Knowledge Discovery Techniques
for Bioinformatics, Part IV:

Gene Expression Analysis

Plan

Microarray background

* Gene expression profile classification
* Gene expression profile clustering
Extreme sample selection
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Background on Microarrays

What's a Microarray?

» Contain large number of DNA molecules spotted
on glass slides, nylon membranes, or silicon
wafers

* Detect what genes are being expressed or found
in a cell of a tissue sample

* Measure expression of thousands of genes
simultaneously
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A Sample Affymetrix GeneChip ._-'E'.._L_E
Data File (U95A)

00-0586- ¢ 00-0586- L4 00-0586- U8 00-0586- U 00-0586-U! Descriptions

Positive  Megative | Pairs IndviAvg Diff | Abs Call
AFFH-Murl 5] 2 19 297 5 A M167E2 Mouse interleukin 2 {IL-2) gene, exon 4
AFFE-bur 3 2 19 5542 A M37857 Mouse interleukin 10 mRNA, complete cds
AFF¥-Murl 4 2 19 308.6 A M25892 Mus musculus interleukin 4 (I-4) mRMA, comy
AFFx-Murk 1 3 19 141 A ME3643 Mus musculus Fas antigen mRNA, complete
AFF¥-BicE 13 1 19) 53406 P J04423 E coli bioB gene biotin synthetase (-5, -M, -3¢
AFF¥-BicE 15 0 19 128624 P J04423 E coli bioB gene biotin synthetase (-5, -M, -3¢
AFF¥-BicE 12 0 19/ 87165 P J04423 E coli bioB gene biotin synthetase (-5, -M, -3¢
AFF¥-BioC 17 0 19 289425 P J04423 E coli bioC protein (-5 and -3 represent transce
AFF¥-BioC 16 0 20 283385 P J04423 E coli bioC protein (-5 and -3 represent transce
AFF#-Biol 17 u] 19 257R5Z2 P J04423 E coli bioD gene dethiobiatin synthetase (-5 ar
AFF¥-Biol 19 0 20 1401132 P J04423 E coli bioD gene dethiobiotin synthetase (-5 ar
AFFR-Crekx 20 u] 20 2500366 P #03453 Bacteriophage P1 cre recombinase protein (-5
AFFX-Crex 20 0 20 AM7MEP #03453 Bacteriophage P1 cre recombinase protein (-5
AFF#-BioE 7 5] 18 -403 A J04423 E coli bioB gene biotin synthetase (-5, -M, -3¢
AFF¥-BicE 5 4 18 337 A J04423 E coli bioB gene biotin synthetase (-5, -M, -3¢
AFF¥-BigE 7 B 200 -1016.2 A J04423 E coli bioB gene biotin synthetase (-5, -M, -3 ¢
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Type of Gene Expression Datasets” =™
= Gene-Conditions or Gene-Sample (numeric or discretized)
1000 - 100,000 columns
Class Genel Gene2 Gene3 Gene4 Gene5 Gene6 Gene7
Samplel Cancer 0.12 -1.3 17 1.0 -3.2 0.78 -0.12
Sample2 Cancer 1.3
100-500
rows ~Cancer
SampleN ~Cancer
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Type of Gene Expression Datasets” =

= Gene-Conditions or Gene-Sample (numeric or discretized)
« 1000 - 100,000 columns
Genel Gene2 Gene3 Gene 4 Gene5 Gene6 Gene7
Cond1 0.12 -1.3 17 10 -3.2 0.78 -0.12
Cond2 13
100-500
rows
CondN
= Gene-Time = Gene-Sample-Time
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Type of Gene Expression Datasets” ==

m Gene-Conditions or Gene-Sample (numeric or discretized)
1000 - 100,000 columns

100-500

rows J

[9A8] uoissa.dxe

]

Class Genel Gene2 Gene3 Gened Gene5 Gene6 Gene7
Samplel Cancer 1 0 1 1 1 0 0
Sample2 Cancer 1
~Cancer
SampleN ~Cancer
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Gene Expression Profile Classification

Childhood ALL

Major subtypes: T-ALL,
E2A-PBX, TEL-AML, BCR-
ABL, MLL genome
rearrangements,
Hyperdiploid>50

Diff subtypes respond
differently to same Tx

Over-intensive Tx

— Development of
secondary cancers

— Reduction of IQ
Under-intensiveTx
— Relapse

TINUS
) i

e The subtypes look similar

e Conventional diagnosis
— Immunophenotyping
— Cytogenetics
— Molecular diagnostics

¢ Unavailable in most
ASEAN countries
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Mission -

» Conventional risk assignment procedure requires

difficult expensive tests and collective judgement
of multiple specialists

* Generally available only in major advanced
hospitals

= Can we have a single-test easy-to-use platform
instead?
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Single-Test Platform of E...._';é
Microarray & Machine Learning
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Overall Strategy
7 7

D AOROSES ;
FSEHOTNDE

0 JDE
BrogNasis
prog
%

e For each subtype, select e For each subtype, select
genes to develop genes to develop
classification model for prediction model for
diagnosing that subtype prognosis of that subtype
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Subtype Diagnosis by PCL B===

* Gene expression data collection
» Gene selection by %2

» Classifier training by emerging pattern

. Classifi ing (optional f hi
learning-methods)-

» Apply classifier for diagnosis of future cases by
PCL
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Childhood ALL Subtype  B5/Nee=
Diagnosis Workflow

A tree-structured '

diagnostic

; No
workflow was e R ABLY
recommended by —T

our doctor
collaborator
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TINUS
Training and Testing Sets ——
Paired datasets Ingredients Training Testing
T-ALL vs OTHERS1 ={E24-PBX1, TEL-AMLI, 28 vs 187 15 vs 97
QOTHERS1 BOR-ABL, Hypenlipn50, MLL, OTHERS)

E2A-PBX1 ve  OTHERS2 = {TEL-AMLI, BCR-ABL 18 vs 169 9 vs 88
QOTHERS2 Hyperdip250, MLL, OQTHERS}

TEL-AML1 v8  OTHERS3 = {BCR-ABL 32 vs 117 27 vs 61
QTHERS3 Hyperdip>50, MLL, OTHERS}

BCR-ABL vs OTHERS4 = {Hyperdip>50, 9vs 108 G vedd
QTHERS4 MLL, OTHERS}

MLL vs OTHERSS = {Hyperdip»50, OTHERS}] 14vs 94 @ ve 49
QTHERSS

Hyperdip>50 v OTHERS = {Hyperdipd7-50, Psendodip, 42 ve 32 22 vs 27
QTHERS Hypodip, Normo}
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Signal Selection Basic Idea ""*'"-"“'"

 Choose a signal w/ low intra-class distance
e Choose a signal w/ high inter-class distance

Class | Class 2 Class 1 Class 2 Glass 1 Class 2
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Signal Selection by 2 —

The X2 value of a signal is defined ss:

xz _ %’l k (A‘lj 13)
5=l 3—1 By Y

where m is the number of intervals, &

the number of clessen, A;; the number
of samples in the ith ml:erval 7th class,
f; the number of samples in tﬁe ith in-
terval, C; the number of samples in the

Fth claaa N the tofal number ofmm
pleﬁ and E;; the expected frequency of
Ay (B = R: * 0j/N).
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Emerging Patterns &z
 An emerging pattern is a set of conditions

— usually involving several features

— that most members of a class satisfy

— but none or few of the other class satisfy

* A jumping emerging pattern is an emerging
pattern that
— some members of a class satisfy

— but no members of the other class satisfy

« We use only jumping emerging patterns
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Examples &=
Patterns Frequency (P) Frequency(N)
{9, 36} 38 instances 0
{9, 23} 38 0
{4, 9} 38 0
19, 14} 38 O Easy interpretation
{6. 9} 38 o SRR
{7, 21} 0 36
{7, 11} 0 35
{7, 43} 0 35
{7, 39} 0 34
{24, 29} 0 34
Reference number 9: the expression of gene 37720_at > 215
Reference number 36: the expression of gene 38028 at <=12
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PCL: Prediction by Collective Likelihs8&—

o Lot EPF, ..., EPF be the most general EPs of DF
in descending order of support.

* Suppose the test sample T contains these mogst gen-
eral EPs of D¥ (in descending order of suppart):

EPI,EFL,... EP]
» Use k top-ranked most general EPs of DF and DV,
Define the acore of T in the D class as
_  frequengy(EPE)
.25 = &, froquency(EFE)
» Ditto for score(T, D¥).
o I score(T, DX} > score(T, D¥), then T is class P.
Otherwisge it is class N.

| Gy
PCL Learning =
Top-Ranked EPs in Top-Ranked EPs in
Positive class Negative class
EP,P (90%) EP,N (100%)
EP,P (86%) EP,N (95%)
EP.P (68%) EPN (80%)
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PCL Testing G

Most freq EP of pos class
in the test sample

Score?P = EP,” /EP.P+ ...+ EPF /EPP

Most freq EP of pos class

Similarly,
ScoreN =EP N /EP N+ ...+ EPN/EPN
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Accuracy of PCL (vs. other classifief&)=

Testing Data Error rate of different models
Cd4.5 SYVM NB PCL
T-ALL vs OTHERS1 0:1 0:0 G0 0:0
E2A-PBX1 vs OTHERS2 (0 0 00 0:0
TEL-AML]1 vs OTHERS3 1:1 (1 i:1 1:00
BCR-ABL vs OTHERS4 2:0 30 14 2:0
MLL vs OTHERSS a1 0:0 00 0:0

Byperdiploid>50 vs OTHERS 2.6 (:2 (:2 01

Total Errors 14 6 & 4

The classifiers are all applied to the 20 genes selected
by %2 at each level of the tree
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Understandability of PCL

« E.g., for T-ALL vs. OTHERS, one ideally
discriminatory gene 38319 _at was found,
inducing these 2 EPs

{gene_38319_an@(—00, 15975.6)} and
{gene_38319_ar) @[15975.6, +00)}.

» These give us the diagnostic rule

If the expression of 38 319_a1 is less than 15975.6, then
this ALL sample must be a T-ALL.
Otherwise it must be a subtype in OTHERSI.
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Multidimensional Scaling Plot E...._l_é

for Subtype Diagnosis

[ Hyperdiplold >50 —~BCR-ABL
T-ALL P A |
[

Sz o - R
- .
A
l| » e

MLL

Novel —|—’ .‘,':'

E2A-PBX1
TEL-AMLA1

Obtained by performing PCA on the 20 genes chosen for each level
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Childhood ALL Cure Rates ""‘""‘"‘"’

@ e Conventional risk
06\?’ assignment procedure
N requires difficult
N > expensive tests and
.\\'zﬁ\ collective judgement of
\\\{b multiple specialists
é\’b
60& = Not available in less
S\ & ‘ ‘ ‘ advanced ASEAN
QQ,Q° 0% 20% 40% 60% 80%  countries
(;)\Q
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Childhood ALL Treatment Cost =

» Treatment for childhood ALL over 2 yrs
— Intermediate intensity: US$60k
— Low intensity: US$36k
— High intensity: US$72k

* Treatment for relapse: US$150k

o Cost for side-effects: Unquantified

Copyright 2006 © Limsoon Wong
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Current Situation ._.@.._L_E
(2000 new cases/yr in ASEAN)

* Intermediate intensity e US$120m (US$60k * 2000)
conventionally applied in for intermediate intensity
less advanced ASEAN treatment
countries

e US$30m (US$150k * 2000 *
= Over intensive for 50% of 10%) for relapse treatment
patients, thus more side
effects e Total US$150m/yr plus un-
= Under intensive for 10% of quantified costs for
patients, thus more dealing with side effects
relapse

= 5-20% cure rates

Copyright 2006 © Limsoon Wong
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TINUS
Using Our Platform &=

e Low intensity applied to e US$36m (US$36k * 2000 *
50% of patients 50%) for low intensity

« Intermediate intensity to e US$48m (US$60k * 2000 *
40% of patients 40%) for intermediate

« High intensity to 10% of intensity
patients e US$14.4m (US$72k * 2000 *

10%) for high intensity

= Reduced side effects
= Reduced relapse + Total US$98.4m/yr
= 75-80% cure rates = Save US$51.6m/yr
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Gene Expression Profile Clustering

TINUS
s there a new subtype? "'""""“"'

=
~
[

(enes
selected

by 2

e Hierarchical
clustering of
gene expression
profiles reveals a
novel subtype of Tz WL AL Hyperdplo>s)  BCR ov  TeLamLI
childhood ALL

Genes for class distinction (n

New subtype

Exercise; Name and describe discovered
one bi-clustering method
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Hierarchical Clustering -

e Assign each item to its own cluster

— If there are N items initially, we get N clusters,
each containing just one item

* Find the “most similar” pair of clusters, merge
them into a single cluster, so we now have one
less cluster

— “Similarity” is often defined using
» Single linkage
e Complete linkage
* Average linkage

* Repeat previous step until all items are clustered
into a single cluster of size N

Copyright 2006 © Limsoon Wong
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Optfres] Wbyl

Single, Complete, & Average Linka"-"

("5 _.“;3)._ dir,s) =min(df‘.vr(x X ))

2 ey

dir,sy= max(disl(xn, xq.J)

., —
emister ¢ N —_

el # o

Single linkage defines distance Complete linkage defines distance
betw two clusters as min distance betw two clusters as max distance betw
betw them them

Exercise: Give definition of “average linkage”

Image source: UCL Microcore Website

Copyright 2006 © Limsoon Wong
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Selection of Patient Samples and Genes
for Disease Prognosis

Gene Expression Profile

+ Clinical Data
— Outcome Prediction

* Univariate & multivariate Cox survival analysis
(Beer et al 2002, Rosenwald et al 2002)

* Fuzzy neural network (ando etal 2002)

» Partial least squares regression (park et al 2002)

* Weighted voting algorithm (shipp et al 2002)

* Gene index and “reference gene” (Lesianc et al 2003)

Copyright 2006 © Limsoon Wong
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Our Approach &z

All samples

Step1: select training
samples
@ ”
eXtreme Training samples:

long-t d short-t
sample — org form and shor erm
selection

ERCOF/

Testing samples

Step2: identify genes

Genes related to survival

Testand evaiuate
Step3: build SYM scoring Assign risk score and risk
function and form risk groups group to each sample

Draw Kaplan-Meier curves

Copyright 2006 © Limsoon Wong
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Extreme Sample Selection =
Short-term Survivors v.s. Long-term Survivors
Short-term survivors Long-term survivors
who died within a short who were alive after a
period long follow-up time
F(T)<c,and E(T) = 1 F(T) >c,
T: sample

F(T): follow-up time
E(T): status (1:unfavorable; 0: favorable)
¢, and c,: thresholds of survival time

Copyright 2006 © Limsoon Wong
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Fayyad's discretization algoriths
based on dhass entropy

Phase 1
Features without Features with
cut point found cut point found
Discard ‘Wilcoxen Rank Sum Test w
with critical values Chom Gamper
Phase IT

Features with w statistic
i FARGE [ e Eayd

Fi: features with w< Ciues
Fy: features with w= o,

Subgroups construction on
correlation for Fi and Fa,
respectively

MMERCOF

Phase 1T
Entropy-
Based Rank Selection of represemtative
features from each subgrou
.+...Sum Test & -
Correlation
Filtering Ouput repre-
sentative features

Copyright 2006 © Limsoon Wong
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Risk Score Construction ——

Linear Kernel SVM regression function
G(T) =Zai Y, K(T, x(i))+b

T: test sample, x(i): support vector,
y;: class label (1: short-term survivors; -1: long-term survivors)

Transformation function (posterior probability)

S(T) =y (5(T)<(01)

S(T): risk score of sample T
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Diffuse Large B-Cell Lymphoma~ =

e DLBC lymphoma is the e Intl Prognostic Index (IPI)
most common type of — age, “Eastern Cooperative
lymphoma in adults Oncology Group” Performance

status, tumor stage, lactate
dehydrogenase level, sites of

* Can be cured by extranodal disease, ...

anthracycline-based
chemotherapy in 35 to 40
percent of patients

= DLBC lymphoma
comprises several
diseases that differ in
responsiveness to
chemotherapy

Not very good for stratifying
DLBC lymphoma patients for
therapeutic trials

= Use gene-expression
profiles to predict outcome
of chemotherapy?
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Rosenwald et al., NEJM 2002 ——

e 240 data samples
— 160 in preliminary group
— 80 in validation group

— each sample described by 7399 microarray
features

 Rosenwald et al.’s approach
— identify gene: Cox proportional-hazards model
— cluster identified genes into four gene signatures

— calculate for each sample an outcome-predictor
score

— divide patients into quartiles according to score
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Knowledge Discovery from Gene NUS
Expression of “Extreme” Samples

Step1: select training
“extreme” . samples
sample
se I ec“ on: raining samples:
<1 yrvs > 8 yIs |Dﬂu-|ef;l]s’ﬂisusr|;ﬂﬂ-|9fm Testing samples
Genes related to survival
knowledge
N Test and evaluate
discovery
Step3: build SWM il Assi isk i risk
from gene \T e | Mo e e
expression L
T is long-term if S(T) < 0.3
Tisshort-term if S(TY > Q.7

Copyright 2006 © Limsoon Wong
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Discussions: Sample Selection <=

Application Data set Status Total
Dead Alive
DLBCL Original 88 72 160
Informative 47+1(*) 25 73

Number of samples in original data and selected informative training set.
(*): Number of samples whose corresponding patient was dead at the end
of follow-up time, but selected as a long-term survivor.

Copyright 2006 © Limsoon Wong
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Discussions: Gene Identification

Gene selection DLBCL
Original 4937(*)
Phase | 132(2.7%)
Phase Il 84(1.7%)

Number of genes left after feature filtering for each phase.
(*): number of genes after removing those genes who were
absent in more than 10% of the experiments.

Copyright 2006 © Limsoon Wong

p-value of log-rank test: < 0.0001
Risk score thresholds: 0.7, 0.3

Copyright 2006 © Limsoon Wong
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Improvement Over IPI

100+ = 1004 .

g 754 g 754 F——t ‘IIJI‘

£ z

a a

g 59 & 507 —— high risk

g § — low risk

ﬁ': 254 —'—high‘risk g 254
— low risk

vO.U 2:5 5:0 T:5 1(;.0 vD.D 2:5 5:0 775 10..0
Follow-up (years) Follow-up (years)

(A) IPI low, (B) IPI intermediate,
p-value = 0.0063 p-value = 0.0003

Copyright 2006 © Limsoon Wong
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Merit of “Extreme” Samples ——
100+ —— high risk 100+ —— high risk
— low risk L 1~ low risk

Percent survival
[4.]
[=]
3

Percent survival

0.0 25 5.0 7.5 100 0.0 25 5.0 75 10.0
Follow-up (years) Follow-up (years)
(AY W/o sample selection (p =0.38) (B) With sample selection (p=0.009)

No clear difference on the overall survival of the 80 samples in the validation
group of DLBCL study, if no training sample selection conducted

Copyright 2006 © Limsoon Wong
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Conclusion | &z

» Selecting extreme cases as training samples is
an effective way to improve patient outcome
prediction based on gene expression profiles and
clinical information

Copyright 2006 © Limsoon Wong

ls ERCOF Useful? P
Observations from 1000+ Expts

¢ [Feature selection methods ¢ Data sets considered

considered — Colon tumor
— All use all features — Prostate cancer
— All-entropy select features — Lung cancer
whose value range can be .
partitioned by Fayyad & Irani's — Ovarian cancer
entropy method _ DLBC Iymphoma
— Mean-entropy select features
by : — ALL-AML

whose entropy is better than the
mean entropy — Childhood ALL

— Top-number-entropy select Learning methods
the top 20, 50, 100, 200 genes by

their entropy considered
— ERCOF at 5% significant level for — C45
Wilcoxon rank sum test and 0.99 . .
Pearson correlation coeff threshold - Bagglng, Boostlng, Cs4
— SVM, 3-NN

Copyright 2006 © Limsoon Wong
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ERCOF vs All-Entropy e
Experiment SVM  3-NN Bagging AdaBoostM! RandomForests CS4
ColonTumor C AC C C C C
Prostate C C AC AC C C
Lung test C AC A AC C AC
Lung AC C AC C C C
QOvarian AC C AC C C AC
DLBCL C C A C A AC
ALTLAML test AC C AC AC C C
ALLAML AC AC AC (e AC AC
Pediatnic ALL data — test
TALL AC AC AC ] AC AC
EJAPBXI  AC  AC AC AC AC All-entropy
TEL-AMLI1 AC AC AC AC C . .
BCR-ABL AC  C Ac AC C AcC wins 4 times
MLL AC AC C AC C €
Hyperdip>50 AC A AC (& C c
Pediatnc ALL data — 10-fold cross validation

T-ALL AC C AC AC AC C
EJA-PBXI € c AC AC C C ERCOF
TEL-AML1 C C C C C C H H
BORARL o c c c c ac wins 60 times
MLL AC C C C C C
Hyperdip>50 € C AC (& (o AC
Sum —AT Al A2 A Al ~ x6t

C8 CI13 5 TI0 [RE) C:11

Tie:12 Te7 Tiel3 Tie:10 Tie:5 Tie:9
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Btz Unkesralig
ERCOF vs Mean-Entropy =
Experiment SVM  3-NN Baggmmg AdaBoostM! RandomForests CS4
ColonTumer C C B.C C C C
Prostate C B.C C B C B.C
Lung test B.C B.C B B.C C B.C
Lung B.C C B.C B B B.C
Ovartan B.C C B C B.C (&
DLBCL B.C C B B.C C B.C
ATTAMI test B.C C B.C B.C C B.C
ATTAML B.C B B C B B.C
Pediatric ALL data — test
T-ALL B.C B.C B.C B.C B.C B.C
E2A-PBX1 B.C B.C B.C B.C B.C B.C
TEL-AML1 BC BC BC B c c Mean-entropy
BCR-ABL c BC B B.C B.C BC wins 18 times
MLL B.C B.C B.C B.C B.C B.C
Hyperdip>350 BC B B B.C c B.C
Pediatric ALL data — 10-fold cross validarion

T-ALL B.C B B.C B.C B.C B.C
E2A-PBX1 C C B.C B.C C C ERCOF
TEL-ANMI1 C C B.C C C C . .
BCR-ABL c c c B B B wins 42 times
MLL B.C B.C C C B C
Hyperdip>50 C C C B.C C C
Sum —B0__ B3 B6 B4 B4 — BIL £

7 c:9 C4 C3 C:10 C7

Tie:13 Tie:8  Tiecl0 Tie:11 Tie:6 Tie:12

Copyright 2006 © Limsoon Wong



-+ /0y
EBANUS
-i-nn--u

e EnT

Effectiveness of ERCOF

Table 5.32: A summary of the total winning times (including tie cases) of each classifier (under
different feature selection methods) across the 20 validation tests on the six gene expression
profiles and one proteomic data set. The number with bold font in each row indicates the feature
selection method that owns most winning times for the relevant classifier. In the brackets, there
is the total number of misclassified samples across the same 20 validation tests. Similarly, the
figure with bold font in the brackets in each row is the minimum number of total misclassified
samples among feature selection methods for the classifier.

Classifier All All-entropy ~ Mean-entropy Top-number-entropy ERCOF
20 50 100 200

SVM 4(100) 9(52) 11(48) 6(76)  6(74)  11(52) 11(59) 16(38)
3.NN 1(187) 5(87) 8(77) 6(88)  4(81)  6(77)  5(73)  12(61)
Bagging (123)  5(117) 8(115) 11(123)  11(122)  7(122) 9(114) §(112)
AdaBoostM!  5(191)  8(181) 8(166) 11(138)  10(144) 10(157) 9(162) 10(154)
RandomForests  0(228)  5(111) 5(93) 6(96)  7(83)  B(96)  5(90)  9(80)
cs4 5(87) 6(77) 6(76) 7(101)  10(81)  9(74)  8(74)  12(66)
Total wins 22 38 46 47 48 51 47 67
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Conclusion 2 & i

« ERCOF is very suitable for SVM, 3-NN, CS4,
Random Forest, as it gives these learning algos
highest no. of wins

« ERCOF is suitable for Bagging also, as it gives
this classifier the lowest no. of errors

= ERCOF is a systematic feature selection method
that is very useful

Copyright 2006 © Limsoon Wong
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