Discovering Motif Pairs at Interaction
Sites from Protein Sequences on a
Proteome-Wide Scale
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* Mining interacting protein groups

* Generating motif pairs

* Results and validation
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Motivation from Biology
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EINUS
Binding Sites G

» Discovery of binding sites
is a key part of
understanding
mechanisms of protein

Computational Methods

. . Sequence based
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[ v Y pomain \?
« Structure-based St[ﬁe \.Eim” J\_ Interactions /
approaches Oocking)ll S S
— E.g., docking

— Relatively accurate Complex
— Struct must be known e

= Sequence-based
approaches
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Typical Sequence-Based Approack’ ==

» Typical seq-based approaches have two steps:

— Use pattern discovery algorithms to discover
domains and/or motifs of a group of proteins
— Use domain-domain interaction discovery

methods (e.g., domain fusion) to discovery
interacting domains

* Shortcomings:

— Protein interaction information is not used by motif
discovery algorithms

— Exact positions of binding sites often not
recognized
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ERANUS
How about ... &z

 How about making use of known protein-protein
bindings to guide the discovery of binding
motifs?
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Yeast SH3 domain-domain 8 proteins containing SH3
Interaction network: 5 binding at least 6 of them

394 edges, 206 nodes

Tong et al. Science, v295. 2002
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ERANUS
85 s

Bipartite Subgraphs

SH3 Proteins SH3-Binding
Yii024c @ Proteins

The larger this group,
the more likely their
active sites will show
up clearly in a multiple
alignment?
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Problem Statement ——

Given a PPl expt E, the problem is

(1) To find all pairs X, Y of interacting protein groups,
so that

(1.1) every protein in X interacts with every
proteininy, &

(1.2) Xand Y are as large as possible

&

(2) To identify “good” binding motif pairs from
these pairs of interacting protein groups
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Recasting as a Graph Theory Problem

PPI Expt As a Graph

* PPl expt E as undirected graph GE = (VE, DF),
— where VE are the proteins and DE the
edges,

— so that two proteins are connected in GE iff
there is a binding betw them in PPl expt E

* Let LE(p) denote neighborhood of protein p in GE

« Let LE(P) = 1,5 LE(p) denote the common
neighborhood of all proteins in P in GE
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EBANUS
Maximality G
e Proposition 2.1
Let E be a PPI expt.
Let X,Y be a pair of protein groups so that X =
LE(Y) and Y = LE(X).
Let X',Y’ be another pair of protein groups so that
X =LE(Y), Y =LEX), Xc X, &Y' .
Then X=X and Y =Y".

= In other words, if X = LE(Y) and Y = LE(X), then
X,Y is a maximal pair of protein groups that have
full interactions
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NS

Problem Statement . o=
Given a PP expt E, the problem is RecaStlng .
{1&9‘:’ng1§ ig ;t)r?;rts X, ¥ of interacting protein G rap h T h e O ry

| —(1.1) every protein in X interacts with every
—\(1 .2) r:tned?:r:'a&s large as possible
&
ooy gt g et o g * X, Yis apairof
A. interacting protein
groups in PPI expt

Maximality E iff X = LE(Y) and
* Proposition 2.1
& lels.)"-.o;aPi'l expt. Let XY be a pair of Y = LE(X)

1.1 protein groups so that X = LE(Y) and ¥ = LE[X}
Let X'.Y" be ancther pair of protein groups so
that X' = LE[Y"), Y' = LE(X'), Xc X, &Y' c ¥

1.2 ThenX=XandY=Y'

= In other words, if X = LE(Y) and ¥ = LE(X), then
X.Y is a maximal pair of protein groups that
have full interactions
A.
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L EIINUS
Max Complete Bipartite Subgrapl®/=="—

e Agraph H=(V,uV,, D") is a maximal complete
bipartite subgraph of G iff

— H is a subgraph of G,

—V,;xV, =DH,

-VinV,={} &

—Thereisno H' = (V';u V', DM) with V, < V',
&V, c V', that has the same properties

above
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Max Complete Bipartite Subgraph E-lé
o Engepe

« Agraph H=(V,uV,, DM is a maximal

complete bipartite subgraph of G iff The CO n n eCtIO n to

—H is a subgraph of G,

V=V, =D,
e Graph Theory
Thereis no H' = (VU V', D¥)with V, € V',
&V, = V', that has the same properties

e « X, Yis apair of
interacting protein

Let H = (X UY, D[ , ) be groups in PPI expt
subgraph of GE with X,Y a pair E iff H=(X LY, Xx
of interacting protein groups Y ) is max complete

= X=LE(Y)and Y = LE(X) bipartite subgraph
= Full interactions betw X & Y of GE

= XxY=DF, v
e By excluding self-binding, we
have XnY ={}
By Prop 2.1, we have H is max
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Therefore ... But ...

» Therefore, to find pairs of interacting protein
groups, we can use algorithms from graph theory
for enumerating maximal complete bipartite
subgraphs

» According to Eppstein 1994, this has complexity
O(a3222n), where a is the aboricity of the graph
and n the number of vertices

¢ This is inefficient because a is often around 10-20
in practice
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Recasting as a Data Mining Problem
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FINUS
From PPI Expts To Transactions~ =

* In PPl expt E, we obtain for each protein p, a list
LE(p) of proteins that bind p
— assume p&LE(P), as such expts are not intended to detect seif-binding
— assume gelLE(p) implies pe LE(Q), as binding is symmetric

* LE(p) can be thought of as a transaction & t&(p) as
the “id” of this transaction

= E can be thought of as generating a db of
transactions DE = {t&(p,), ..., t8(p,)}, where p,, ..., p,
are all the proteins involved in E

= a set of proteins X can be thought of as a pattern
in DE if there is t&(p)e DE st X < LE(p)
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TINUS
Example &=

» Consider expt E with 5 proteins py, ..., Ps, St p,
and p; bind every protein except themselves

° Then DE IOOkS ||ke th|S (as a matrix).

| | o1 | p2 [ o | s | ps |

tm ) /] i ! 0 0
tipa) ) 0| 7 1 |
tipa) 1 1 a1 1
tpa) 0| I ! 0| 0
tips) 0| 7 1 0| 0
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TINUS
Notations Sebor

» Let sF(d) denote the protein p st tf(p) =d

= sE(t5(p)) =p

o Let tE(X) denote the set {t&(p) | pe X} of
transaction id’s, where X is a pattern in DE

e Let sE(T) denote the pattern {s&(d) | deT}

* Let [|p]]E denote the set {t&(q) | peLE(q)} of
transactions in DE in which p occurs

= t&(p)e [|q[]® implies t5(q)<[|p|]®

« Let [IX[]E denote the set (1, [|p]E of transactions
in which the pattern X occurs

= tE(Y)[|X|]E implies tE(X)]| Y|]E

Copyright 2006 © Limsoon Wong

74
INUS
Closed Patterns O e

o Let [X]IE={Y |[|Y|IE = [|X|]E} denote the equivalence
class of the pattern X in DE

» A pattern X is said to be a closed pattern of DE iff X
= closed&(X), where {closed&(X)} = max [X]E

Tahle 1: A wansaction davabase T7 - .z;,’/ .
Transaction-1d Items l-ai..r 'l
Ty a,e,d ,.} ."’ e
Iz bee ialgg it ﬁ‘i‘_
Iz a.b.c.e f ISR s~ ;'\ /1
Ta (X3 LNy rv:’{ y c’
' A V. \J R S W K
Ts a,b e e w abel  abe ace2] *inxﬁ iR
Pl
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EINUS
Key Proposition G

e Proposition 3.2
Let X be a closed pattern in DE.
Then X'= s [|s& [|X]]F []5
sEIIXIIF

v pi [ pa]pa]ps
[l X |] tp) | 0 LN ]
\J( pa) q 0 I 1 i
tpa) 1 1
tpy | O\ Z [ Z |00
o) 1OV I/ T 00

[Is=IXITEIE
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INUS
Proof & i

Lemma 3.1 [[\’]] = [s¥([s* ﬂ\’]] ']] ]]

Proof: First we prove [X]% C [« ([sZ([XT5)]F)]E. Suppose d € [<Z ([sZ([X]%)])]F. Suppose d <
[sZ(IX15)]F. Suppose d’ < [X]F. We have (i) d’ € [sF (d")[F and (i) d € [sZ(d')]". By the symmeny
of high-throughput protein- pfofef‘? interaction experiments, we also have (iii) d" € [[s (d") ]] and (iv) d' €

[s(d)]®. Note that d, d', and d" are arbitrary. Thus from (iii) we ger d” € [, c[SE([-\]EJ]E [s= (@] ®

Myerr qorxre 1117 = [F AP XTI Honce [XT7 <[5 (15 (XTI,

b 4 E | E 3 E E ‘ E - . ‘ .

Next we prove [sF ([s% ([X]7 )77 € [X]°. Suppese pi € sE([X]7 ). This means that t& (p,) is a trans-
action n which X occurs. B} our wgmr\emem of symmetry on high- fmougnpm protem-pr orexr- :m‘emcﬁon
experiments, we have X C sE([p,]" ). Nete that p, is arbitrarv. So X r\lpieggt[[‘(]]z E([ps ]] S

X C sF([sF \‘[[X] ]] ]. So [s ([s* |I\’]] ]] ] g[[X] . This completes the lemma. u]

Proposition 3.2 Let X be a closed pattern in DE. Then X = sE ([SE(|[.\’]]E:|]]E

Proof: By Lemma 3.1, we have [s% ([s¥ w[[Y] ' ]] ' ]]E = [X]]E. But X is a closed pattern in D, So for all
X' such that [X']|F = [X]%, it is the case that X' C X. Therefore s& [[s ([X]5)]5) c x=. if.so,fmm
the proof of the second part of Lemma 3.1, we have X C sF ([sE| HY] ]]  Thus X = E ([F |I\’]] ]]
as desired.
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EINUS
Consequently... &z

e Corollary 3.4

Let X and Y be closed pattern in DE.
Then X =Y iff sE[|X|]E = sE[|Y]|]E

Prowl: Tie lgf-ro-vigla divecion i ivial 5o we grore Se vight-to-left divectioe Swupove :-Eil."flE) =
E (L Then B[ E QX NE ) = E(E(FIZUE ). Be Popositior 2.2, X = & ([ JXI5E) =
EREQEENT =Y. A

* Proposition 3.5
For any pattern X, we have X n sE [|X|]E = {}

Proaf: By defuition, s& ([ XJ* ) = o= ([, c e[l Y = o= (o 51ps |10 € L5 i) = D pr e &
LEpyl}. Sugpese p & (Tly,ax 4y | 92 € L5 Gy )} Then fov each py € X, we have py € L& (p). By ow
consiratnt on igh-faonghpy profef-proeln fievaction experivrents Siatp € EE (o), we conclade that fov
each gy & X, it rtiot e e cooe Bt py 2 pn Hemes p £ X. Ten X 05X = {4 [u]
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Consequently...

+ Corollary 3.4

. . Let X and Y be closed pattern in DE
Implication Then X = ¥ iff 5% [XIF =€ [Y[F
Proul: The lefh-mo-right dhowction i savial 5o we prove the ripht-selgf oo tos X"
(V1%L Them oE (| 2AENTE AT = AV TTIT & B Proposision 4,2 X ¢

+ Proposition 3.5
For any pattern X, we have X ~ s [|X|F = {
e S SRR e o T T LTy N PR TP & n

B o

« Corollary 3.6 ““
Let E be a PPI expt.

Let C be the set of closed patterns of DE.
Then |C| is even

Proof: By Corollary 3.4, sEe [!E iz a bifective fimefion flom O fo €, Thus, if|C] iz o, there nat be some
X @ Caweh that X = sE(|X[™ | Bat diriz contradics Fropesition 3.5, §o |C naat be ever, o
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EINUS
More Important Implication ""‘""‘"‘"’

e Theorem 3.7

The bijective function sEo[|-|]E partitions the set of
closed patterns of DE into bipartite graphs

M| p2 | P3| P4 | Ps
Hp) | 0] 1| 1] 0] 0
tpz) | 2 10| 1|12
fpa) | 2 | 2| 0] 1|2
Hpa) | 0 1 | 1] 0] 0
tps) | 0| 2| 1|00

A\
D, l

support of X || closepattern X | Y = s ([X] E ) || supporr af Y
3 {pa,ps} {p1,pa,ps} 2
4 {pa} 11,09, Pa, s} I
4 {ps} 1p1.po,pa.ps}t 1

Copyright 2006 © Limsoon Wong

NS
Even More Interesting... =

e For each pair Xand Y,

— Xis the largest group of
proteins that bind all the
proteins in Y; and

i Mo P2 | P3| M| Ps
— Y is the largest group of ) [0 1|10
proteins that bind all the S R
. . \Pa
proteins in X tpa) | 0| 1| 1| 0|0
= X,Y is a pair of interacting S M) JOTLTI]010
protein groups
support of X || closepattern X | ¥ = |I_\’]]t] support of Y
3 {p2.pa} {p1pa,pst 2
4 {2} {p1. 3. P4, P} 1
4 {pa} {p1.po, papst I

Copyright 2006 © Limsoon Wong
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NUS
A Couple More Propositions ""‘""‘"’"’

e Proposition 3.3
For any pattern X,

sE[|X|]E is closed pattern in DE
Pruof: Les ¥ = closed-E(JX] "1 l'fmrll = EEIEE. Then 5 (V]E) = .Eﬁlf'.EEIYI ) 53
Then $Eif<"(r|* |]5) = g£(|c5(|q5(| k E WE) Since ¥ i a clased pastem ta DE, by Propesi-
rion 3.2 e Eemma 3., ¥ = SN = SO EIXTSEE = 5z|x|5'- Heace
SEENEY iv alse n closed pattern in DE ]

e Corollary 3.7
Xis a closed pattern in DE iff X = sE[|SE[|X|]E|]E

Proof: §Taz follows %ﬁmﬁmﬁ Propovifion 2.2 and Propositiorn 3.3, o
“each side of a protein “X'is one side of a “the common neighbours of
interaction group is a protein interaction the common neighbours of X
closed pattern” group” are X themselves.”

Copyright 2006 © Limsoon Wong

+
Even More Interesting... Sl

« Foreach pair X and Y,
- X is the largest group of
' proteins that bind all the
At Last! Frotens Y. and
- ¥ is the largest group of
proteins that bind all the
proteins in X
= XY is a pair of
interacting protein
aroups

of of o ded?

FEENES

 These are ALL the interacting protein groups

= To mine these protein groups, it suffices to mine
closed patterns in DE

Copyright 2006 © Limsoon Wong
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ERANUS
An Extension &z

* Not all interacting protein groups X, Y are equally
interesting

— Xand Y are both singleton, vs
— X is a large group, Y is small group, vs
— X is a large group, Y is a large group

= Set “interestingness” threshold on X, Y st a pair
of interacting protein groups X, Y is interesting
only if [ X| 2m and |Y| =>n

Copyright 2006 © Limsoon Wong
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INUS
An Optimization &=

* Let X, Y be a pair of interacting protein groups
— By Theorem 3.7, X = sE[|Y|]F and Y = sE [|X|]E
— By Definition of [|¢]]5, |X| = times Y occurs in DE
— By Definition of [|+]]F, |Y| = times X occurs in DE

= To mine interesting pairs X, Y of interacting
protein groups in an expt E such that |X| >m and
|Y| = n, it suffices to mine closed patterns X that
appears > n times in DE and |[X| > m
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Mining Closed Patterns Efficiently

Closed Pattern Mining Algorithm

CLOSET, Pei et al. 2000
CARPENTER, Pan et al. 2003
FPclose*, Grahne & Zhu 2003
GC-growth, Li et al. 2005

= We have efficient algorithms for mining
interesting interacting protein groups

Copyright 2006 © Limsoon Wong
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Example Breitkreutz et al, Genome Biology, 4, R23, 2003
X and sE[|X]]€ both occur with freq
at least that of support threshold

soppor heeshold | # of freqoeat close patterns | & of quolified close patterns | tines i sec.
1 121=14 121514 R
z 117893 114554 2.734
3 105854 95920 2.187
4 24781 80306 1.763
K 1708 600E8 1.312
(] GEd2e IEHTE DEET
7 0506 15800 0.625
8 36723 iTle 0398
o Z3147 406 0281
10 17426 34 0171
11 12402 2 0,108
12 v1:8 1] DuTE

As there are many physical protein interaction networks corresponding to different species. here we take the simplest and
most comprehensive yeast physical and genetic interaction network (Breitkreutz et al.. 2003) as an example. This graph
consists of 4904 vertices and 17440 edges (after removing 185 self loops and 1413 redundant edges from the onginal
19038 interactions). Therefore. the adjacency matrix is a transactional database with 4904 items and 4904 transactions. On
average, the number of items in a transaction is 3.56. That 1s, the average size of the neighborhood of a protein is 3.56.
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Generating Motif Pairs
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EINUS
Many Motif Discovery Methods ""‘""‘"‘"’

e MEME, Bailey & Elkan 1995

e CONSENSUS, Hertz & Stormo 1995

* PROTOMAT, Henikoff & Henikoff 1991
e CLUSTAL, Higgins & Sharp 1988

e For illustration, we use PROTOMAT here

Copyright 2006 © Limsoon Wong

39
EANUS
PROTOMAT & i

» Core of Block Maker, a WWW server that return
blocks (ungapped multiple alignments) for any
submitted set of protein sequences

 Comprises 2 steps:

— MOTIF, smith et al. 1990
» Look for spaced triplets in given set of proteins
— MOTOMAT, Henikoff & Henikoff 1991
» Merge overlapping blocks produced by MOTIF
» Extend blocks in both directions until similarity falls

e Determine best set of blocks that are in the same order
and do not overlap

we treat every block, instead of whole set of blocks generated by PROTOMAT, as a binding motif

Copyright 2006 © Limsoon Wong
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Example, Breitkreutz et al, Genome Biology, 4, R23, 200

» Comprises 19038 genetic and physical
interactions in yeast among 4907 proteins

* Look for interesting pairs withm=n=5
* About 1s to generate 60k closed patterns

= Too many for PROTOMAT. So consider only
maximal closed patterns, giving 7847 pairs

* PROTOMAT produces 17256 left blocks and
19350 right blocks after 6 hours

* Most groups yield 1to 3 blocks
* Ave length of blocks = 11.696, std dev = 5.45

Copyright 2006 © Limsoon Wong

Results & Validation
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ERANUS
Databases Used for Validation ""‘""‘"’"’

e BLOCKS, Pietrokovski et al. 1996
* PRINTS, Attwood & Beck 1994

e Pfam, sonnhammer et al. 1997

e InterDom, Ng et al. 2003

BLOCKS | PRINTS | Pfam | InterDom
Version 14.0 37.0 16.0 1.1
Num. of groups / families 4944 1850 7677 3535
Num. of entries 24294 11170 7677 30037

Copyright 2006 © Limsoon Wong
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NUS
Validation for Single Motifs =

e Compare all single motifs in our discovered motif
pairs with all domains of specific domain
databases

— LAMA, Pietrokovski 1996
— transform blocks into position-specific scoring matrices (PSSM)

— run Smith-Waterman to align pairs of PSSM using Pearson
correlation coefficient to measure similarity betw 2 columns

— a block is mapped to another block if 95% of positions in a block
occuring in the optimal alignment is common to another block and

Z-score is > 5.6, where z-score is the number std dev away from the mean generated by
millions of shuffles of the BLOCKS database

* Determine number of motifs that can be mapped
to these domains and the overall correlation in
the portions that are mapped

Copyright 2006 © Limsoon Wong
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Results for Single Motifs

s

Mapped / total
num. in BLOCKS

Mapped / total
num. in PRINTS

Mapped / total
num. in BOTH

Unique blocks

8401 /24294

2872/ 11170

11273/ 35464

3568 /4944

1325/ 1850

4893/ 6794

Unique groups

e Our blocks map to 32% of blocks in BLOCKS and
PRINTS, yet motifs from our blocks cover 72% of
domains in BLOCKS and PRINTS

= Maybe most domains in BLOCKS and PRINTS
have less than half a block as binding motifs, or
may not be related to binding behaviour

Copyright 2006 © Limsoon Wong
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Validation for Motif Pairs ——

e Map our motif pairs into domain-domain
interacting pairs

» Determine the number of overlaps between our
motif pairs and those in the domain-domain
interaction database

e Use InterDom as the domain-domain interaction

30037
database interactions
among
BLOCKS | PRINTS | Pfam | InterDom 3535 domains
Version 14.0 37.0 16.0 1.1
Num. of groups / families 4944 1850 7677 3535 %
Num. of entries 24294 11170 7677 30037
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EINUS
Linking Our Motif Pairs to InterDo’*""'"‘"'

e InterDom represents domains by Pfam entries

= To x-link, we have to
— Map our motifs to blocks in BLOCKS and PRINTS
— Link from BLOCKS and PRINTS to InterPro
— Link from InterPro to Pfam
— Match Pfam to InterDom

Copyright 2006 © Limsoon Wong
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Results for Motif Pairs -

Domain-domain interactions
inferred from protein complexes
or from interactions between
single domain proteins

BLOCKS | PRINTS | Combined [*Confident | Complex
overlaps overlaps overlaps overlaps | confirmed
Domain pairs L, 862 26 1163 | 396 241
Both sides Both sides One side mapped to PRINTS,
mapped to BLOCKS mapped to PRINTS one side mapped to BLOCKS
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B & E‘lé
Example Confirmed Binding Mot~

e 1 of the 241 binding motifs we found that can be
confirmed using protein complexes is #1781...

ID none; BLOCK 1D nomne; BLOCK

AC 178 Lsonoes; distancs from previous block=(26.378) AC 178lsrigh: distance from pravious block=(2,316)
DE none BL GNL motif=[5.0,17] motomat=[1,30,-10] width=14 seqz=6§ DE none BL LDN motif=[4.0,17] motomat=[1,80.-10] width=9 seqs=4

YBLOZEW (27 ) GTLQSVDQF LNLEL YDR378C (75 ) LESIDGFMN

YCROTIC (379 GNSS QDNEQANTVL YGLITIC (317) LLHTDGYI N

YERIIZW (27T ) GILTWNVDNWMNLTL TIL124C (68 ) LETFDQYAN

YERI46W (32 ) GTLVGFDDF VNVIL YIRO2ZZW (46 ) LNGFDENT N

YNLI4TW (42 ) GVLEGYDQL MNLVL

YOLI49W (1290 GETLSGEDI YNYGL pdblmgg B (40 ) LESFD] hMN

zdblmzg 4 (38 ) GVLKSFDI & MNLVL

As shown in the next slide, this pair corresponds to interaction
sites between LSM domains. E.g., all 7 pairs of adjacent
LSM domains of pdb1lmgq exhibits it.

Copyright 2006 © Limsoon Wong

Example:
LSM Domains
of pdblmgq

Fig. 2. The structure of the consples pdblage comvshug of 7 LEM donssms

1 conesponding to chaim A, Chain B, ... to chai G

. S

Fig. 3. Interactions between segment [38G, 51L] of LSM A and segment
[40L.48N] of LSM B in the complex pdblmgq (showing only the backbone).
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FANUS
Sequence Identity Within a Group~ =

* Ave seq identity
within a group is

g' 7.5%

5" : = Group is unlikely
£ w0 | ; to be detected by
3 :

standard methods
based on seq
homology

3 4 ] ] T g ] 10 1 12 13 14 15 i 17 18
Sequence identity within a group
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INUS
Conclusions & i

» Connection between maximal complete bipartite
subgraphs and closed patterns

= Closed pattern mining algorithms can be used to
enumerate maximal complete bipartite subgraphs
efficiently

» Connection between pairs of interacting protein
groups and closed patterns

= Discovery of binding motifs is accelerated
because we need not execute expensive motif
discovery algorithms on insignificant groups
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Credits:  Binding
Motifs

Closed BM-CP
Patterns Correspondence
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