, μ_i is the mean of that signal in class i, and n_i is the size of class i.

Lecture at Yang Ming National University, Taipei, June 2006

Signal Selection (e.g., MIT-correlation)

The MIT-correlation value of a signal is defined as

$$MIT = \frac{|\mu_1 - \mu_2|}{\sigma_1 + \sigma_2}$$

where σ_i is the standard deviation of that signal in class i and μ_i is the mean of that signal in class i.

Lecture at Yang Ming National University, Taipei, June 2006

Copyright 2006 © Limsoon Wong

Signal Selection (e.g., χ 2)

The \mathcal{X}^2 value of a signal is defined as:

$$\mathcal{X}^2 = \sum_{i=1}^{\infty} \sum_{j=1}^{k} \frac{(A_{ij} - E_{ij})^2}{E_{ij}},$$

where m is the number of intervals, k the number of classes, A_{ij} the number of samples in the *i*th interval, *j*th class, R_i the number of samples in the *i*th interval, C_j the number of samples in the *j*th class, N the total number of samples, and E_{ij} the expected frequency of A_{ij} ($E_{ij} = R_i * C_j/N$).

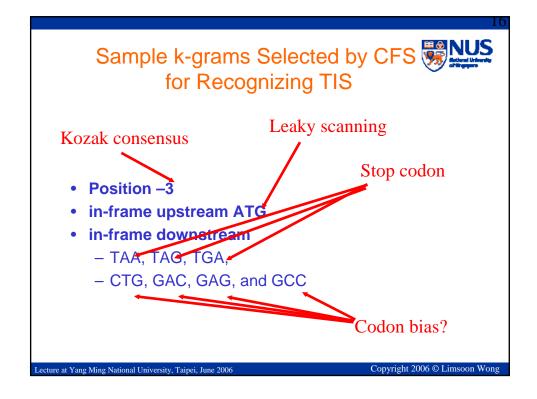
Lecture at Yang Ming National University, Taipei, June 2006

Signal Selection (e.g., CFS)

- Instead of scoring individual signals, how about scoring a group of signals as a whole?
- CFS
 - Correlation-based Feature Selection
 - A good group contains signals that are highly correlated with the class, and yet uncorrelated with each other

Exercise: What is the main challenge in implementing CFS?

Lecture at Yang Ming National University, Taipei, June 2006



Signal Integration

kNN

 Given a test sample, find the k training samples that are most similar to it. Let the majority class win

SVM

- Given a group of training samples from two classes, determine a separating plane that maximises the margin of error
- Naïve Bayes, ANN, C4.5, ...

Lecture at Yang Ming National University, Taipei, June 2006

Copyright 2006 © Limsoon Wong

Results (3-fold x-validation)

	predicted as positive	predicted as negative
positive	TP	FN
negative	FP	TN

Exercise: What is TP/(TP+FP)?

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
Naïve Bayes	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
Neural Network	77.6%	93.2%	78.8%	89.4%
Decision Tree	74.0%	94.4%	81.1%	89.4%

Lecture at Yang Ming National University, Taipei, June 2006

Improvement by Voting

 Apply any 3 of Naïve Bayes, SVM, Neural Network, & Decision Tree. Decide by majority

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB+SVM+NN	79.2%	92.1%	76.5%	88.9%
NB+SVM+Tree	78.8%	92.0%	76.2%	88.8%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+NN+Tree	75.9%	94.3%	81.2%	89.8%
Best of 4	84.3%	94.4%	81.1%	89.4%
Worst of 4	73.9%	86.1%	66.3%	85.7%

Lecture at Yang Ming National University, Taipei, June 200

Copyright 2006 © Limsoon Wong

Improvement by Scanning

- Apply Naïve Bayes or SVM left-to-right until first ATG predicted as positive. That's the TIS
- Naïve Bayes & SVM models were trained using TIS vs. Up-stream ATG

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
NB+Scanning	87.3%	96.1%	87.9%	93.9%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%

Lecture at Yang Ming National University, Taipei, June 2006

Performance Comparisons

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
NB	84.3%	86.1%	66.3%	85.7%
Decision Tree	74.0%	94.4%	81.1%	89.4%
NB+NN+Tree	77.6%	94.5%	82.1%	90.4%
SVM+Scanning	88.5%	96.3%	88.6%	94.4%*
Pedersen&Nielsen	78%	87%	-	85%
Zien	69.9%	94.1%	-	88.1%
Hatzigeorgiou	-	-	-	94%*

* result not directly comparable

Lecture at Yang Ming National University, Taipei, June 2006

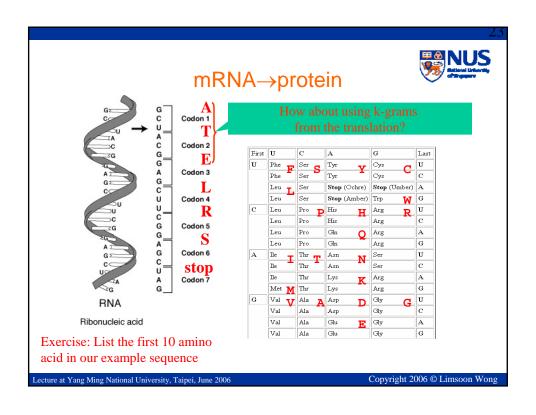
Copyright 2006 © Limsoon Wong

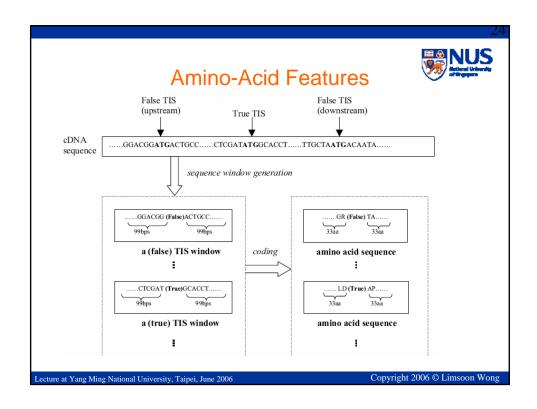
Technique Comparisons

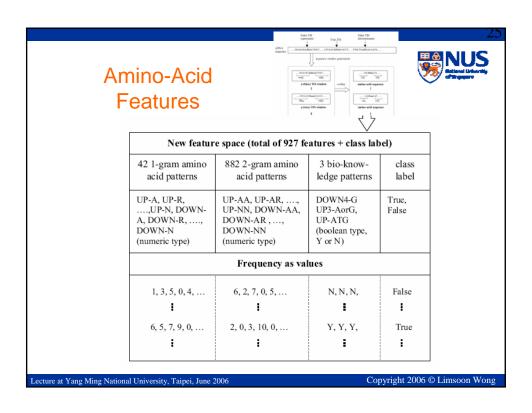
- Pedersen&Nielsen [ISMB'97]
 - Neural network
 - No explicit features
- Zien [Bioinformatics'00]
 - SVM+kernel engineering
 - No explicit features
- Hatzigeorgiou [Bioinformatics'02]
 - Multiple neural networks
 - Scanning rule
 - No explicit features

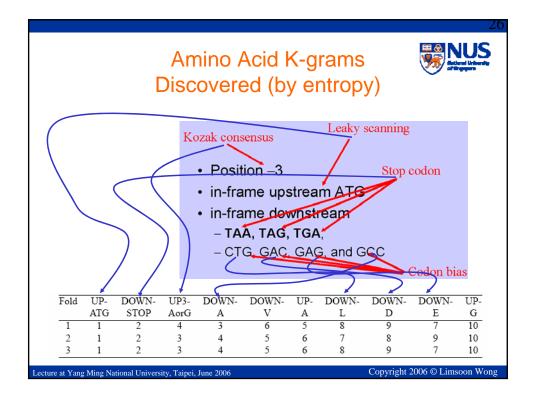
- Our approach
 - Explicit feature generation
 - Explicit feature selection
 - Use any machine learning method w/o any form of complicated tuning
 - Scanning rule is optional

Lecture at Yang Ming National University, Taipei, June 2006









Independent Validation Sets

- A. Hatzigeorgiou:
 - 480 fully sequenced human cDNAs
 - 188 left after eliminating sequences similar to training set (Pedersen & Nielsen's)
 - 3.42% of ATGs are TIS
- Our own:
 - well characterized human gene sequences from chromosome X (565 TIS) and chromosome 21 (180 TIS)

Lecture at Yang Ming National University, Taipei, June 2006

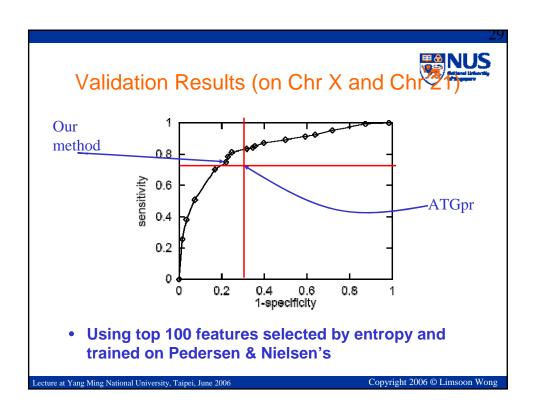
Copyright 2006 © Limsoon Wong

Validation Results (on Hatzigeorgious)

Algorithm	Sensitivity	Specificity	Precision	Accuracy
SVMs(linear)	96.28%	89.15%	25.31%	89.42%
SVMs(quad)	94.14%	90.13%	26.70%	90.28%
Ensemble Trees	92.02%	92.71%	32.52%	92.68%

 Using top 100 features selected by entropy and trained on Pedersen & Nielsen's dataset

Lecture at Yang Ming National University, Taipei, June 2006

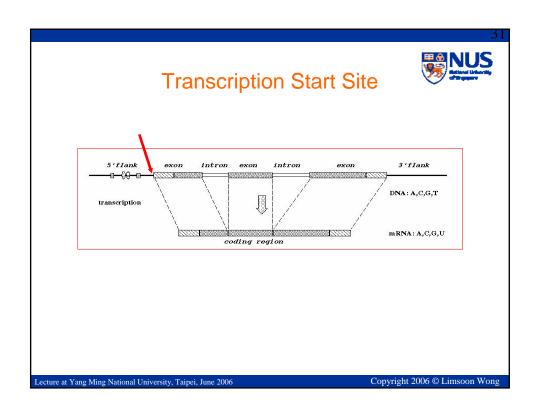


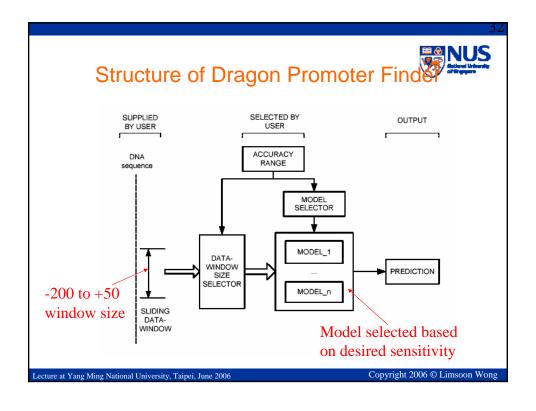
Recognition of Transcription Start Sites

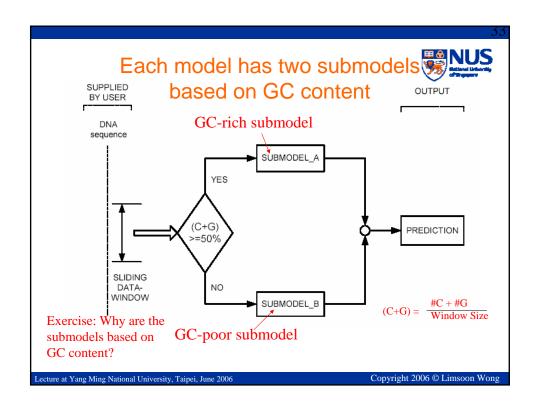
An introduction to the World's best TSS recognition system:

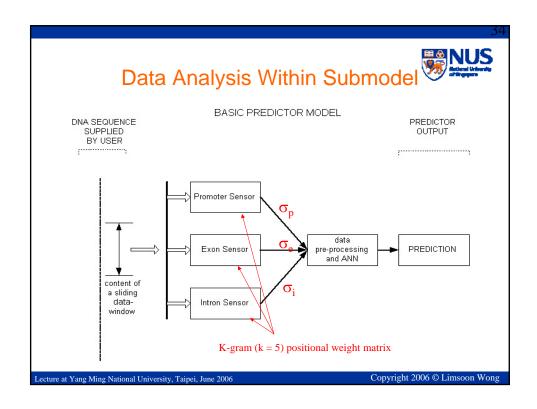
A heavy tuning approach

Lecture at Yang Ming National University, Taipei, June 2006









Promoter, Exon, Intron Sensors

- These sensors are positional weight matrices of k-grams, k = 5 (aka pentamers)
- They are calculated as below using promoter, exon, intron data respectively

 Pentamer at ith

Lecture at Yang Ming National University, Taipei, June 2006

Copyright 2006 © Limsoon Wong

Just to make sure you know what I mean

- Give me 3 DNA seq of length 10:
 - Seq₁ = ACCGAGTTCT
 - Seq₂ = AGTGTACCTG
 - Seq₃ = AGTTCGTATG
- Then

1-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9	pos10
Α	3/3	0/3	0/3							
С	0/3	1/3	1/3		Exerc	ise: Fil	l in the	rest of t	he table	•
G	0/3	2/3	0/3							
Т	0/3	0/3	2/3							

Lecture at Yang Ming National University, Taipei, June 2006

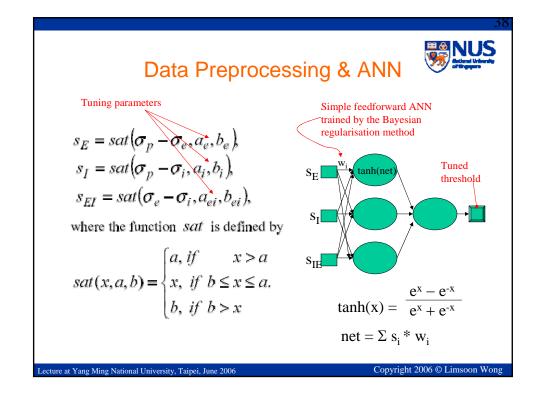
- Seq₁ = ACCGAGTTCT
- Seq₂ = AGTGTACCTG
- $Seq_3 = AGTTCGTATG$

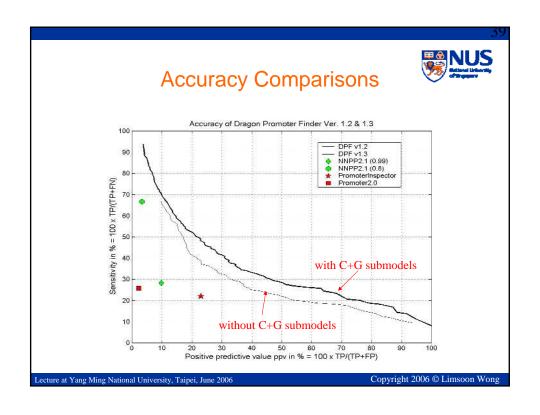
Then

Exercise: How many rows should this 2-mer table have? How many rows should the pentamer table have?

2-mer	pos1	pos2	pos3	pos4	pos5	pos6	pos7	pos8	pos9
AA	0/3	0/3	0/3						
AC	1/3	0/3	0/3		Exerci	se: Fill:	in the re	st of th	e table
TT	0/3	0/3	1/3				1/3		

Lecture at Yang Ming National University, Taipei, June 2006





Training Data Criteria & Preparation Contain both positive and TSS taken from negative sequences - 793 vertebrate promoters from EPD • Sufficient diversity, - -200 to +50 bp of TSS resembling different transcription start non-TSS taken from mechanisms - GenBank, - 800 exons Sufficient diversity, - 4000 introns, resembling different non-- 250 bp, promoters - non-overlapping, - <50% identities Sanitized as much as possible Copyright 2006 © Limsoon Wong ecture at Yang Ming National University, Taipei, June 2006

Tuning Data Preparation

- To tune adjustable system parameters in Dragon, we need a separate tuning data set
- TSS taken from
 - 20 full-length gene seqs with known TSS
 - -200 to +50 bp of TSS
 - no overlap with EPD
- Non-TSS taken from
 - 1600 human 3'UTR segs
 - 500 human exons
 - 500 human introns
 - 250 bp
 - no overlap

Lecture at Yang Ming National University, Taipei, June 2006

Copyright 2006 © Limsoon Wong

Testing Data Criteria & Preparation NUS

- Seqs should be from the training or evaluation of other systems (no bias!)
- Seqs should be disjoint from training and tuning data sets
- Seqs should have TSS
- Seqs should be cleaned to remove redundancy, <50% identities

- 159 TSS from 147 human and human virus seqs
- cummulative length of more than 1.15Mbp
- Taken from GENESCAN, Geneld, Genie, etc.

Lecture at Yang Ming National University, Taipei, June 2006

Any Question?

Lecture at Yang Ming National University, Taipei, June 2006

References (TIS Recognition)

- A. G. Pedersen, H. Nielsen, "Neural network prediction of translation initiation sites in eukaryotes", *ISMB* 5:226--233, 1997
- L. Wong et al., "Using feature generation and feature selection for accurate prediction of translation initiation sites", GIW 13:192--200, 2002
- A. Zien et al., "Engineering support vector machine kernels that recognize translation initiation sites", *Bioinformatics* 16:799--807, 2000
- A. G. Hatzigeorgiou, "Translation initiation start prediction in human cDNAs with high accuracy", *Bioinformatics* 18:343--350, 2002
- J. Li et al., "Techniques for Recognition of Translation Initiation Sites", *The Practical Bioinformatician*, Chapter 4, pages 71—90, 2004

Lecture at Yang Ming National University, Taipei, June 2006

- V.B.Bajic et al., "Computer model for recognition of functional transcription start sites in RNA polymerase II promoters of vertebrates", J. Mol. Graph. & Mod. 21:323--332, 2003
- J.W.Fickett, A.G.Hatzigeorgiou, "Eukaryotic promoter recognition", Gen. Res. 7:861--878, 1997
- A.G.Pedersen et al., "The biology of eukaryotic promoter prediction---a review", Computer & Chemistry 23:191--207, 1999
- M.Scherf et al., "Highly specific localisation of promoter regions in large genome sequences by PromoterInspector", JMB 297:599--606, 2000
- V.B.Bajic and A. Chong. "Tuning the Dragon Promoter Finder System for Human Promoter Recognition", *The Practical Bioinformatician*, Chapter 7, pages 157—165, 2004

Lecture at Yang Ming National University, Taipei, June 2006

Copyright 2006 © Limsoon Wong

46

References (Feature Selection)

- M. A. Hall, "Correlation-based feature selection machine learning", PhD thesis, Dept of Comp. Sci., Univ. of Waikato, New Zealand, 1998
- U. M. Fayyad, K. B. Irani, "Multi-interval discretization of continuous-valued attributes", IJCAI 13:1022-1027, 1993
- H. Liu, R. Sentiono, "Chi2: Feature selection and discretization of numeric attributes", *IEEE Intl. Conf. Tools with Artificial Intelligence* 7:338--391, 1995

Lecture at Yang Ming National University, Taipei, June 2006

References (Misc.)

- C. P. Joshi et al., "Context sequences of translation initiation codon in plants", *PMB* 35:993--1001, 1997
- D. J. States, W. Gish, "Combined use of sequence similarity and codon bias for coding region identification", *JCB* 1:39--50, 1994
- G. D. Stormo et al., "Use of Perceptron algorithm to distinguish translational initiation sites in E. coli", *NAR* 10:2997--3011, 1982
- J. E. Tabaska, M. Q. Zhang, "Detection of polyadenylation signals in human DNA sequences", *Gene* 231:77--86, 1999

Lecture at Yang Ming National University, Taipei, June 2006