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Lecture at Yang Ming National University, Taipei, June 2006

For written notes on this lecture, please read chapter 14 of The Practical Bioinformatician,

Knowledge Discovery Techniques
for Bioinformatics, Part IV:

Gene Expression Analysis

Limsoon Wong
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Plan 

• Microarray background
• Gene expression profile classification
• Gene expression profile clustering
• Extreme sample selection
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Background on Microarrays
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What’s a Microarray?

• Contain large number of DNA molecules spotted 
on glass slides, nylon membranes, or silicon 
wafers

• Detect what genes are being expressed or found 
in a cell of a tissue sample

• Measure expression of thousands of genes 
simultaneously
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A Sample Affymetrix GeneChip
Data File (U95A)
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Type of Gene Expression Datasets

~CancerSampleN

~Cancer

.

1.3CancerSample2

-0.120.78-3.21.01.7-1.30.12CancerSample1

.....Gene7Gene6Gene5Gene4Gene3Gene2Gene1Class

1000 - 100,000 columns

100-500 
rows

Gene-Conditions or Gene-Sample (numeric or discretized)

Gene-Sample-TimeGene-Time

time

expression level
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Type of Gene Expression Datasets
1000 - 100,000 columns

100-500 
rows

Gene-Conditions or Gene-Sample (numeric or discretized)

CondN

.

1.3Cond2

-0.120.78-3.21.01.7-1.30.12Cond1

Gene7Gene6Gene5Gene 4Gene3Gene2Gene1

Gene-Sample-TimeGene-Time

time

expression level
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Type of Gene Expression Datasets
1000 - 100,000 columns

100-500 
rows

Gene-Conditions or Gene-Sample (numeric or discretized)

~CancerSampleN

~Cancer

.

1CancerSample2

0011101CancerSample1

.....Gene7Gene6Gene5Gene4Gene3Gene2Gene1Class

Gene-Sample-TimeGene-Time

time

expression level
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Gene Expression Profile Classification

Diagnosis of Childhood Acute 
Lymphoblastic Leukemia and Optimization 

of Risk-Benefit Ratio of Therapy
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• The subtypes look similar

• Conventional diagnosis
– Immunophenotyping
– Cytogenetics
– Molecular diagnostics

• Unavailable in most 
ASEAN countries

Childhood ALL
• Major subtypes: T-ALL, 

E2A-PBX, TEL-AML, BCR-
ABL, MLL genome 
rearrangements, 
Hyperdiploid>50

• Diff subtypes respond 
differently to same Tx

• Over-intensive Tx
– Development of 

secondary cancers
– Reduction of IQ

• Under-intensiveTx
– Relapse
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Mission

• Conventional risk assignment procedure requires 
difficult expensive tests and collective judgement 
of multiple specialists

• Generally available only in major advanced 
hospitals

⇒ Can we have a single-test easy-to-use platform 
instead?
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Single-Test Platform of
Microarray & Machine Learning
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Overall Strategy

• For each subtype, select 
genes to develop 
classification model for 
diagnosing that subtype

• For each subtype, select 
genes to develop 
prediction model for 
prognosis of that subtype

Diagnosis 
of subtype

Subtype-
dependent
prognosis

Risk-
stratified
treatment
intensity
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Subtype Diagnosis by PCL

• Gene expression data collection

• Gene selection by χ2

• Classifier training by emerging pattern

• Classifier tuning (optional for some machine 
learning methods)

• Apply classifier for diagnosis of future cases by 
PCL
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Childhood ALL Subtype 
Diagnosis Workflow

A tree-structured
diagnostic 
workflow was 
recommended by
our doctor 
collaborator
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Training and Testing Sets
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Signal Selection Basic Idea

• Choose a signal w/ low intra-class distance
• Choose a signal w/ high inter-class distance

Lecture at Yang Ming National University, Taipei, June 2006 Copyright 2006 © Limsoon Wong

18

Signal Selection by  χ2
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Emerging Patterns

• An emerging pattern is a set of conditions
– usually involving several features
– that most members of a class satisfy 
– but none or few of the other class satisfy

• A jumping emerging pattern is an emerging 
pattern that 
– some members of a class satisfy
– but no members of the other class satisfy

• We use only jumping emerging patterns
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Examples

Reference number 9: the expression of gene 37720_at > 215
Reference number 36: the expression of gene 38028_at <= 12

Patterns Frequency (P) Frequency(N)
{9, 36} 38 instances 0
{9, 23} 38 0
{4, 9} 38 0
{9, 14} 38 0
{6, 9} 38 0
{7, 21} 0 36
{7, 11} 0 35
{7, 43} 0 35
{7, 39} 0 34
{24, 29} 0 34

Easy interpretation
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PCL: Prediction by Collective Likelihood

Lecture at Yang Ming National University, Taipei, June 2006 Copyright 2006 © Limsoon Wong

22

PCL Learning

Top-Ranked EPs in
Positive class

Top-Ranked EPs in
Negative class

EP1
P (90%)

EP2
P (86%)

.

.
EPn

P (68%)

EP1
N (100%)

EP2
N (95%)

.

.
EPn

N (80%)

The idea of summarizing multiple top-ranked EPs is intended
to avoid some rare tie cases
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PCL Testing

ScoreP = EP1
P’ / EP1

P + … + EPk
P’ / EPk

P

Most freq EP of pos class
in the test sample

Most freq EP of pos class

Similarly, 
ScoreN = EP1

N’ / EP1
N + … + EPk

N’ / EPk
N

If ScoreP > ScoreN, then positive class, 
Otherwise negative class
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Accuracy of PCL (vs. other classifiers)

The classifiers are all applied to the 20 genes selected 
by χ2 at each level of the tree
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Understandability of PCL

• E.g., for T-ALL vs. OTHERS, one ideally 
discriminatory gene 38319_at was found, 
inducing these 2 EPs

• These give us the diagnostic rule
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Multidimensional Scaling Plot 
for Subtype Diagnosis

Obtained by performing PCA on the 20 genes chosen for each level
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Childhood ALL Cure Rates

• Conventional risk 
assignment procedure 
requires difficult 
expensive tests and 
collective judgement of 
multiple specialists

⇒ Not available in less 
advanced ASEAN 
countries0% 20% 40% 60% 80%

sin
gapore

indonesia
thail

andca
mbodia

cure rate
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Childhood ALL Treatment Cost

• Treatment for childhood ALL over 2 yrs
– Intermediate intensity: US$60k
– Low intensity: US$36k
– High intensity: US$72k

• Treatment for relapse: US$150k

• Cost for side-effects: Unquantified
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Current Situation 
(2000 new cases/yr in ASEAN)

• Intermediate intensity 
conventionally applied in 
less advanced ASEAN 
countries

⇒ Over intensive for 50% of 
patients, thus more side 
effects

⇒ Under intensive for 10% of 
patients, thus more 
relapse

⇒ 5-20% cure rates

• US$120m (US$60k * 2000) 
for intermediate intensity 
treatment

• US$30m (US$150k * 2000 * 
10%) for relapse treatment

• Total US$150m/yr plus un-
quantified costs for 
dealing with side effects
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Using Our Platform
• Low intensity applied to 

50% of patients
• Intermediate intensity to 

40% of patients
• High intensity to 10% of 

patients

⇒ Reduced side effects
⇒ Reduced relapse
⇒ 75-80% cure rates

• US$36m (US$36k * 2000 * 
50%) for low intensity

• US$48m (US$60k * 2000 * 
40%) for intermediate 
intensity

• US$14.4m (US$72k * 2000 * 
10%) for high intensity

• Total US$98.4m/yr
⇒ Save US$51.6m/yr
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Gene Expression Profile Clustering

Novel Disease Subtype Discovery

Lecture at Yang Ming National University, Taipei, June 2006 Copyright 2006 © Limsoon Wong

32

Is there a new subtype?

• Hierarchical 
clustering of 
gene expression 
profiles reveals a 
novel subtype of 
childhood ALL

Exercise: Name and describe 
one bi-clustering method
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Hierarchical Clustering

• Assign each item to its own cluster
– If there are N items initially, we get N clusters, 

each containing just one item
• Find the “most similar” pair of clusters, merge 

them into a single cluster, so we now have one 
less cluster 
– “Similarity” is often defined using

• Single linkage
• Complete linkage
• Average linkage

• Repeat previous step until all items are clustered 
into a single cluster of size N
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Single, Complete, & Average Linkage

Single linkage defines distance
betw two clusters as min distance
betw them 

Complete linkage defines distance
betw two clusters as max distance betw
them 

Exercise: Give definition of  “average linkage”

Image source: UCL Microcore Website
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Selection of Patient Samples and Genes 
for Disease Prognosis
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Gene Expression Profile 
+ Clinical Data 

⇒ Outcome Prediction

• Univariate & multivariate Cox survival analysis 
(Beer et al 2002, Rosenwald et al 2002)

• Fuzzy neural network (Ando et al  2002)

• Partial least squares regression (Park et al 2002)

• Weighted voting algorithm (Shipp et al 2002)

• Gene index and “reference gene” (LeBlanc et al 2003)

• ……
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Our Approach

“extreme”
sample
selection

ERCOF
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Short-term Survivors v.s. Long-term Survivors

T: sample
F(T): follow-up time

E(T): status (1:unfavorable; 0: favorable)
c1 and c2: thresholds of survival time

Short-term survivors
who died within a short

period

F(T) < c1 and E(T) = 1

⇓

Long-term survivors
who were alive after a 

long follow-up time

F(T) > c2

⇓

Extreme Sample Selection
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ERCOF
Entropy-

Based Rank 
Sum Test & 
Correlation 

Filtering

Remove genes with 
expression values w/o 
cut point found (can’t 
be discretized)

Calculate Wilcoxon
rank sum w(x) for gene 
x. Remove gene x if 
w(x)∈ [clower, cupper]

Group features by 
Pearson Correlation 
For each group, retain 
the top 50% wrt class 
entropy
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Linear Kernel SVM regression function
bixTKyaTG i

i
i +=∑ ))(,()(

T: test sample, x(i): support vector,
yi: class label (1: short-term survivors; -1: long-term survivors)

Transformation function (posterior probability)

)(1
1)( TGe

TS −+
= ))1,0()(( ∈TS

S(T): risk score of sample T

Risk Score Construction
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Diffuse Large B-Cell Lymphoma
• DLBC lymphoma is the 

most common type of 
lymphoma in adults

• Can be cured by 
anthracycline-based 
chemotherapy in 35 to 40 
percent of patients

⇒ DLBC lymphoma 
comprises several 
diseases that differ in 
responsiveness to 
chemotherapy

• Intl Prognostic Index (IPI) 
– age, “Eastern Cooperative 

Oncology Group” Performance 
status, tumor stage, lactate 
dehydrogenase level, sites of 
extranodal disease, ... 

• Not very good for stratifying 
DLBC lymphoma patients for 
therapeutic trials

⇒ Use gene-expression 
profiles to predict outcome 
of chemotherapy?
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Rosenwald et al., NEJM 2002

• 240 data samples
– 160 in preliminary group
– 80 in validation group
– each sample described by 7399 microarray 

features
• Rosenwald et al.’s approach

– identify gene: Cox proportional-hazards model
– cluster identified genes into four gene signatures
– calculate for each sample an outcome-predictor 

score
– divide patients into quartiles according to score
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Knowledge Discovery from Gene 
Expression of “Extreme” Samples

“extreme”
sample
selection:
< 1 yr vs > 8 yrs

knowledge
discovery 
from gene 
expression

240 
samples

80 
samples26 long-

term survivors

47 short-
term survivors

7399
genes

84
genes

T is long-term if S(T) < 0.3
T is short-term if S(T) > 0.7
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732547+1(*)Informative

1607288OriginalDLBCL

AliveDead

TotalStatusData setApplication

Number of samples in original data and selected informative training set.
(*): Number of samples whose corresponding patient was dead at the end 
of follow-up time, but selected as a long-term survivor.

Discussions: Sample Selection 
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84(1.7%)Phase II

132(2.7%)Phase I

4937(*)Original

DLBCLGene selection

Number of genes left after feature filtering for each phase.
(*): number of genes after removing those genes who were 
absent in more than 10% of the experiments.

Discussions: Gene Identification
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p-value of log-rank test: < 0.0001
Risk score thresholds: 0.7, 0.3

Kaplan-Meier Plot for 80 Test Cases
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(A) IPI low, 
p-value = 0.0063

(B) IPI intermediate,
p-value = 0.0003

Improvement Over IPI
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(A) W/o sample selection (p =0.38) (B) With sample selection (p=0.009)

No clear difference on the overall survival of the 80 samples in the validation 
group of DLBCL study, if no training sample selection conducted

Merit of “Extreme” Samples
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Conclusion I 

• Selecting extreme cases as training samples is 
an effective way to improve patient outcome 
prediction based on gene expression profiles and 
clinical information
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Is ERCOF Useful? 
Observations from 1000+ Expts

• Feature selection methods 
considered
– All use all features

– All-entropy select features 
whose value range can be 
partitioned by Fayyad & Irani’s
entropy method

– Mean-entropy select features 
whose entropy is better than the 
mean entropy

– Top-number-entropy select 
the top 20, 50, 100, 200 genes by 
their entropy

– ERCOF at 5% significant level for 
Wilcoxon rank sum test and 0.99 
Pearson correlation coeff threshold

• Data sets considered
– Colon tumor
– Prostate cancer
– Lung cancer
– Ovarian cancer
– DLBC lymphoma
– ALL-AML
– Childhood ALL

• Learning methods 
considered
– C4.5
– Bagging, Boosting, CS4
– SVM, 3-NN
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ERCOF vs All-Entropy

All-entropy
wins 4 times

ERCOF 
wins 60 times
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ERCOF vs Mean-Entropy

Mean-entropy
wins 18 times

ERCOF 
wins 42 times
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Effectiveness of ERCOF

22Total wins 38 46 47 48 51 47 67
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Conclusion 2

• ERCOF is very suitable for SVM, 3-NN, CS4, 
Random Forest, as it gives these learning algos
highest no. of wins

• ERCOF is suitable for Bagging also, as it gives 
this classifier the lowest no. of errors

⇒ ERCOF is a systematic feature selection method 
that is very useful
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Any Question?
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