

A Sample Affymetrix GeneChip Solution Data File (U95A)

	00-0586-U	00-0586-U	00-0586-U	00-0586-U	00-0586-U	Descriptions
	Positive	Negative	Pairs InAv	Avg Diff	Abs Call	
AFFX-Murl	5	2	19	297.5	A	M16762 Mouse interleukin 2 (IL-2) gene, exon 4
AFFX-Murl	3	2	19	554.2	A	M37897 Mouse interleukin 10 mRNA, complete cds
AFFX-Murl	4	2	19	308.6	A	M25892 Mus musculus interleukin 4 (II-4) mRNA, com
AFFX-Murf	1	3	19	141	A	M83649 Mus musculus Fas antigen mRNA, complete
AFFX-BioE	13	1	19	9340.6	P	J04423 E coli bioB gene biotin synthetase (-5, -M, -3
AFFX-BioE	15	0	19	12862.4	P	J04423 E coli bioB gene biotin synthetase (-5, -M, -3
AFFX-BioE	12	0	19	8716.5	P	J04423 E coli bioB gene biotin synthetase (-5, -M, -3
AFFX-BioC	17	0	19	25942.5	P	J04423 E coli bioC protein (-5 and -3 represent transc
AFFX-BioC	16	0	20	28838.5	P	J04423 E coli bioC protein (-5 and -3 represent transc
AFFX-BioC	17	0	19	25765.2	Р	J04423 E coli bioD gene dethiobiotin synthetase (-5 a
AFFX-BioC	19	0	20	140113.2	P	J04423 E coli bioD gene dethiobiotin synthetase (-5 a
AFFX-CreX	20	0	20	280036.6	Р	XD3453 Bacteriophage P1 cre recombinase protein (-8
AFFX-CreX	20	0	20	401741.8	P	XD3453 Bacteriophage P1 cre recombinase protein (-8
AFFX-BioE	7	5	18	-483	A	J04423 E coli bioB gene biotin synthetase (-5, -M, -3
AFFX-BioE	5	4	18	313.7	A	J04423 E coli bioB gene biotin synthetase (-5, -M, -3
AFFX-BioE	7	6	20	-1016.2	A	J04423 E coli bioB gene biotin synthetase (-5, -M, -3

Copyright 2006 © Limsoon Wong

	10
Childho	bod ALL
• Major subtypes: T-ALL, E2A-PBX, TEL-AML, BCR- ABL, MLL genome rearrangements, Hyperdiploid>50	The subtypes look similar
 Diff subtypes respond differently to same Tx 	
 Over-intensive Tx Development of secondary cancers Reduction of IQ Under-intensiveTx 	 Conventional diagnosis Immunophenotyping Cytogenetics Molecular diagnostics Unavailable in most
 Relapse Lecture at Yang Ming National University, Taipei, June 2006 	ASEAN COUNTRIES Copyright 2006 © Limsoon Wong

Tra	aining and Testing S	Sets	1
Paired datasets	Ingredients	Training	Testing
T-ALL vs	OTHERS1 ={E2A-PBX1, TEL-AML1,	28 vs 187	15 vs 97
OTHERS1	BCR-ABL, Hyperdip>50, MLL, OTHERS}		
E2A-PBX1 vs	OTHERS2 = {TEL-AML1, BCR-ABL	18 vs 169	9 vs 88
OTHERS2	Hyperdip>50, MLL, OTHERS}		
TEL-AML1 vs	$OTHERS3 = \{BCR-ABL$	52 vs 117	27 vs 61
OTHERS3	Hyperdip>50, MLL, OTHERS}		
BCR-ABL vs	$OTHERS4 = \{Hyperdip>50,$	9 vs 108	6 vs 55
OTHERS4	MLL, OTHERS}		
MLL vs	$OTHERS5 = {Hyperdip>50, OTHERS}$	14 vs 94	6 vs 49
OTHERS5			
Hyperdip>50 vs	$OTHERS = {Hyperdip47-50, Pseudodip,}$	42 vs 52	22 vs 27
OTHERS	Hypodip, Normo}		

Copyright 2006 © Limsoon Wong

	Exampl	es
Patterns	Frequency (P)	Frequency(N)
{9, 36}	38 instances	0
{9, 23}	38	0
{4, 9}	38	0
{9, 14}	38	0 Easy interpretation
<i>{</i> 6 <i>,</i> 9 <i>}</i>	38	0
{7, 21}	0	36
{7, 11}	0	35
{7, 43}	0	35
{7, 39}	0	34
{24, 29}	0	34
Reference num Reference num	ber 9: the expression ber 36: the expression	on of gene 37720_at > 215 ion of gene 38028_at <= 12
Lecture at Yang Ming National Universi	ty, Taipei, June 2006	Copyright 2006 © Limsoon Wong

Testing Data	Error rate of different models				
	C4.5	SVM	NB	PCL	
T-ALL vs OTHERS1	0:1	0:0	0:0	0:0	
E2A-PBX1 vs OTHERS2	0:0	0:0	0:0	0:0	
TEL-AML1 vs OTHERS3	1:1	0:1	0:1	1:0	
BCR-ABL vs OTHERS4	2:0	3:0	1:4	2:0	
MLL vs OTHERS5	0:1	0:0	0:0	0:0	
Hyperdiploid>50 vs OTHERS	2:6	0:2	0:2	0:1	
Total Errors	14	6	8	4	

Application	Data set	Sta	tus	Total
		Dead	Alive	
DLBCL	Original	88	72	160
	Informative	47+1(*)	25	73

Copyright 2006 © Limsoon Wong

	E	RC	OF	vs Me	ean-Er	ntro	py
Experiment	SVM	3-NN	Bagging	AdaBoostM1	RandomForests	CS4	
ColonTumor	С	С	B.C	С	С	С	-
Prostate	С	B.C	c	в	С	B.C	
Lung test	B,C	B,C	В	B,C	С	B,C	
Lung	B.C	C	B,C	В	В	B.C	
Ovarian	B,C	С	В	С	B,C	С	
DLBCL	B.C	С	В	B.C	c	B.C	
ALLAML test	B.C	С	B.C	B.C	С	B.C	
ALLAML	B.C	в	В	c	В	B.C	
		Pe	diatric ALL	data — test		,	-
T-ALL	B.C	B.C	B.C	B.C	B.C	B.C	-
E2A-PBX1	B.C	B.C	B.C	B.C	B.C	B.C	3.6
TEL-AML1	B.C	B,C	B,C	В	C	c	Mean-entropy
BCR-ABL	C	B.C	В	B,C	B,C	B,C	wins 18 times
MLL	B.C	B.C	B,C	B,C	B.C	B.C	4
Hyperdip>50	B.C	В	В	B.C	c	B.C	
<i></i>	Ped	iatric AL	L data — 10	D-fold cross valid	lation		- /
T-ALL	B,C	В	B,C	B,C	B,C	B,C	- /
E2A-PBX1	C	С	B,C	B,C	C	c	FRCOF
TEL-AML1	С	С	B.C	c	С	С	LICOI
BCR-ABL	С	С	c	В	В	В	wins 42 time
MLL	B,C	B,C	С	С	В	С	
Hyperdip>50	C	C	С	B,C	С	С	
Sum <	B:0	B:3	B:6	B:4	B:4	B:1	5 /
<	C:7	C:9	C:4	C:5	C:10	C:7	5
	Tie:13	Tie:8	Tie:10	Tie:11	Tie:6	Tie:12	

Copyright 2006 © Limsoon Wo

Effectiveness of ERCOF

Table 5.32: A summary of the total winning times (including tie cases) of each classifier (under different feature selection methods) across the 20 validation tests on the six gene expression profiles and one proteomic data set. The number with bold font in each row indicates the feature selection method that owns most winning times for the relevant classifier. In the brackets, there is the total number of misclassified samples across the same 20 validation tests. Similarly, the figure with bold font in the brackets in each row is the minimum number of total misclassified samples among feature selection methods for the classifier.

Classifier	All All-entropy		Mean-entropy	Top-number-entropy			ERCOF	
				20	50	100	200	
SVM	4(100)	9(52)	11(48)	6(76)	6(74)	11(52)	11(59)	16(38)
3-NN	1(187)	5(87)	8(77)	6(88)	4(81)	6(77)	5(73)	12(61)
Bagging	7(123)	5(117)	8(115)	11(123)	11(122)	7(122)	9(114)	8(112)
AdaBoostM1	5(191)	8(181)	8(166)	11(138)	10(144)	10(157)	9(162)	10(154)
RandomForests	0(228)	5(111)	5(93)	6(96)	7(83)	8(96)	5(90)	9(80)
CS4	5(87)	6(77)	6(76)	7(101)	10(81)	9(74)	8(74)	12(66)
Total wins	22	38	46	47	48	51	47	67

