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Abstract—According to the World Health Organization,
cardio-vascular diseases accounts for 31% of all deaths world-
wide in 2016. Detecting the onset of heart irregularities can
potentially save many lives. The ubiquity of wearable devices
opens up the possibility of having a heart disease detection at
everyone’s disposal. To enable this, low energy ECG classification
is needed. Unlike previous methods of using signal processing or
even deep learning networks, this paper is the first to propose
a low cost means to detect abnormal ECG beat signals by first
synthesizing temporal logic formulas from training signals, and
then checking if the synthesized formulas by the input signal at
runtime. Our results show that the method has a high accuracy
in detecting abnormal ECG beats while requiring significantly
lower computation resource. Compared to It takes only a state-
of-the-art convolutional neural network approach, our method
achieves a comparable accuracy but with 0.3% of memory, and
millions of computation operations, hence energy, saved.

Index Terms—ECG, Classification, Temporal Logic

I. INTRODUCTION

Cardio-vascular disease is a major cause of death world-
wide. Electrocardiograph (ECG) records the electrical activi-
ties of the heart in the heartbeats using electrodes placed over
the skin and reflects many kinds of heart irregularities. It is key
to the detection as well as diagnosis of many heart ailments.

The ubiquity of wearable ECG devices such as Apple Watch
4 and Amazfit Verge 2 opens up the possibility of having a
heart disease detector at everyone’s disposal. To enable this,
low energy ECG classification is needed. In this paper, we
propose to synthesize metric interval temporal logic (MITL)
formulas to detect abnormal ECG beats. MITL introduces
temporal operators with time bounds in addition to propo-
sitional logic formulas to represent and reason about time.
For example, F [10, 20](1.0 ≤ x ≤ 2.0) means “between time
points 10-20, eventually x has to reach the range [1.0, 2.0]”.
ECG signals can be checked against MITL formulas whose
satisfiability can be used to classify the signals.

We define the problem as follows: Given a set of normal
ECG beat signals from a user as the training set, synthesize
a MITL formula such that the testing signals of normal beat
(that are not found in the training set) satisfy the formula while
abnormal ones do not.
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Temporal logic checking is a formal and efficient computa-
tion so it can be used for resource efficient ECG classification
on wearable devices. Our results show that the method has
a high accuracy in detecting abnormal ECG beats while
requiring significantly lower computation resource. It takes
only 0.3% of memory, and saves millions of computation
operations, and hence energy, compared to a state-of-the-art
convolutional neural network (CNN) approach.

II. TEMPORAL LOGIC SYNTHESIS

A. Metric Interval Temporal Logic

The atomic propositions for our setting are of the form (` ≤
x ≤ u) where `, u are real numbers. The proposition (` ≤ x ≤
u) says “the current value of x lies in the interval [`, u].” We
use a finite set of atomic propositions. Atomic propositions can
be combined using the usual propositional logic operators ¬
(‘not’), ∨ (’or’) and ∧ (‘and’) to form compound propositions.
In addition, two temporal operators are used in conjunction
with propositions to form logic formulas:
• F [k, k′]ψ (read as ‘eventually ψ’) holds if ψ holds at

some time point t such that k ≤ t ≤ k′.
• G[k, k′]ψ (read as ‘globally ψ’) holds if ψ holds for all

time points t such that k ≤ t ≤ k′.
where ψ may be an atomic proposition, a compound proposi-
tion, or (recursively) a logic formula involving F or G. The
formal definition of MITL can be found in [1].

B. Method Overview

We use a two-phase workflow to synthesize the logic for-
mulas. First, we generate the structures of the formula, which
is the formula with the time and atomic proposition bounds
as parameters, e.g. “F [k, k′](`1 ≤ x ≤ u1)”. We then use
simulated annealing to synthesize values of these parameters
to obtain the concrete formula. From the above structure, a
formula could be obtained as “F [10, 20](1.0 ≤ x ≤ 2.0)”.
The overview of the method is shown as the 1)-5) in Figure 1:

1) First, given a set of ECG beats, we automatically gener-
ate the structure of the formula according to the above
assumptions.

2) According to the structure, the value generator gener-
ates concrete values for the parameters to produce the
candidate formula.



3) We then check the candidate against the training ECG
data and obtain a loss measure.

4) The loss measure is fed to the simulated annealing
approach, which decides to terminate, or generate a new
candidate.

5) After iterations of search, the simulated annealing report
the optimal formula with the minimum loss.
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Fig. 1. Overview of the temporal logic synthesis method.

C. Automatic Structure Generation

As shown in Figure 2, the beat signals exhibit the patterns
linearly along the time by its increase and decrease. Therefore,
we reasonably limit the structures to the form “ψ1∧ψ2∧ . . .∧
ψn” where ψi ∈ {F [ki−1 + 1, ki]pi, G[ki−1 + 1, ki]pi}. Here
pi represents the local maximum and minimum points in the
signals. The temporal operator F [ki−1+1, ki]pi represents the
time to reach those points, while G[ki−1 + 1, ki]pi character-
izes the signal as staying within the levels for a period of time.
The time bound of F [ki−1+1, ki] starts from ki−1+1 where
the event happens right after the previous. We will explain
the algorithms of structure generation and use the example in
Figure 2 to illustrate.
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Fig. 2. Data example for automatic structure composition.

a) Segmentation: Given a time series trace x(t), and its
changing rate dx

dt (t), we split it into a list of segments T̂ by
scanning through the rate of change, splitting the trace at the
points where the sign changes among {0,+1,−1}. When there

is noise in the data, unnecessary segments may appear and
need to be removed. We then merges these noisy segments
with the significant ones. For each of the segment in T̂ , if the
change in the value of the trace variable throughout the time
span is below a threshold (say 1%) of (max(x)−min(x)), it is
merged into the segment before it. The segment list obtained
after merging the noisy ones is denoted as T . In Figure 2 the
beat is splitted into the following segments (in the format of
(tbegin, tend, sign) tuples) by the vertical dash lines: (0, 15, 0),
(15, 40, 1), (40, 67,−1), (67, 75, 0), (75, 81,−1), (81, 88, 1),
(88, 134,−1), (134, 155, 0), (155, 180, 1).

b) Segments to Structure: We then translate the segment
list T into the MITL structure S using operators {F,G,∧} and
atomic propositions pτ in the form of `i ≤ x ≤ ui. Intuitively,
if signi of a segment τi ∈ T is −1 or +1, the segment is
translated to F [ki−1+1, ki]pi to signify that at the end of this
segment, the value reaches pi, representing a local maximum
(or minimum) controlled by the constraint added to C. If the
sign 0, the segment is translated to G[ki−1+1, ki]pi meaning
the value remains in the range pi during this time.

As an example, the segments from Figure 3 is translated
into the following formula structure:

G[k1, k2]p1 ∧ F [k1 + 1, k2]p2 ∧ F [k2 + 1, k3]p3

∧G[k3 + 1, k4]p3 ∧ F [k4 + 1, k5]p4

∧ F [k5 + 1, k6]p5 ∧ F [k6 + 1, k7]p6

∧G[k7 + 1, k8]p6 ∧ F [k8 + 1, k9]p7

where
pi : `i ≤ x ≤ ui.

with constraints

u1 < `2, u3 < `2, u4 < `3, u4 < `5, u6 < `5, u6 < `7

Eq. 1. Formula structure from normal beat data.

This in essence is the formula (with values of the variables
for each patient instantiated by the process described below)
checked by our method for distinguishing normal from abnor-
mal beats.

D. Parameter Synthesis

Given a generated structure ψ = ψ1∧ψ2∧ . . .∧ψn with the
set of time bound variables VarT = {(k1, k′1), . . . , (kn, k′n)},
and the set of atomic propositions VarAP = {p1, . . . , pn},
we automatically optimize the values associated with each
member of VarT and VarAP such that the concretized formula
gives the minimum loss.

A simulated annealing based procedure shown in Algo-
rithm 1 is used to estimate the parameters.

1) Value Generator: We generate values for the proposi-
tional variables using the constraints specified in the propo-
sitional variables and the template constraints. Though the
constraint satisfaction problem is NP-complete in general, the



Algorithm 1: optimizeParameter
Input : Template ψ
Output: Synthesized property ψsyn

1 while Simulated Annealing decides to continue do
2 ψ̂ ← Value Generator(ψ);
3 Compute Lossψ̂ ← Loss Function(ψ̂,Bψ̂);
4 Simulated Annealing ← Lossψ̂;
5 Update VarT and VarAP ;
6 return ψsyn ← ψ̂ with minimum loss;

constraints in our framework are simple inequalities, allowing
us to solve it using a tree-based approach. The value intervals
of a variable are parsed as a tree structure where the values
of the child nodes are larger than the parent nodes.

2) MITL Checker: After the process described above, the
MITL formula Eq. 1 will have its variables instantiated with
actual values for an individual patient. According to their
definition, the checking of temporal operators F [k, k′]p and
G[k, k′]p is derived as

F [k, k′]p =

k′∨
t=k

p;

Gk, k′]p =

k′∧
t=k

p.

As we constrain the formula in the form of “ψ1 ∧ ψ2 ∧ . . . ∧
ψn” where ψi ∈ {F [ki−1 + 1, ki]pi, G[ki−1 + 1, ki]pi}, the
computation cost for checking is linear to the length of signal,
and the main operation is the comparison (` ≤ x ≤ u).

3) Loss Function: The loss is used to guide simulated
annealing. It is consists of three components each for the
temporal variables, atomic propositions and how well the
formula fits the data.

Intuitively, a temporal operator F [k, k′] with a smaller time
range k′ − k a stronger assertion because it is faster to reach
a state that satisfies it. On the other hand, a temporal operator
G[k, k′] with a larger range is stronger because the state is
maintained for longer time. Therefore, the loss component LT
of the temporal variables is given by:

LT =
∏

(ki,k′i)∈VarT

(
k′i − ki

)sgn(ki)

sgn(ki) =

{
−1, if temporal operator of ki is G
1, if temporal operator of ki is F

where each pair (ki, k
′
i) are the time bounds of a temporal

operator in the temporal parameter set VarT .
For each atomic proposition, we consider both the magni-

tude of the value range, and how precisely it describes the
behaviour of the trajectories.

For each atomic proposition “pi : `i ≤ x ≤ ui” in the
atomic proposition set VarAP , we define the tightness as (ui−

`i)/(maxi − mini), the range normalized to the maximum
value range of the variable in all trajectories. The idea here is
to keep the value range as small as possible.

Besides tightness, we also want a measure of how well
the atomic propositions in ψ̂ fit the trajectories based on
the constraints. Essentially, for each constraint of the form
uj < `k associated with the atomic propositions pj and
pk, the estimated levels of pj is expected to be lower than
pk. This information is also used to optimize ψ̂. To this
end, we compute the mean value of pi as ( `i+ui

2 ). The
weight wi associated with each pi is evaluated as follows.
We first initialize the set of weights WAP for all the atomic
propositions in ψ̂ to 0. Then for each constraint uj < `k,
we decrease wj by 1 and increase wk by 1. The fitness of
an atomic proposition is therefore

(
`i+ui

2

)wi

. Intuitively, the
level of pj tends to be in the lower range of the value space
while pk to be in higher range.

Combining these two factors, we define the loss function
component due to the propositional variables as

LAP =
∏

p
i
∈VarAP

(( ui − `i
maxi −mini

)(`i + ui
2

)wi

)
.

Finally, in each iteration of the simulated annealing proce-
dure, if the rate of satisfaction θ is larger than a pre-defined
threshold h (in our case it was set to 0.95), we apply the
loss function and continue with the iterations according to
the search procedure. Otherwise, the loss is set as ∞ and the
current combination of parameters is rejected. The search then
continues with another set of parameters. Thus,

Lossψ̂ =

{
LAP · LT , θ > h

∞, otherwise
.

III. RESULTS AND DISCUSSION

A. Dataset and Preprocessing

In our evaluation, we use the Massachusetts Institute
of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia
database [2], [3], which is a widely used benchmark for ECG
analysis. This database has 48 ECG records of about 30 min
each from 47 different patients.

ECG signals usually have noise from equipment, imper-
fection of operation, patient motion and so on. One of the
primary noise sources is baseline wander, where the baseline
of the x-axis shifts. There are many algorithms in removing
the baseline wander [4]. In this study, we adopt the method
in [5] by using two consecutive median filters to calculate
the baseline of the signal, and subtracting it from the original
signal. There have been much research on ECG segmentation
to split the continuous records into individual beats [6], [7].
As this is orthogonal to our work, we simply use the given
labeling locations of R peaks in the dataset for our purpose.

B. Classification Results

We apply our method to a few patients in the MIT-BIH
dataset. For each beat type, the records are selected that they



have sufficient amount abnormal signals. For each patient, we
randomly choose half of the normal beats as training data and
the other half as test data and all abnormal beats are used
for testing. Table I shows the classification sensitivity of our
methods. The dataset index refers to the record number and
pair of beat types to classify. For example, 106-N,V refers to
the N beats and V beats in record 106. The data size is the
number of beats in the corresponding class for testing. For
example, record 106 contains 753 N beats and 520 V beats.
We used the CNN method from Li et al. as a comparison.
A small portion of the patient’s ECG record for is used for
training, and a larger portion for testing [8]. From the table,
our method outperforms the CNN in most patients.

TABLE I
EVALUATION OF PATIENT INDIVIDUAL CLASSIFICATION USING TEMPORAL

LOGIC SYNTHESIS.

Dataset Data Size Se AccThis CNN [8]
106-N,V 753, 520 94.23% - 91.52%
208-N,V 793, 992 99.40% 94.36% 89.08%
213-N,V 1281, 220 100.00% 89.23% 91.74%
221-N,V 1048, 396 99.75% 99.37% 99.24%
207-N,S 712, 106 33.96% 0% 81.74%
209-N,S 1297, 383 28.20% 85.44% 76.90%
222-N,S 1028, 420 15.95% 0% 68.02%
208-N,F 793, 372 82.53% 74.34% 78.20%
213-N,F 1281, 362 57.73% 81.48% 83.14%

C. Computation Resource Comparison

Here we compare the resources used by our MITL checking
method and the CNN [8] in terms of memory and computation
as Table II.

1) Memory To store the MITL the formula “ψ = ψ1 ∧
ψ2 ∧ . . . ∧ ψn”, each ψi consists 1 operator and 4
parameters stored as 4-byte integers and floats. In all
our experiments, n is up to 10, so the required memory
is 200 bytes. However in CNN, the number of weights
to be stored is 13,728, which requires 54,912 bytes.

2) Computation Our MITL formula reasons the signal
linearly. Therefore, in the worst case, for each data point,
we perform 2 comparison for left and right bound and
2 boolean operations (∧ or ∨). Using the same input
signal length of 196, we perform 392 comparisons and
392 boolean operations. In CNN, the main computation
is the matrix multiplication and the comparison for
ReLu activation. The network structure in [8] requires
15,047,168 multiplications, 15,037,563 additions, and
7,808 comparisons without further optimization.

As the preprocessing (including segmentation and noise
removal) can be applied prior to both methods, the cost is ex-
cluded from the comparison. The computation cost comparison
is summarized in Table II. MITL checking requires only 0.3%
of memory and 5% of comparison operations, compared with
CNN. It also saves millions of multiplications and additions.
Therefore, it is much more suitable for on-device classification.

TABLE II
COMPARISON OF MITL CHECKING WITH CNN INFERENCE

Memory
(Bytes) Bool Compare Multiply Add

MITL 200 392 392 0 0
CNN 54,912 0 7,808 15,047,168 15,037,563

Cost of signal segmentation and noise removal are excluded in both
methods.

IV. CONCLUSION

In this paper, we have proposed the use of temporal logic
synthesis to detect the onset of abnormal heart beats from
personalized ECG signals. Given a set of normal ECG beats,
we first generate the formula structure with the time and
atomic proposition bounds as parameters, and then optimize
the parameters to generate the concrete formula. Used as a
classifier, normal beats will satisfy the final concrete formula
while abnormal ones will not.

We have demonstrated that our method outperforms the
CNN in both accuracy and resource usage. Specifically, our
method uses only 0.3% of memory and 5% of comparison
operations, compared with CNN. It also avoids millions of
multiplications and additions. Therefore, it is much more
suitable for implementation on wearable devices. Our low cost
method complements other techniques for detecting abnormal
heart rates and/or rhythm, all of which can be combined into
a robust and energy efficient scheme for detecting the onset
of heart irregularities using resource-constrained wearable
devices, potentially saving many lives.
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