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Abstract

Spiking neural networks (SNNs) significantly reduce
energy consumption by replacing weight multiplica-
tions with additions. This makes SNNs suitable for
energy-constrained platforms. However, due to its dis-
crete activation, training of SNNs remains a challenge.
A popular approach is to first train an equivalent CNN
using traditional backpropagation, and then transfer the
weights to the intended SNN. Unfortunately, this of-
ten results in significant accuracy loss, especially in
deeper networks. In this paper, we propose CQ training
(Clamped and Quantized training), an SNN-compatible
CNN training algorithm with clamp and quantization
that achieves near-zero conversion accuracy loss. Essen-
tially, CNN training in CQ training accounts for certain
SNN characteristics. Using a 7 layer VGG-∗ and a 21
layer VGG-19, running on the CIFAR-10 dataset, we
achieved 94.16% and 93.44% accuracy in the respective
equivalent SNNs. It outperforms other existing com-
parable works that we know of. We also demonstrate
the low-precision weight compatibility for the VGG-
19 structure. Without retraining, an accuracy of 93.43%
and 92.82% using quantized 9-bit and 8-bit weights,
respectively, was achieved. The framework was devel-
oped in PyTorch and is publicly available 1.

1 Introduction
Spiking neural networks (SNNs) differs from traditional ar-
tificial neural networks such as the highly successful convo-
lutional neural networks (CNNs) in that the activation data
is transmitted among layers as sequences of binary spikes
that are the result of some firing rules, instead of floating-
point or fixed-point numbers. A key advantage of doing so is
the elimination of expensive multiplications, making SNNs
promising for resource-constrained devices like those used
in edge AI. Unfortunately, their discrete activations render
them non-differentiable, and hence unsuitable for the tradi-
tional back propagation training algorithms that relies on the
chain rule applied to various partial derivatives. There are
several ways around this problem. The first is to use train-
ing algorithms that are specific to SNNs (Wu et al. 2019b;
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Taherkhani et al. 2019). Many of these are based on spike-
timing-dependent plasticity (Vigneron and Martinet 2020).
However, to date, such approaches only seems to work for
shallow networks, and simple datasets. Another approach is
tandem training where forward passes are made on a CNN
model and its twin SNN model (Wu et al. 2019a). On a
backward training pass, errors and gradients from the SNN
model are used to drive the learning in the CNN twin. The
updated weights in the CNN is then transferred to the SNN
for the next forward pass. Good accuracy for up to 14 lay-
ers on the DVS-CIFAR10 dataset was achieved (Wu et al.
2019a). However, this method requires both the CNN and
SNN models during training, and hence cost more in terms
of resources. The final approach, and the approach taken by
this paper, is to train an equivalent CNN using the standard
back propagation methods, then transfer the weights to the
SNN. However, if done naı̈vely, there is a significant drop
in accuracy. This brings us to the main contribution of this
paper. Essentially, we propose a series of extensions to the
basic back propagation framework that accounts for the id-
iosyncrasies of the SNN that the weights are intended for.
The end result is what we called the CQ training (‘clamped
and quantized’) algorithm. After CQ training, the weights of
the CNN can be directly transferred over to the equivalent
SNN with nearly no loss in accuracy. We have verified this
for up to 21 layers of a CNN (VGG-19) on a complex series
of dataset. The contributions of this paper are:

• We introduce a near lossless transfer learning method
CQ training for spiking neural networks, especially deep
SNNs. Activation clamping and quantization are adapted
for each convolutional layer during the SNN-compatible
CNN training, which significantly reduces the approxima-
tion error and deepens SNNs layers. Both the forward and
backward propagation have been updated in this paper.

• A comprehensive discussion on SNN transfer learning
problems is made in this paper. This includes new in-
put spiking generation methods, low-precision weight ex-
ploration (weight quantization), weighted sum with batch
normalization, and approximation reduction study.

• We introduce a fast and easy-to-program framework for
CQ back propagation training, weight transfer, and SNN
testing. This is evaluated on large SNNs (equivalent of
VGG-19) running the MNIST, CIFAR-10, CIFAR-100



datasets. We show near lossless accuracy compared to
their CNN counterparts, while using relatively small time
window sizes compared to the state-of-the-art.

This paper is organized as follows. First, the background
of SNN is introduced in comparison with CNN. Then, the
details of CQ training framework is presented including
clamp and quantization in Section 3. In Section 4, we present
the near-lossless performance of our methods on deep SNN,
with both full and low-precision weight. We also analyse the
effectiveness of CQ training in reducing the approximate er-
ror with experiments. We then discussed insights from our
study and reviewed and compared the existing works with
our method in Sections 5-6, followed by a conclusion.

2 Background
CNN. Convolution neural networks are sparse, equivari-
ance neural networks (Liu et al. 2017) with continuous in-
put and differentiable back propagation. In a layer l, the
weighted sum of inputs xl−1 and weights wl is computed
in the CNN neurons. After adding a bias bl, an activation
function f is then applied to produce the output activation
xl. Mathematically, the activation of a neuron i is:

xli = f(

n∑
j=0

(wl
i,j · xl−1j ) + bli) (1)

SNN. While CNNs transmit activation data among layers
(xl) as real numbers, SNN neurons receive series of binary
inputs as spike trains. Formally, sli is a spike train of neuron
i at layer l where sli(t) ∈ {0, 1} is a spike at time t. Unlike
CNNs, the weighted sum is merely a summation since the
weights are binary.

The Integrate-and-Fire (IF) Model. In this work, we
adopt the widely used IF model to map between ANN and
SNN activation. At each time step t, a neuron i computes the
weighted sum of the received input spikes sl−1j (t) and the
corresponding weights, and ‘integrates’ (sums) them as the
membrane potential Vi. Whenever Vi exceeds a predefined
threshold θi, the neuron fires a spike of ‘1’, and decreases Vi
by θi. Otherwise, it outputs ‘0’. Formally,

V l
i (t) = V l

i (t− 1) +
∑
j

(wl
i,j · sl−1j (t) + bi); (2)

sli(t) =

{
1, V l

i (t) ≥ θi
0, otherwise

; (3)

V l
i (t) =

{
V l
i (t)− θi, V l

i (t) > θi
V l
i (t), otherwise

. (4)

Spike Rate Encoding. In an SNN, trains (sequences) of
spikes are used by neutrons to communicate with each other.
They can be characterized as discrete events within a fixed
time window. In the rate-based neural activity models, the
firing rate is defined in a limit that involves infinite spikes.

One way would be to divide the number of spikes by the
duration of the time window. (Brette 2015)

For instance, xi = 1
3 is converted into a spike train

of [0, 0, 1, 0, 0, 1, ..., 0, 0, 1], a ‘1’ spike out of every three
spikes in the discrete spike train. xi = 1 would then corre-
spond to a spike train of all ones, and xi = 0 is an all-zero
spike train. These are then fed to the input layer.

3 Approach
In our CQ training framework, we constrain the CNN train-
ing in its input, weighted sum and activation so that its infer-
ence is nearly equivalent to the SNN. Therefore, the learned
weights of the CNN can be transferred to its SNN counter-
part with minimum approximation error. As shown in Fig-
ure 1, our the forward pass of the CNN in CQ training cor-
responds to the SNN in terms of input, weighted sum with
batch normalization and activation.

1. Input: An SNN input spike train sj of length T can only

represent the spike rate
|sj |
T
∈ T where T is the discrete

set of values {0, 1

T
,

2

T
, . . . , 1}, and |sj | is the number of

spikes in the spike train. Hence, we first normalize the
CNN input data to [0, 1], and then do a quantization.

2. Weighted sum with batch normalization: With the
quantized input, weighted sum of CNN and SNN are

nearly equivalent as
∑
wi,jxj + bi ≈

∑
wi,j
|sj |
T

+ bi.
Batch normalization can also be transferred to the SNN
via application on the trained weight.

3. Activation: In the same spirit of what is done to the input,
CQ training also transforms the CNN activation to T by
clamping and quantizing it so that it can be equivalently
represented by the output spike train sl+1

i .

The pseudo code of this constrained training for one iter-
ation is in Algorithm 1.
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Figure 1: Correspondence of CNN and SNN forward pass.



Algorithm 1 One iteration of CQ training.

Input: Normalized and quantized input data X; Label Y ;
Initialized layers {l1, . . . , lN};

Output: Trained layers {l1, . . . , lN}.
Forward (Inference):
xl0 = X
for i = 1 to N do
xli = li(x

li−1)
xli = BN(xli)
xli = Clamp(xli) // Equation 10
xli = Quantize(xli) // Equation 5

end for

Backward (Training):
The back propagation with clamp and quantization are
done according to Equations 13-14.

3.1 Input Normalization and Quantization
In rate encoding, a spike train of length T can only represent
the spike rate in T. Therefore, we first normalize the input
data to [0, 1] and then quantize them to T. For example, each
pixel of CIFAR-10 dataset is an integer in [0, 255]. This can
be normalized to [0, 1] simply by dividing the value by 255.

Quantization to a length T is performed by

QT (x) =
bx · T c
T

. (5)

We used the floor b·c function in quantization because in
the IF model, a spike is only generated when it exceeds the
threshold. Figure 2 illustrates the output of QT (x) with x ∈
[0, 1] and T = 10.

Figure 2: Figure of the quantization function QT (x).

Gradient of QT(x). Quantization is applied both to in-
put data and the activations of layers. Hence, we need to
consider their gradients for back propagation. As shown in
Figure 2, QT (x) is not differentiable at the turning points

and Q′T (x) = 0 elsewhere. Therefore, for back propagation,
we use the method of straight-through estimator (Bengio,
Léonard, and Courville 2013), and approximate its gradient
simply as

Q′T (x) ≈ 1. (6)

3.2 Weighted Sum with Batch Normalization
Batch normalization is crucial in the training of deep CNN
as it reduces the internal covariate shift (Ioffe and Szegedy
2015). Without batch normalization, training is difficult to
converge, requiring lower learning rates and careful param-
eter initialization. In CNN training, batch normalization is
performed to the activation of CNN layers xl as follows:

BNx(xl) = γ
xl − µ√
σ2
B + ε

+ β (7)

where µ and σ are the mean and variance of x over a mini-
batch and γ and β are two trainable parameters.

In SNN, batch normalization cannot be applied to the bi-
nary spike trains, therefore, we apply it to the trained weight
when transferring them to the SNN (Rueckauer et al. 2016).
For each neuron i at a convolution layer l with batch nor-
malization, we transfer the weights W l and bias bl as

BNw(W l
i ) =

γli√
(σl

i)
2 + ε

W l
i (8)

BNw(bli) =
γli√

(σl
i)

2 + ε
(bli − µl

i) + βl
i (9)

3.3 Activation Clamping and Quantization
ReLU is a popular activation function in CNNs, which
makes its activation xl ∈ R≥0. However, as we discussed
in the beginning of the section, the spike rate of a spike train
is in a discrete set T ⊂ [0, 1]. Therefore, we apply clamp-
ing and quantization as the activation function to restrict the
activation to T.

Clamping Clamping is first applied to the activation to re-
strict them to [0, 1], and is defined as follows:

C(x) =


0, x < 0

x, 0 ≤ x ≤ 1

1, x > 1.

(10)

Just like ReLU, the gradient (first derivative) of C(x) is
computed as

C ′(x) =


0, x < 0

1, 0 ≤ x ≤ 1

0, x > 1.

(11)

Quantization As in the case of input data, we need to
quantize the CNN activation to the set of spike rates T over
length T with the function QT (x) as defined in Equation 5.



3.4 Back Propagation
In the conventional CNN training, the operation at each layer
l is given by

xl = (W lxl−1)

and the gradients for back propagation are computed as

∂E

∂wl
= (

∂E

∂xl
)T · xl−1;

∂E

∂xl−1 = (W l)T · ∂E
∂xl

where gradient of ReLU and batch normalization are omit-
ted as they remain the same in our method.

In our CQ training, the forward operation is

xl = C ◦Q ◦ (W lxl−1) (12)

where ‘◦’ is the composition of functions. Therefore the gra-
dients for back propagation is

∂E

∂wl
= Q′ · C ′ · xl−1 · ( ∂E

∂xl
)T (13)

∂E

∂xl−1 = Q′ · C ′ · (W l)T · ∂E
∂xl

(14)

We have shown in Equations 6 and 11 that C ′ and Q′ are
either 0 or 1. Therefore, back propagation in CQ training is
just the conventional back propagation in training CNNs.

Conv

CNN

BatchNorm AvgPoolReLU

Back	Propagation

CQ	CNN

Replace	ReLU	with	CQ	and	Retrain	the	CNN

SNN

...

Conv BatchNorm AvgPoolCQ ...

Conv IF	spike
model AvgPool

...

	Apply	batch	normalization	to	the	trained	weight	

Back	Propagation

Figure 3: Summary of CQ training.

3.5 Workflow of CQ Training
Based on the analysis above, the specific conversion meth-
ods and the forward propagation for our converted SNN are
shown in Figure 3. The whole process has four steps:

1. A CNN is trained with ReLU activation, average pooling
layer, and batch normalization.

2. The trained CNN is retrained with the ReLU function re-
placed by the C (Equation 10) and Q (Equation 5) func-
tions (shown as ‘CQ’ in Figure 3). This retraining of the
original training CNN network is key to our framework.

3. Batch normalization is then applied to the trained weights
and biases using Equations 8 and 9 before transferring
them to the corresponding SNN.

4. The SNN is deployed for inference.

3.6 CQ Training and Approximation Error
According to Equation 2, in a SNN with the integrate-and-
fire model, the number of spikes rate of a neuron |si| with
respect to its input is

|sli| = b
∑

j w
l
i,j |s

l−1
j |+ biT

θi
c =

∑
j w

l
i,j |s

l−1
j |+ biT

θi
−rli
(15)

where the residual

rli =

∑
j w

l
i,j |s

l−1
j |+ biT

θi
− b
∑

j w
l
i,j |s

l−1
j |+ biT

θi
c

For convenience, we remove the bias bi in this analysis with-
out loss of generality. Expanding the recursion, the number
of spikes in the last layer L is then

|sLiL | =
∑
iL−1

wL
iL,iL−1

·
∑
iL−2

wL−1
iL−1,iL−2

·· · ·
∑
i0

w1
i1,i0 |s

0
i0 |−ε

′L
iL

(16)
where

ε′LiL = rLiL +
∑
iL−1

wL
iL,iL−1

· (rL−1iL−1

+
∑
iL−2

wL−1
iL−1,iL−2

· (rL−2iL−2

+ · · ·+
∑
i0

w2
i2,i1r

1
i1)) · · · )) (17)

and s0i0 is the input spike train.
In conventional CNN, expanding the recursive Equa-

tion 1, the output of last layer is

xLiL =
∑
iL−1

wL
iL,iL−1

·
∑
iL−2

wL−1
iL−1,iL−2

· · · ·
∑
i0

w1
i1,i0x

0
i0

(18)
From above Equations 16-18, assuming the input spike

train without error is |s0i0 | = x0i0T , the approximation error
is

εLiL =
|sLiL |
T
− xLiL =

ε′LiL
T

(19)

The error will accumulate over the layers and cause loss
in accuracy.

In CQ training, by quantization, a similar residual term
r′ = x −Q(x) is introduced to the forward pass so that the
activation becomes

xli = Q(

n∑
j=0

wl
i,j ·xl−1j +bli) =

n∑
j=0

wl
i,j ·xl−1j +bli−r′li (20)

Omitting the expansion of equations, and taking θli = 1, it
is easy to derive that r′li ≈ rli. Hence, in theory, the approxi-
mation error εLiL ≈ 0.

In conclusion, the CQ training minimize the approxima-
tion error of SNN to near zero. We conducted series of exper-
iments in Section 4.4 to shows the it successfully mitigated
the accuracy loss due to accumulated approximation error.



4 Experiment
4.1 Experiment Setup
We have implemented CQ training in CUDA-accelerated
PyTorch version 1.6.0. The experiments were performed on
a Intel Xeon E5-2680 server with 256GB DRAM and a Tesla
P100 GPU, running 64-bit Linux 4.15.0.

Training. We experimented with standard deep CNN
structures like VGG-11, 13, 16 and 19, and trained them
with our CQ training framework. As rate-encoded SNN does
not support max-pooling, we replaced these layers with aver-
age pooling. In addition, we also added a new model based
on VGG, labelled VGG-∗, that has fewer parameters, but
shows better overall baseline accuracy for CIFAR-10 and
CIFAR-100. We trained the networks using the Adam op-
timizer with an adaptive learning rate for 100∼150 epochs
until they converged. The network structure we used in this
work is summarized in Table 1.

Table 1: Summary of network structures.

LeNet* 32, 32, C, 64, 64, C, 128
VGG-11 64, A, 128, A, 256, 256, A,

512, 512, A, 512, 512, A
VGG-13 64, 64, A, 128, 128, A, 256, 256, A,

512, 512, A, 512, 512, A
VGG-16 64, 64, A, 128, 128, A, 256, 256, 256, A,

512, 512, 512, A, 512, 512, 512, A
VGG-19 64, 64, C, 128, 128, C, 256, 256, 256, 256, C,

512, 512, 512, 512, C, 512, 512, 512, 512, C
VGG-∗ 128, 128, A, 256, 256, A, 512, 512, A, 1024, A

The last dense classifier layer in all the networks are omitted
in the table. ‘A’ stands for an average pooling layer. ‘C’ stands
for a stride-2 convolutional layer used for down-sampling.

SNN Inference. In SNN inference, we use the ‘integrate-
and-fire’ neuron model, and set all thresholds to 1. We ad-
justed the length of spike trains T to achieve the best ac-
curacy. In the experiments, T is between 100 to 1000. The
input data was normalized to [0, 1] before being used to pro-
duce input spike trains as depicted in Algorithm 2.

Algorithm 2 Input encoding algorithm.

Input: Input data x ∈ [0, 1].
Output: Spike train s of length T .

Membrane voltage V = 0
for i = 0 to T − 1 do
V = V + x
if V >= 1 then
si = 1
V = V − 1

else
si = 0

end if
end for

4.2 Accuracy Benchmark

We tested our methods on different networks structures and
datasets, and the results are summarized in Table 2. The
length of the spike trains T were set between 100 to 1000 for
LeNet*, VGG-11/*, VGG-13 and VGG-16/19 respectively.

For comparison, we define the accuracy loss in conver-
sion (using method A), ∆A, to be

∆A =
Acc. of baseline model− Acc. using A

Acc. of baseline model
(21)

Note that ∆A is signed. In the rare instance where the con-
verted model is more accurate than the baseline model, then
∆A (the ‘loss’) will be negative.

Table 2: Accuracy from CNNs to SNNs.

Dataset Network
structure

Acc. of CNN
baseline

Acc.
of SNN ∆SNN

MNIST LeNet* 99.44% 99.39% 0.05%

CIFAR-10
VGG-11 82.13% 82.09% 0.05%
VGG-13 86.10% 86.08% 0.02%
VGG-16 92.55% 92.48% 0.08%
VGG-19 93.50% 93.44% 0.06%
VGG-∗ 94.20% 94.16% 0.04%

CIFAR-100 VGG-∗ 71.84% 71.52% 0.4%

MNIST. MNIST consists of 60,000 28× 28 grayscale im-
ages of handwritten digits from 0 to 9. 50,000 for training
and 10,000 for testing. LeNet is a model trained to do the
classification for the MNIST dataset. With data augmenta-
tion, the accuracy we achieve for SNN with a LeNet-type
network structure is 99.39% and the conversion accuracy
loss (∆SNN) is only 0.05%.

CIFAR-10. CIFAR-10 dataset consists of 60,000 32×32
RGB images of 10 classes, 6000 per class. They are split to
50,000 training images and 10,000 test images. We trained
VGG-11, 13, 16 and 19 for this dataset with data augmen-
tation and the conversion accuracy loss compared to CNN
is very small and the CQ trained VGG-16 SNN achieved an
accuracy of 92.48%, 0.08% accuracy drop (∆SNN) compared
with the baseline model, with a time step of 600.

CIFAR-100. The CIFAR-100 has the same structure as
CIFAR-10 but with labels for 100 classes (Krizhevsky, Nair,
and Hinton 2009). We built a 7-layers VGG-like CNN
(VGG-∗ in Table 1) for this dataset, and achieved accuracy
of 71.52% with a time step of 200. The conversion accuracy
(conversion accuracy) loss is 0.4%.

4.3 Low-Precision Weight

The elimination of multiplications makes SNN suitable for
energy-constraint platforms. On such platforms, low bit-
width fixed point weights are more often used than 32-bit
floating point numbers. Therefore, we tested the accuracy of
our method with low precision weights.



Weight Quantization We used the following n-bit fixed
point number w[n− 1 : 0] to represent weights:
• w[n− 1] is the sign bit;
• w[n− 2 : 0] are the fraction bits;
• The integral part left of the binary point is always 0.

Therefore, with n bits, we can represent the weights

w ∈ {± k

2n−1
|k ∈ N<2n−1}

where N<2n−1 is the set of natural numbers less than 2n−1.
We quantized the trained weights by first normalizing to

the representable range [
1

2n−1
−1, 1− 1

2n−1
], and then quan-

tization to the fixed-point numbers with the following:

w1 = (1− 1

2n−1
) · w

max(|w|)
;

wQ = Q(2n−1−1)(w1).

Note that as we normalize the weight in each layer, the
threshold must also be normalized by the same factor.

Accuracy of CIFAR-10 We quantize the trained weight
of VGG-19 for CIFAR-10 in the range of 8 to 11 bits, and
tested the accuracy loss. Table 3 shows the accuracy of SNN
with weights of different bitwidths and 32-bit floating point
as baseline. Quantizating to 9 and 8-bit weights does not
result in much accuracy loss. It is a mere 0.01% and 0.62%,
respectively. However, there is significant accuracy loss if
the weights are 7-bit or lower.

Table 3: Accuracy of CQ trained VGG-19 SNN on CIFAR-
10 using quantized weights.

Bitwidth Baseline 11 10 9 8
(32 bits)

Acc(%) 93.44 93.44 93.42 93.43 92.82
Loss(%) - 0 0.02 0.01 0.62

4.4 Going deep
As we discussed in Equation 19, the approximation error ac-
cumulates through the CNN layers, causing significant accu-
racy loss when converting deep CNN to SNN. Hence many
have dismissed SNN as not suitable for deep neural network,
limiting their usefulness for real applications. We performed
experiments to explore the accuracy loss from the approxi-
mation error in deep SNN, and the effectiveness of CQ train-
ing in reducing this error. We trained deep CNNs with dif-
ferent numbers of convolution layers for the simple MNIST
dataset and tested their accuracy loss when converted to
SNN. Table 4 shows the accuracy achieved with CQ train-
ing with that of naı̈vely transferring the CNN weights over
to the SNN. Without CQ training, the conversion loss be-
comes significant and increases rapidly from 11 convolution
layers onward. In contrast, with CQ training, the accuracy
loss stays very low even up to 21 convolution layers. This
shows the effectiveness of CQ training in reducing the ap-
proximation error when converting a CNN to a SNN.

Table 4: Conversion accuracy loss with/without CQ training.

# Conv Layer ∆CQ ∆naı̈ve
10 0.05% 1.77%
11 0.09% 26.8%
12 0.05% 54.7%
13 -0.13% 88.7%
14 0.12% 88.7%
15 0.03% 89.76%
16 0.16% 88.67%
17 0.14% 88.57%
18 0.1% 89.76%
19 0.21% 86.82%
20 0.23% 85.07%
21 0.01% 88.65%

5 Discussion

Input spike generation methods. In rate encoding, there
are different methods to generate the spike train whose spik-
ing rate represents the input data. Some works sample the
spike train from Poisson or Bernoulli distribution (Diehl
et al. 2015; Rueckauer et al. 2017). However, the random-
ness may cause sampling error leading to accuracy loss.
Therefore, in this work, we used a spike layer to produce
a deterministic spike train from the original floating-point
inputs. As shown in Algorithm 2, each normalized input
x ∈ [0, 1] is repeatedly fed into a spike layer of threshold 1.0
for T time steps. The spike layer then output a deterministic
spike train of evenly distributed xT spikes. Compared to a
spike train generated using the random distribution method,
our method gives 8.33% higher accuracy.

Limitation: Average Pooling. Max pooling has been
shown to be effective in state-of-the-art CNN training as
it naturally pick the prominent features among the in-
puts(Chollet 2017). However, it is difficult to implement
max pooling on rate encoded SNN because the max spike
rate can only be determined after receiving the entire spike
train, and the integrate-and-fire model is inherently sequen-
tial. This limits how much rate encoded SNN can do com-
pared to the best CNN performance, even though CQ train-
ing provides near lossless conversion. Chen et al. (2018) im-
plemented max pooling by stalling the whole spike train at
the pooling layer, then choosing the one with highest spike
rate. However, this severely increases the latency fromO(T )
to O(nT ) where n is the number of pooling layers, com-
pared to a pipelined sequential SNN. A convolutional layer
with a stride of 2 can be used to simulate pooling.

ResNet Block. We have also applied CQ training on the
basic and bottleneck block of ResNet introduced in (He
et al. 2016).With the CQ training, unlike (Hu et al. 2018).
no compensation for normalisation is needed. The accuracy
loss ∆SNN for basic block and bottleneck block are 0.05%
and 0.1%, respectively.



Table 5: Comparison with state-of-the-art SNNs on the CIFAR-10/100 dataset.

Dataset Model Method Accuracy Architecture ∆SNN Time Steps
CIFAR-10 (Rathi et al. 2020) Hybrid Training 92.02 % VGG-16 N/A 200

(Wu et al. 2019b) Spike-based BP 90.53% 5 Conv N/A 12
(Rueckauer et al. 2017) Pretrained SNN 90.85% 4Conv, 2Linear 1.15% N/A

(Hunsberger and Eliasmith 2015) Pretrained SNN 82.95% 2Conv, 2Linear 2.83% 6000
(Cao, Chen, and Khosla 2015) Pretrained SNN 77.43% 3Conv, 2Linear 2.14% 400

(Sengupta et al. 2019) Pretrained SNN 91.55% VGG-16 0.26% 2500
This Work CQ trained SNN 92.48% VGG-16 0.08% 600
This Work CQ trained SNN 93.44% VGG-19 0.06% 1000
This Work CQ trained SNN 94.16% VGG-∗ 0.04% 600

CIFAR-100 (Hu et al. 2018) Pretrained SNN 68.56% ResNet-44 2.31% 350
This Work CQ trained SNN 71.52% VGG-* 0.4% 200
This Work CQ trained SNN 71.84% VGG-* 0% 300

6 Related Work
In the state of the art, there are mainly three directions of
SNN learning – unsupervised learning, spike-based back
propagation and CNN-to-SNN conversion.

By its neuromorphic nature, SNN training can use bio-
inspired unsupervised learning rules such as the Hebbian
learning rule (Hebb 2005) and spiking timing dependent
plasticity (STDP) (Bi and Poo 1998). These methods have
been shown to work for shallow networks and simple
datasets, but not for deep neural networks.

The main challenge of supervised learning in SNN is
the non-differentiability of spikes. Most spike-based back
propagation methods attempted to solve this issue by either
approximating the spiking function as differentiable func-
tions (Huh and Sejnowski 2018; Shrestha and Orchard 2018)
or defining a surrogate gradient to it (Neftci, Mostafa, and
Zenke 2019; Bellec et al. 2018). Again, most of these works
are limited to shallow networks and simple datasets. For ex-
ample, SLAYER (Shrestha and Orchard 2018) only trained
up to 3-layer CNNs on MNIST and DVS-based datasets.
DECOLLE (Kaiser, Mostafa, and Neftci 2020) trained up to
4-layer CNNs on similar datasets. Computation cost is an-
other challenge for spike-based back propagation. Though
SNN inference is done by addition, for the sake of back-
propagation in these algorithms, the forward pass in training
still has to use matrix multiplications.

CNN-to-SNN conversion does not suffer from non-
differentiability and high computation cost, and is widely
used in SNN learning. Sengupta et al. (2019) and Lee et al.
(2020) train ANNs without biases. They claimed that the
bias term in SNN has an indirect effect on the threshold
voltage that makes finding and tuning the threshold diffi-
cult. During CNN training, dropout was used as a regularizer
instead of batch normalization in the absence of bias (Sri-
vastava et al. 2014). However, inspired by Rueckauer et al.
(2016), we have implemented bias as a constant charge to
the membrane potential in each time step, and batch nor-
malization as a transformation to the trained weight.

By the addition of clamping and quantization, the CQ
training framework trains a SNN-compatible CNN struc-
ture using the traditional CNN backpropagation algorithm,
while achieving both high accuracy, and near zero approxi-

mation error. We compare our results with the state-of-the-
art works (Rueckauer et al. 2017; Cao, Chen, and Khosla
2015; Sengupta et al. 2019; Zhang et al. 2019) in Table 5
on both CIFAR-10 and CIFAR-100 datasets. We achieved
not only higher accuracy than the existing works, but also
significantly lower the relative accuracy loss compared to
CNN counterparts: 0.06% for SNN (VGG-19) and 0.08%
for SNN (VGG-16), comparing with 1.15% in Rueckauer
et al. (2017), 2.14% in Cao, Chen, and Khosla (2015), and
0.83% in Zhang et al. (2019). Besides higher accuracy, our
method also uses shorter spike trains, which significantly
improves the throughput of the SNN. For example, our
VGG-16/19 use spike trains of 600/1000 times steps, smaller
than the 6,000 and 2,500 used in Hunsberger and Eliasmith
(2015) and Sengupta et al. (2019), respectively, even though
their networks are much shallower. Using a VGG-like net-
work with 7 convolution layers, we achieved 71.84% accu-
racy, higher than the 68.56% achieved by Hu et al. (2018)
which used a much deeper ResNet-44 SNN.

7 Conclusion
In this paper, we introduce CQ training, a CNN learning
strategy that will allow for the transfer of trained weights
from a CNN over to its equivalent SNN with nearly no
loss . Through clamping and quantization, the discrete na-
ture of a SNN spike train is account for in the training pro-
cess. Our experiments show that CQ training yields deeper
SNNs with nearly no accuracy loss compared to their CNN
counterparts, outperforming the state of the art. Although the
number of layers in such an SNN is still very modest com-
pared to the largest CNNs, we believe that it has reached a
level where it is now feasible to implement a relatively so-
phisticated CNN as an SNN for practical inference tasks on
edge AI devices, and reap the area and energy benefits of the
multiplier-less SNNs.
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