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Translation Initiation Sites
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EINUS
A Sample cDNA G

299 HSU27655.1 CAT U27655 Homo sapiens

CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA 160
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA 240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT

............................................................ 80
................................ iEEEEEEEEEEEEEEEEEEEEEEEEEEE 160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 240

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

* What makes the second ATG the TIS?
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Approach &=

« Training data gathering

Signal generation

— k-grams, distance, domain know-how, ...
Signal selection

— Entropy, %2, CFS, t-test, domain know-how...
Signal integration

— SVM, ANN, PCL, CART, C4.5, kNN, ...
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EINUS
Training & Testing Data ""‘""‘"‘"’

» Vertebrate dataset of Pedersen & Nielsen [isms'97]
* 3312 sequences

» 13503 ATG sites

o 3312 (24.5%) are TIS

e 10191 (75.5%) are non-TIS

» Use for 3-fold x-validation expts
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Signal Generation &=

« K-grams (ie., k consecutive letters)
-K=1,273,4,5, ...
— Window size vs. fixed position
— Up-stream, downstream vs. any where in window
— In-frame vs. any frame
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EINUS
Signal Generation: An Example ""‘""‘"‘"’

299 HSU27655.1 CAT U27655 Homo sapiens

CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCA TGAA GACTCCCA, TG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATﬁGCiTTTGﬁCTiTCAGGGCAECTETA 160
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA 240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT

 Window =£100 bases
In-frame, downstream
-GCT=1,TIT=1,ATG=1...
* Any-frame, downstream

_ GCT - 3 TTT = 2 ATG = 2 Exercise: What are the

' ' """ possible k-grams (k=3) in

e In-frame, upstream this sequence?

-GCT=2,TTT=0,ATG =0, ...

Exercise: Find the in-frame
downstream ATG
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Too Many Signals =

e For each value of k, there are 4k * 3 * 2 k-grams

e [fweusek=1,2,3,4,5, we have 24 + 96 + 384 +
1536 + 6144 = 8184 features!

e This is too many for most machine learning
algorithms
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FINUS
Signal Selection (Basic Idea) e

 Choose a signal w/ low intra-class distance
e Choose a signal w/ high inter-class distance

Cilass | Class ? Clags 1 Clags 2 Class 1 Class?
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Signal Selection (e.g., t-statistics)~ =

The t-etata of a signal is defined as

bo o B pal
{(et/m) + (03/n9)
where o7 is the variance of that signal

in class ¢, u; i3 the mean of that signal
in class ¢, and n; is the size of class 4.
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Signal Selection (e.g., MIT-correlatit#)

The MIT-correlation value of a signal

ig defined as
AMIT < 81— 2|
a1+ g9
where ¢; is the standard deviation of
that signal in class 4 and p; is the mean

of that signal in clags 1.
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SANUS
Signal Selection (e.g., ¥2) ——
The A% value of e signel is defined as:

2
2_ (A — Byj)

& ‘II?I jgl B4 4
where m i the number of intervals, §
the pumber of clemes, Ay the number
of semples in the ith interwel, 7th class,
R; the number of ssmples in the fth in-
tarvel, C; the number of samples in the
Fth clase, N the total number of sam-
ples, and Ey; the expected frequency of

Ay (Byy = Ry» Cy/N).
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Signal Selection (e.g., CFS) e

» Instead of scoring individual signals, how about
scoring a group of signals as a whole?

e CFS
— Correlation-based Feature Selection

— A good group contains signals that are highly
correlated with the class, and yet uncorrelated
with each other

Exercise: What is the main challenge in implementing CFS?
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Sample k-grams Selected by CFS E...._';é

for Recognizing TIS

Leaky scannin
Kozak consensus y g

Stop codon
» Position -3

* in-frame upstream AT
* in-frame do
— TAK T TGA;
— CTG, GAC, GAG, and GCC

\

Codon bias?
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EINUS
Signal Integration G

* kNN

— Given a test sample, find the k training samples
that are most similar to it. Let the majority class
win

« SVM

— Given a group of training samples from two
classes, determine a separating plane that
maximises the margin of error

* Naive Bayes, ANN, C4.5, ...
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Results (3-fold x-validation) ——
predicted |predicted
as poditive [ag negative
positive | TP N Exercise:
negative| FP TN What is TP/(TP+FP)?

TPITP+FN)  TN/(TN+FP) TP/(TP+FP)  Accuracy

Naive Bayes 84.3% 86.1% 66.3% 85.7%
SVM 73.9% 93.2% 77.9% 88.5%
Neural Network  77.6% 93.2% 78.8% 89.4%
Decision Tree 74.0% 94.4% 81.1% 89.4%
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ZINUS
Improvement by Voting -

 Apply any 3 of Naive Bayes, SVM, Neural
Network, & Decision Tree. Decide by majority

TPITP+FN) TN/(TN+FP) TP/TP+FP) Accuracy

NB+SVM+NN 79.2% 92.1% 76.5% 88.9%
NB+SVM+Tree 78.8% 92.0% 76.2% 88.8%
NB+NN+Tree 77.6% 94.5% 82.1% 90.4%
SVM+NN+Tree 75.9% 94.3% 81.2% 89.8%
Best of 4 84.3% 94.4% 81.1% 89.4%
Worst of 4 73.9% 86.1% 66.3% 85.7%
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Improvement by Scanning =

* Apply Naive Bayes or SVM left-to-right until first
ATG predicted as positive. That's the TIS

* Naive Bayes & SVM models were trained using
TIS vs. Up-stream ATG

TP/(TP +FN) TN/(TN+FP) TP/(TP+FP)  Accuracy

NB 84.3% 86.1% 66.3% 85.7%
SVM 73.9% 93.2% 77.9% 88.5%
NB+Scanning 87.3% 96.1% 87.9% 93.9%
SVM+Scanning  88.5% 96.3% 88.6% 94.4%
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EEAINUS
Performance Comparisons ""‘""‘"‘"’

TPITP+FN) TN/(TN+FP) TP/(TP+FP)  Accuracy

NB 84.3% 86.1% 66.3% 85.7%
Decision Tree 74.0% 94.4% 81.1% 89.4%
NB+NN+Tree 77.6% 94.5% 82.1% 90.4%
SVM+Scanning 88.5% 96.3% 88.6% 94.4%*
Pedersen&Nielsen  78% 87% - 85%
Zien 69.9% 94.1% - 88.1%
Hatzigeorgiou - - - 94%*

* result not directly comparable
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Technigue Comparisons ——
e Pedersen&Nielsen [iIsmB'97]  Our approach
— Neural network — Explicit feature
— No explicit features generation
— Explicit feature selection
e Zien [Bioinformatics’00] — Use any machine

learning method w/o any
form of complicated
tuning

— Scanning rule is optional

— SVM+kernel engineering
— No explicit features

e Hatzigeorgiou
[Bioinformatics’02]

— Multiple neural networks
— Scanning rule
— No explicit features
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MRNA—protein

| E [Fwrst [U c A G TLast
EES Ser Tyr Cys U
Codon 3 F S Y c
Phe Ser Tyr Cys c
= L Lew | |[Ser Stop (Ochre) |Stop (Umber) [A
Codon 4 Leu Ser Stop (Amber) |Trp W G
o R ¢ |Len Pro D|His H |42 R IU
Lew Pro His Arg c
Codon &
Leu Pro Gin 0 |a= A
= S e Pro Gln Arg [
Codon 6 A [me Thr Asn Ser U
o e gy N
- Stop e Asn Ser c
Codon T e Lys P A
_ Met |\ | Th Lys Arg G
RNA G [va \/lala Alas DRES Glv
Val Ala Asp Gly c
Ribonucleic acid Val Ala Glu E |ow A
Val Ala Glu Gly el

Exercise: List the first 10 amino
acid in our example sequence
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Amino-Acid Features

False TIS False TIS
(upstream) True TIS (downstream)

v v

LLOGACGGATGACTGCC... .. CTCGATATGGCACCT..... TTGCTAATGACAATA...... ‘

cDNA
sequence

sequence window generation

...... GGACGG (False) ACTGCC....... <.ooo GR (False) TA......
[’ [
H9bps H9bps 33aa 33aa
a (false) TIS window coding amino acid sequence
<o CTCGAT (TruelGCACCT...... oo LD (True) AP......
S —
s 99bps 33aa 33aa
a (true) TIS window amino acid sequence
H H
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Amino-Acid
Features

New feature space (total of 927 features + class label)

42 1-gram amino 882 2-gram amino 3 bio-know- class
acid patterns acid patterns ledge patterns label
UP-A, UP-R, UP-AA, UP-AR, ..., DOWN4-G True,
L LUP-N, DOWN- UP-NN, DOWN-AA, UP3-Aor(, False
A, DOWN-R, ..., DOWN-AR, ..., UP-ATG
DOWN-N DOWN-NN (boolean type,
(numeric type) (numeric type) Y orN)

Frequency as values

1,3504, .. 6,2,7,0,5,... N,N,N, False

6,5,7,9,0,.. 2,0,3,10,0,... Y. Y. Y, True

Lecture at Yang Ming National University, Taipei, June 2006

Amino Acid K-grams
Discovered (by entropy)

Leaky scanning
Kozak consensus

* in-frame upstream

—CT AC. GAG, and GGC

o

Copyright 2006 © Limsoon Wong

+ Position -3 - Stop codon

n bias

Fold UP- DOWN- UP3- DOWN- DOWN- UP- DOWN- DOWN- DOWN- UP-

ATG  STOP  AorG A V A L D E G
1 1 2 4 3 6 ] g 9 7 10
2 1 2 3 4 5 6 7 8 9 10
3 1 2 3 4 5 6 8 9 7 10
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EEAINUS
Independent Validation Sets ""‘""‘"’"’

» A. Hatzigeorgiou:
— 480 fully sequenced human cDNAs
— 188 left after eliminating sequences similar to
training set (Pedersen & Nielsen’s)
— 3.42% of ATGs are TIS
e Our own:

— well characterized human gene sequences from

chromosome X (565 TIS) and chromosome 21
(180 TIS)
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Validation Results (on HatzigeorgiotrE =~

Algorithm Semsitivity ~ Specifieity  Precision  Accuracy
SVMs(linear) 96.28%  89.15%  2531% 89.42%
SVMs(quad)  9414%  90.03%  2670%  90.28%
Ensemble Trees  92.02%  9271%  3252%  92.68%

— Using top 100 features selected by entropy and
trained on Pedersen & Nielsen’s dataset
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Our
method

sensitivity

| —ATGpr

0 & 1 1 1 1
Q 0.2 04 0.8 0.8
1-gpecificity

» Using top 100 features selected by entropy and

trained on Pedersen & Nielsen’s
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Recognition of
Transcription Start Sites
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EINUS
Transcription Start Site ""‘""‘"‘"’

\

5’ flank exon intron exon intron exon 3 rfiank
(Yo RERSSS S S I R
. \ | I s //
i % o } 4 S DNAIACET
transcription i o | B /
4 o | - a
A} A ’ /
& N ¥ #
. & } : 7 ’
L : s
M T O T mRNA: A,C,G,U
coding region
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Structure of Dragon Promoter Findg¥ =~

SUPPLIED SELECTED BY OUTPUT

BY USER USER

| — | — | E—
ONA ACCURACY
sequence RANGE
MODEL
SELECTOR
¥ +
v MODEL_1
DATA-

L = Weoe :D =] PREDICTION
SELECTOR
-200t0 +50 |¥__ =1L

window size 1 supoie

DATA-

WINDOW Model selected based
on desired sensitivity
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Each model has two submodeIsNUS
ey based on GC content ouTPUT

1 | ——
DNA GC-rich submodel

sequence

X
SUBMODEL_A

3
F::S_.‘ PREDICTION
¥
“DATA-
WINDOW SUBMODEL_B #C + #G
x (C+G) = Window Size

Exercise: Why are the
submodels based on ~ GC-poor submodel
GC content?
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= NUS
Data Analysis Within Submodel

EASIZ PREDICTOR MODEL

DMA SEQUENCE PREDICTOR
SUPPLIED QUTPUT
By USER

g Promaoter Sensaor
- \
— ={ Exmn Sensor\ 1

.
content of

a sliding
data- —"1 Intron Sensor

windowe ’_‘/

n.._|

data
pre-processing  —mml  PREDICTION
and AN

K-gram (k = 5) positional weight matrix
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ERINUS
Promoter, Exon, Intron Sensors’*"“"‘"’

 These sensors are positional weight matrices of
k-grams, k =5 (aka pentamers)

 They are calculated as below using promoter,
exon, intron data respectively Pentamer at it"

position in input

Window size -4 ' \
F‘ . X . .
TZP;‘ ®ffliJ finif py=p"
i=] i .
C="= ~ D@ f= o
D> maxf;; 0,if p; = p
i=l / ' : K
jth pentamer at
it" position in
training window

Frequency of jth
pentamer at ith position
in training window
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SINUS

Just to make sure you know what | meansZ. =

« Give me 3 DNA seq of length 10:
— Seq, = ACCGAGTTCT
— Seq, = AGTGTACCTG
— Seq, = AGTTCGTATG

* Then

1-mer posl pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9 pos10

A 3/3 |0/3 |0/3
C 0/3 |13 |1/3 Exergise: Fil| in the fest of {he tablg
G 0/3 |2/3 |0/3
T 0/3 |0/3 |2/3
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BNUS
Just to make sure you know what | mean~Z.=

* Give me 3 DNA seq of length 10:
— Seq, = ACCGAGTTCT
— Seq, = AGTGTACCTG

— Seq; = AGTTCGTATG  Exercise: How many rows should
« Then this 2-mer table have? How many
rows should the pentamer table have?

2-mer posl pos2 pos3 pos4 pos5 pos6 pos7 pos8 pos9

AA |0/3 |0/3 |0/3
AC [1/3 |0/3 |0/3 Exercise: Fill |n the rgst of the table

TT |0/3 |0/3 |1/3 1/3
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TINUS

Optfres] Wbyl

Data Preprocessing & ANN B===

Tuning parameters Simple feedforward ANN
rained by the Bayesian
regularisation method
sgp = sal\g, =0 a,. b,
S —_ e \er. A Wi Tuned
§t = “gg{(crf?' T f’bf )5 Se threshold

Sgp = sa:(a‘e =0, 0,0.0, )

where the function saf s defined by

a, if x>a
sat(x,a,hy=x, if h<x=a. oX _ X
b, if b>x tanh(x) = ex 1 g
net=2Xs;*w;
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. bl Uiy
Accuracy Comparisons -
Accuracy of Dragon Promoter Finder Ver. 1.2 & 1.3
100 - - - T T T T T
| — DPFwi2
%0 | | — DPEv13
S @ NNPR2A (0.99)
@ NNPP2.1{0.8)
_ s %  Fromoterinspactor |+
= = Promoter2.0
& 7o+ :
= ]
o
60
»
o
a
i S T
S
=
red
=
£ 0 I O N AL 1. RS
3
(]
20 e
" without C+G submodels
o i i i i i ; i i i
o 10 20 30 40 50 B0 To 80 50 100
Positive predictive value ppy in % = 100 =« TRATP+FP)
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ZINUS
Training Data Criteria & Preparatiot =+

e Contain both positive and e TSStaken from

negative sequences — 793 vertebrate promoters
from EPD
e Sufficient diversity, — -200 to +50 bp of TSS

resembling different
transcription start

) e non-TSS taken from
mechanisms

— GenBank,
— 800 exons

e Sufficient diversity, 4000 introns

resembling different non-

promoters — 250 bp,
— non-overlapping,
+ Sanitized as much as — <50% identities
possible
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=INUS
Tuning Data Preparation ==
e To tune adjustable system e« TSS taken from
parameters in Dragon, we — 20 full-length gene seqs
need a separate tuning with known TSS
data set — -200 to +50 bp of TSS

— no overlap with EPD

¢ Non-TSS taken from
— 1600 human 3'UTR segs
500 human exons
500 human introns
250 bp
no overlap
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Testing Data Criteria & Preparatiof” =

e Seqs should be from the e 159 TSS from 147 human
training or evaluation of and human virus seqs
other systems (no bias!)

e cummulative length of

e Seqs should be disjoint more than 1.15Mbp
from training and tuning
data sets * Taken from GENESCAN,

Geneld, Genie, etc.
e Seqs should have TSS

e Seqs should be cleaned to
remove redundancy, <50%
identities
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Any Question?
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