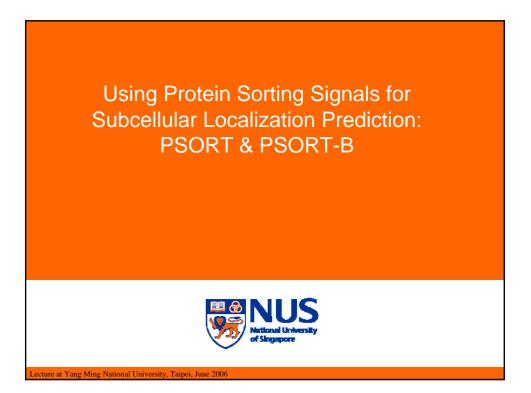
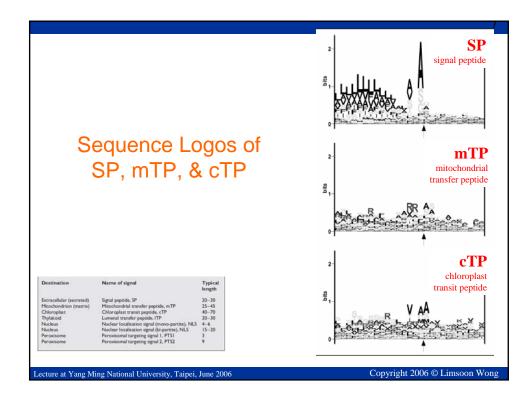
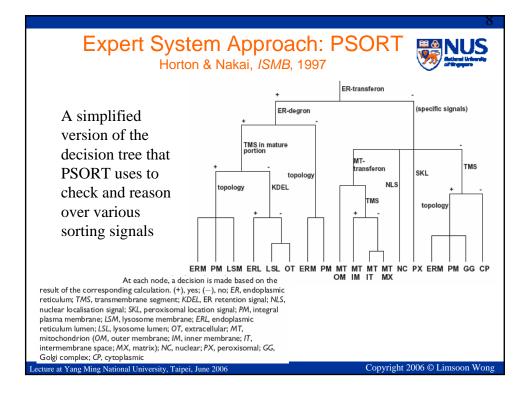

For written notes on this lecture, please read Chapter 9 of *The Practical Bioinformatician* Knowledge Discovery Techniques for Bioinformatics, Part V-1: Applications to Protein Subcellular Localization Prediction

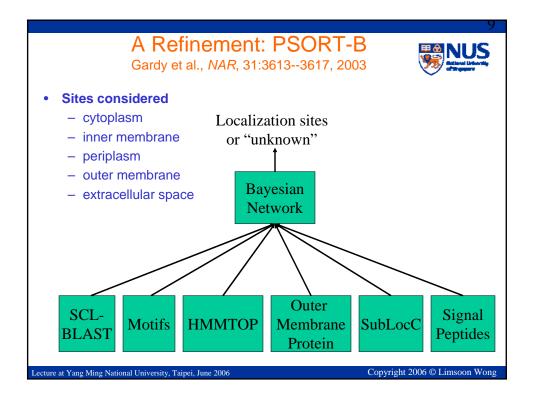

Limsoon Wong

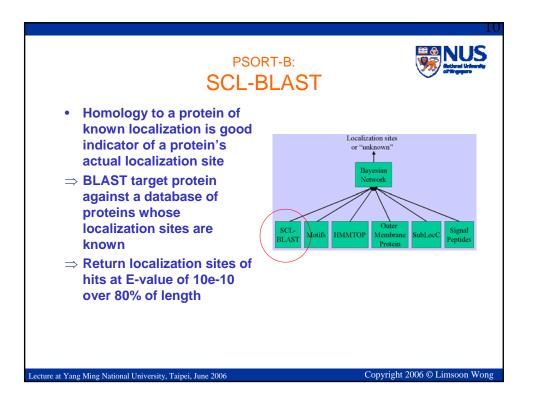
e at Yang Ming National University, Taipei, June 2006

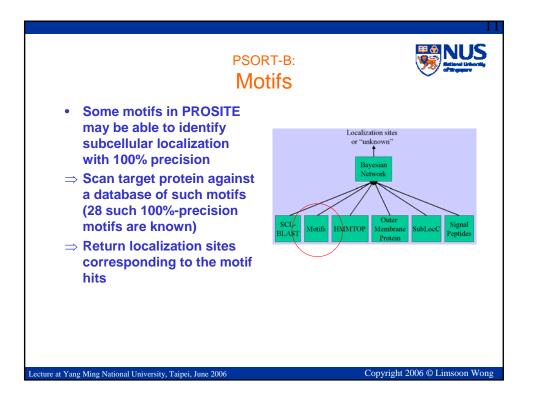
Common Eukaryotic Protein Sortir

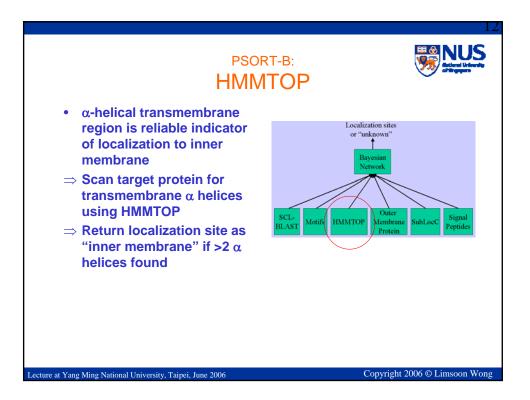

Destination	Name of signal	Typical length
Extracellular (secreted)	Signal peptide, SP	20-30
Mitochondrion (matrix)	Mitochondrial transfer peptide, mTP	25-45
Chloroplast	Chloroplast transit peptide, cTP	40-70
Thylakoid	Lumenal transfer peptide, ITP	20-30
Nucleus	Nuclear localisation signal (mono-partite), NLS	4-6
Nucleus	Nuclear localisation signal (bi-partite), NLS	15-20
Peroxisome	Peroxisomal targeting signal 1, PTS1	3
Peroxisome	Peroxisomal targeting signal 2, PTS2	9

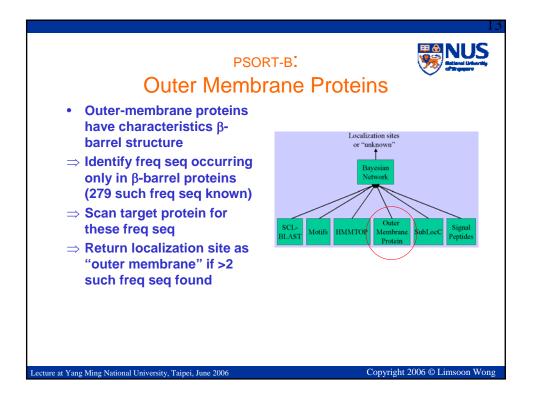

For a comprehensive list of cellular localization sites, see http://mendel.imp.univie.ac.at/CELL_LOC/index.html

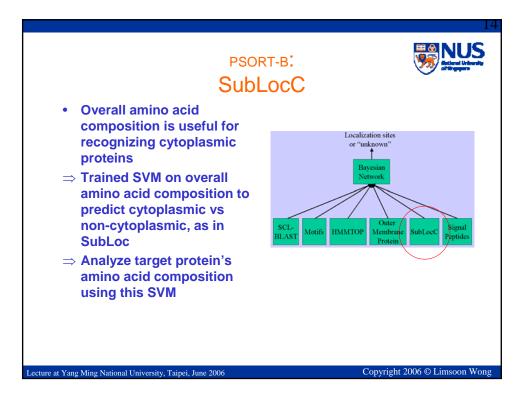

ecture at Yang Ming National University, Taipei, June 2006

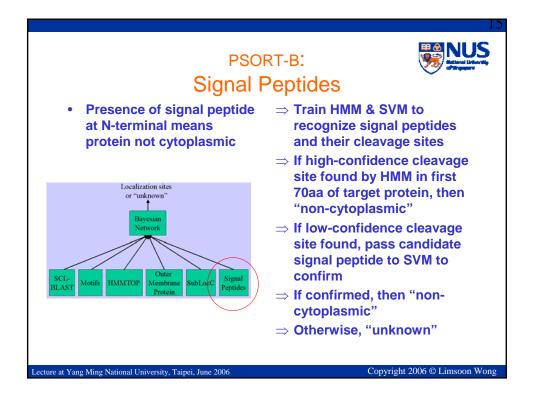

Copyright 2006 © Limsoon Wong

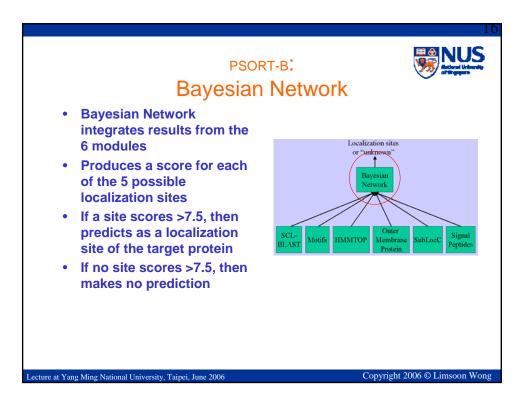

AxA secretory pathway -25aa mitochondrial matrix + R ~8aa mitochondria matrix **Schematic** mitochondria IMS View of chloroplast stroma VRATAAV Sorting Signals VRATAAV AxA thylakoid lumen SKL C peroxisome (PTS1) RLxxxxHL ¥ peroxisome (PTS2) Name of signa Typic lengt ŧ cleavage site 20-30 25-45 40-70 20-30 SP / IMS targeting / ITP hydrophobic region mTP (amphipathic α -helix) сТР 4-6 15-20 22222 MIP processed peroxisomal targeting signal Copyright 2006 © Limsoon Wong re at Yang Ming National University, Taipei, June 2006

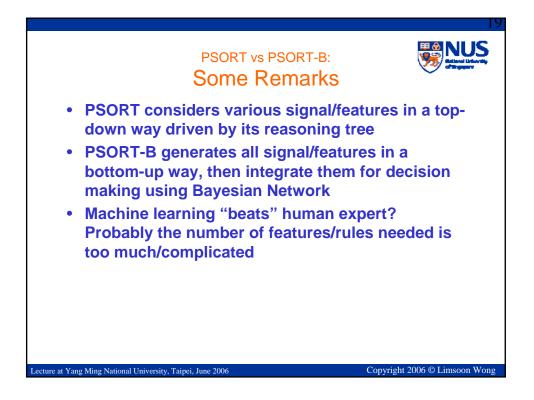


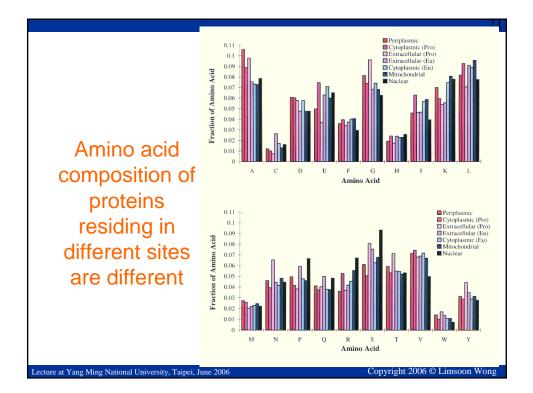


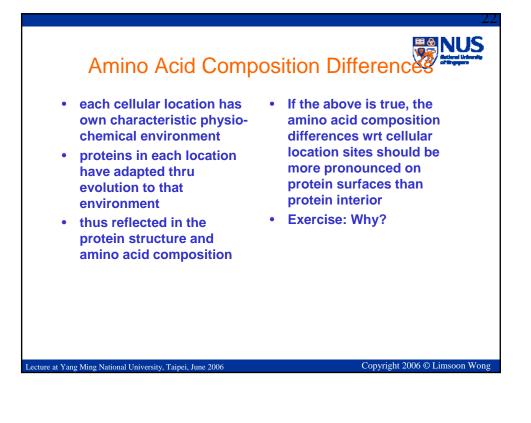









Module	Precision	Recal
SubLocC	78.6	74.2
HMMTOP	99.4	65.3
Motif	100.0	6.5
OMP Motif	100.0	23.6
SCL-BLAST	96.7	60.4
Signal	87.0	98.2


		ation Sites	Andered University
nsiderable imp	provement o	ver original PS	SORT
PSORT I Precision	Recall	PSORT-B Precision	Recall
59.7	75.4	97.6	69.4
55.4	95.1	96.7	78.7
60.9	66.4	91.9	57.6
65.3	54.5	98.8	90.3
0.0	0.0	94.4	70.0
59.6	60.9	96.5	74.8
Dataset: Gard	ly et al., <i>NA</i>	R, 2003	
	nance wrt nsiderable imp PSORT I Precision 59.7 55.4 60.9 65.3 0.0 59.6	PSORT I Recall Precision 75.4 55.4 95.1 60.9 66.4 65.3 54.5 0.0 0.0 59.6 60.9	nance wrt Localization Sitesnsiderable improvement over original PSPSORT I PrecisionRecall Precision59.775.4 95.1 96.759.4 60.995.1 66.4 91.965.3 6.3 0.054.5 98.8 0.0

Using Amino Acid Composition for Subcellular Localization Prediction: NNPSL, SubLoc, & Function Domain Composition

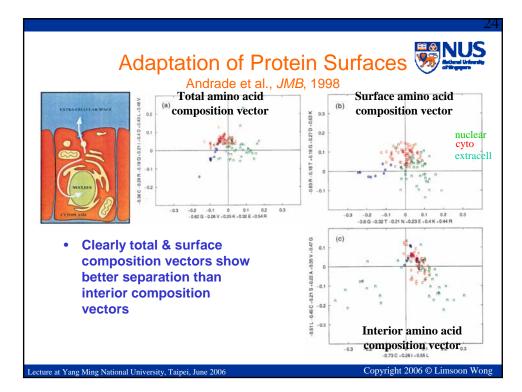
Adaptation of Protein Surfaces

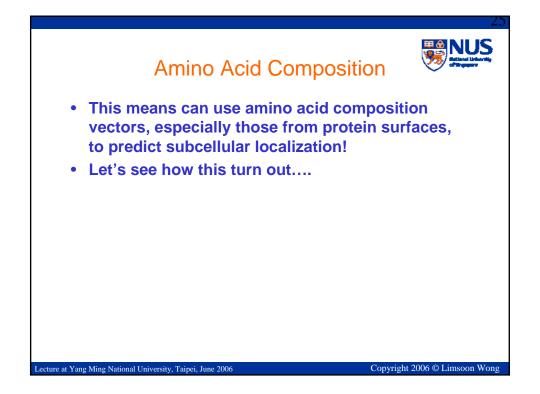
Andrade et al., JMB, 1998

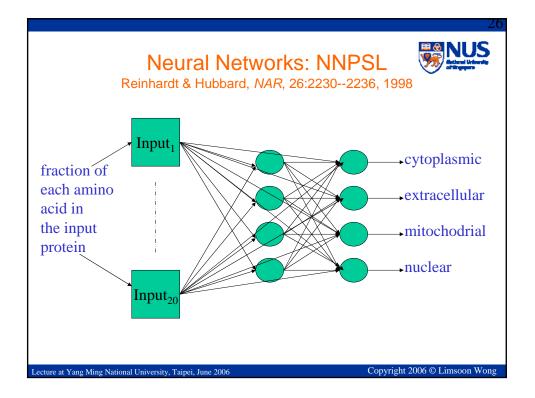
To test the • theory of adaptation of protein surfaces to subcellular localization, we do a plot of 3 types of composition vectors along their first two principal components

cture at Yang Ming National University, Taipei, June 2006

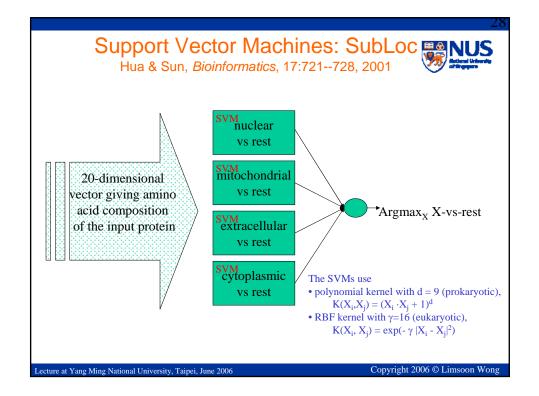
composition vectors were calculated for all proteins; these were then used to define a sample variance-co-variance matrix, S, as follows:

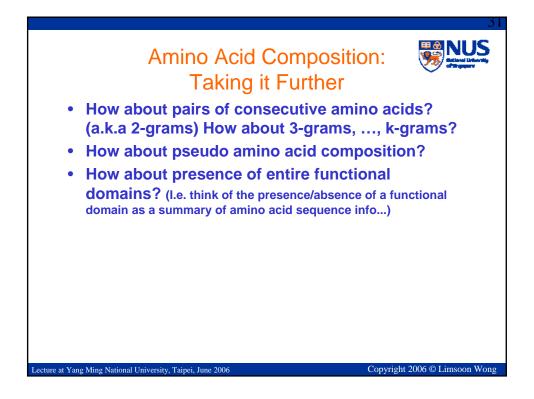

$$\mathbf{S} = \{s_{jk}\} = \left\{\sum_{i=1}^{n} (c_{ij} - \bar{c}_j)(c_{ij} - \bar{c}_k)/n\right\}$$
(2)

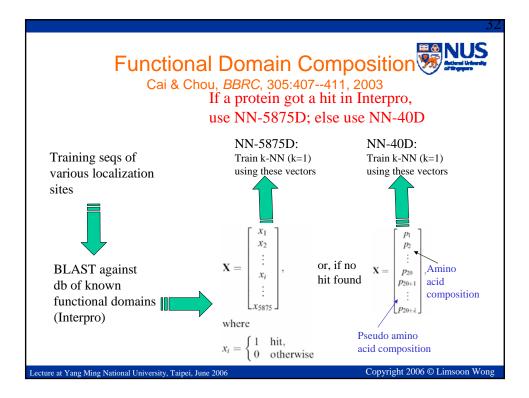

where:


$$\bar{c}_j = \frac{1}{n} \sum_{i=1}^{n} c_{ij}$$
 Proportion of
jth amino acid
type in ith protein(3)

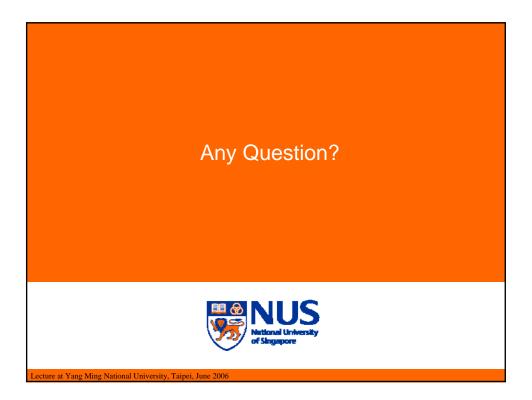
Copyright 2006 © Limsoon Won

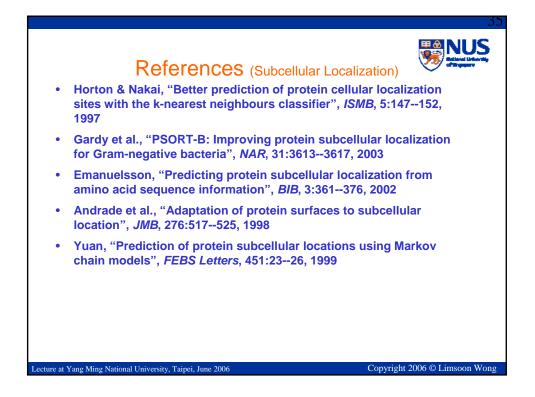

is the average composition of the *j*th amino acid type over the *n* proteins in the data set. The principal components of the set of composition vectors are then the Eigenvectors of S

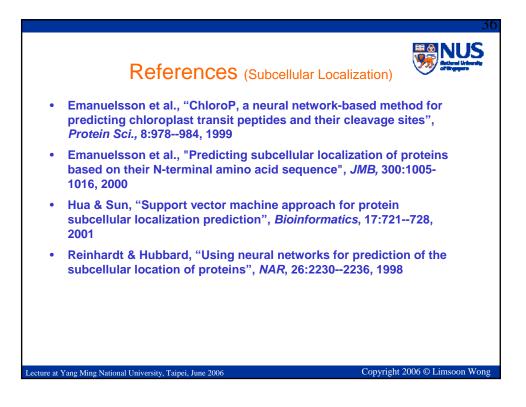

	NNPSL:		
F	P <u>erformance</u>		
Outputs of NNPSL		Eukaryotic Proteins	Prokaryotic Proteins
have values 0 to 1.	Overall Prediction Accuracy	66.1	80.9
		$[\sigma = 1.59]$	$[\sigma = 1.99]$
The difference (Δ)	Prediction Accuracy Reliability Group 1	51.1	59.1
between the	$0 < \Delta < 0.2$	$[\sigma = 6.05]$	$[\sigma = 9.34]$
highest and the	Prediction Accuracy Reliability Group 2	57.9	71.2
next highest	$0.2 < \Delta < 0.4$	[σ = 3.04]	$[\sigma = 11.11]$
nodes can be used	$\begin{array}{l} \mbox{Prediction Accuracy Reliability Group 3}\\ 0.4 < \Delta < 0.6 \end{array}$ $\begin{array}{l} \mbox{Prediction Accuracy Reliability Group 4}\\ 0.6 < \Delta < 0.8 \end{array}$	68.7	78.1
as a reliability		[σ = 4.56]	$[\sigma = 6.55]$
index		82.5	91.0
		[$\sigma = 2.47$]	[σ = 2.85]
	Prediction Accuracy Reliability Group 5 $0.8 < \Delta < 1$	81.9	84.9
	$0.8 < \Delta < 1$	$[\sigma = 4.33]$	$[\sigma = 2.18]$
Dataset:			
Reinhardt & Hubbard, NAR, 1998	Summary of the prediction accuracy ac and prokaryotic sequences. Shown is t various reliability groups together with validation tests.	he overall accuracy	and the accuracy for
at Yang Ming National University, Taipei, June		Copyright 2	006 © Limsoon

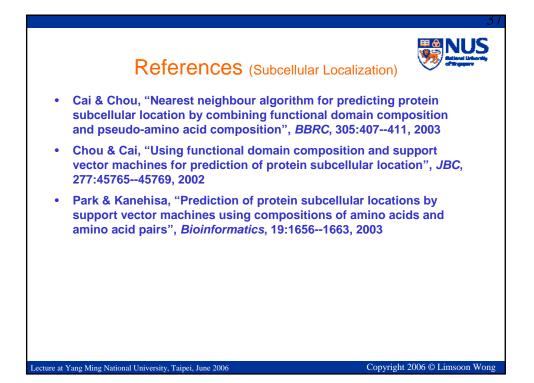


Performance					
Location (Eukaryotic)	NNPSL	Markov model	SubLoc		
	Accuracy (%)	Accuracy (%)	Accuracy (%)		
Cytoplasmic	55	78.1	76.9		
Extracellular	75	62.2	80.0		
Mitochondrial	61	69.2	56.7		
Nuclear	72	74.1	87.4		
Total accuracy	66	73.0	79.4		


Lecture at Yang Ming National University, Taipei, June 2006 Copyright 2006 © Limsoon Wong


	Accuracy (%)				
	Total	Cyto	Extra	Mito	Nuclea
COMPLETE	78.3	76.7	77.2	56.4	86.0
CUT-10	77.2	74.0	77.8	52.7	86.1
CUT-20	76.3	73.2	78.5	51.4	84.8
CUT-30	76.1	72.5	76.3	50.5	85.8
CUT-40	75.3	71.5	74.2	46.7	86.3
Amazingly, a first 10, 20, 3 Amino acid c localization, a	0, & 40 ami ompositior	no acids in ۱ is a robus	a protein a st indicator	are deleted of subcellu	ular





	Functional Do Perfe	omain Comp Ormance		
Investigators	Prokaryotic set ^b		Eukaryotic set ^e	
	Re-substitution (%)	Jackknife (%)	Re-substitution (%)	Jackknife (%)
Chou and Elrod [6]	90.4	86.5	N/A	N/A
Yuan [22]	N/A	89.1	N/A	73.0
Cai and Chou [23]	96.1	84.4	95.6	70.6
Feng [24]	93.5	89.2	N/A	N/A
Feng and Zhang [25]	97.7	90.4	N/A	N/A
Hua and Sun [26]	N/A	91.4	N/A	79.4
Authors of this paper	100	89.3	100	90.4
3 mi i , , , , , , , , , , , , , , , , ,	Dataset: Reinha	ardt & Hubb	ard, <i>NAR</i> , 1998	
ture at Yang Ming National Univ	rersity, Taipei, June 2006		Copyright 200	6 © Limsoon Wo

