
Fast and Accurate Simulation of Biomonitoring Applications on a Wireless
Body Area Network

Kathy Dang NGUYEN Ioana CUTCUTACHE Saravanan SINNADURAI Shanshan LIU
Cihat BASOL Edward SIM Linh Thi Xuan PHAN Teck Bok TOK
Lin XU Francis Eng Hock TAY Tulika MITRA Weng-Fai WONG

Abstract— Remote monitoring of the vital signs of a patient
at home is becoming increasingly important. Wireless body area
sensor networks (BAN) provide a convenient platform for health
monitoring. A typical biomonitoring application running on
wireless BAN has stringent timing and energy requirements.
In this context, a cycle accurate simulator of biomonitoring
application running on wireless BAN network is a critical tool
for the developer. In this paper, we present a SystemC-based
fast simulator that can provide accurate timing and energy
estimated for health monitoring applications on wireless BAN,
which is then used to strategize the optimizations towards
critical functions and/or components. Our case study with
MEMSWear-Biomonitoring application shows the accuracy and
utility of our simulator.

I. INTRODUCTION

Remote monitoring of the vital signs for home care is
important especially for chronic and elderly patients. It is
important to continuously monitor their vital signs so as
to detect the onset of any critical condition early on and
inform the doctor accordingly. Such a biomonitoring system
is usually implemented over a body area wireless sensor
network (BAN) consisting of a set of inter-communicating
sensors attached to the human body, together with a gateway
that collects and transmits data to hospitals.

The development of biomonitoring systems faces a con-
flicting trade-off. Any emergency or anomaly in the vital
signs of the patient has to be processed quickly, and hence the
biomonitoring application requires high processing power. It
is also desirable to maximize battery life. An optimal design
is dependent on both hardware and software, and it is only
by marrying the application to the appropriate platform can
one design a fast and efficient system.

A key component of this development process is the ability
to measure/estimate the timing and energy consumption of
the application on the platform. While it is possible to
measure the timing and energy by running the application
on the platform, this approach has two major drawbacks.
First, most system designs involve exploring a design space
in choosing the appropriate platform, i.e., the platform may
not be available. Second, the measurement can only be per-
formed at a coarse-grained level such as energy consumption

This research has been supported by A*STAR under Project Number
052-118-0061 “EASEL: Engineering Architectures and Software in the
Embedded Landscape.”

The authors are with National University of Singapore. Contact author:
kathyngu@comp.nus.edu.sg

of the entire platform. This granularity is not helpful for the
developer to detect and optimize the critical components.

A fast but cycle-accurate simulator can overcome these
drawbacks. It allows the developer to determine accurately
the processing and energy performance of individual module
in the application, under different configurations. This infor-
mation can then be used to tune the system. Such flexibility
facilitate quick design space exploration.

In this paper, we present a fast simulator for biomonitoring
applications running on wireless BAN. Our work is part
of Embedded and Hybrid System II program in Singapore,
centered on the development of a Body Sensor Node (BSN)
system and of relevant health-care applications. The project
is carried out by Singapore Agency of Science Technology
and Research (A*STAR) with collaborations from Institute
of Infocomm Research (I2R), Institute of Microelectronics
(IME), Nanyang Technological University (NTU) and Na-
tional University of Singapore (NUS).

Our simulator provides a high level executable model
of wireless body area network platform. Our modeling is
based on SystemC, an IEEE standard language for system
level design of embedded systems. Our simulator provides
detailed breakdown of the timing and energy behavior of
individual software and hardware components in the system.
For example, the workload on the sensors can be tuned
according to their energy consumption characteristics so as
to obtain optimal system efficiency. The simulation speed is
fast thanks to the modeling level and techniques that we use
to optimize simulation speed. The simulator has been tested
with a medical application that monitors the patient well-
being by measuring the ECG and the SpO2 blood level [14].

II. RELATED WORK

Recently there is a lot of interest in employing wireless
body area networks for biomonitoring [6], [7], [10], [14]. All
these studies have suggested that successful deployment is
possible if the devices consume very little energy and can
respond to events in a timely manner [9], [8].

Most previous work on high-level modeling or developing
simulator for sensor networks [3], [13] only model the CPU
at instruction set level. However, modeling of the peripherals
is necessary in order to produce accurate performance and
energy numbers. This is because for sensor network appli-
cations, the data input is done mostly through peripheral
interrupts. An exception of the above is [15] that models both



the sensor node (including peripherals and software tasks)
and sensor network by using finite state machines. This is a
higher level of abstraction compared to our approach.

Another simulator that has modeled both the CPU and the
peripherals of sensor nodes is Avrora simulator [1]. However,
at this moment, Avrora does not support the architecture
that we are targeting, namely BSN board with MSP430
micro-controller. In addition, with our implementation in
SystemC, we aim to support better usability of components
and faster simulation speed; thus providing better support for
design space exploration. A commercial tool [5] bears some
similarity with our work. However, we think that developing
our own simulator based on SystemC gives us more freedom
to configure and explore the architecture design space, not
only by changing the configuration of the components in the
system but also by replacing them.

III. WIRELESS BAN SIMULATOR

In this section, we describe our SystemC-based simulator
for wireless BAN platforms. The simulator takes in any
application code written in NesC. The NesC code is compiled
with TinyOS to generate executable code for the BSN mote.
We simulate the execution of the latter code. Our goal is to
perform fast but cycle-accurate execution-driven simulation
of the application on the target platform to obtain accurate
timing and energy estimates.

A. SystemC

SystemC is an IEEE standard system level design language
that can be used to model platforms at different levels of ab-
straction. It is built entirely in standard C++ and comes with
a simulation kernel that manages the execution and progress
of time for all components in a system. The designers have
the freedom to choose the level of abstraction that best suits
their needs. We have chosen transaction level abstraction
to model the communication among the components in our
system. This is the level where communication among the
components is done through function calls only, without syn-
chronization and pins details. To enable faster computation,
we exploy techniques such as minimizing context switches
and using abstract constructs/datatypes. Our simulator also
does not model all details at each clock cycle. Instead,
delays are inserted at appropriate places to capture timing
information and calculate energy consumption accurately.

SystemC allows separate modeling of computation and
communication components. Thus it allows re-configuration
and plug-and-play of components, thus allowing convenient
design space exploration.

B. Simulator structure

Figure 1 shows the structure of our simulator. It consists of
five main components: a micro-controller module, a ChipCon
2420 module, a sensor module, a power monitor and a base
station. The micro-controller present in BSN IC mote is
Texas Instruments MSP430. The micro-controller module
incorporates a CPU module, a clock module, RAM, Flash
and other peripherals. The power monitor is not part of

CLK

MCLK

ISS and Interrupt
Manager

CPU

ACLK
SMCLK

USART

BUS

ADC
HW

Multiplier

Digital

I/O

Ports

TIMER A

MSP430

BASE
STATION

CC2420

POWER MONITOR

TIMER B

RAM
FLASH/

ROM

SENSOR

Fig. 1. The structure of the simulator.

the MSP430 architecture; it is designated solely to monitor
power consumed by each component. To handle a network
of sensors, the simulator creates multiple instances of sensor,
MSP430 and CC2420 modules. Following is a brief descrip-
tion of the important modules.

1) Clock Module: The clock module includes three clock
signals, a Master Clock (MCLK), a Submaster Clock (SM-
CLK) and a Auxiliary Clock (ACLK), and three sources,
a low-frequency oscillator (LFXT1CLK) that operates at
32,768Hz, an optional high-frequency oscillator (XT2CLK)
that operates in a range 450k–8MHz and an internal digitally
controlled oscillator (DCOCLK) that operates at approxi-
mately 1MHz. MCLK and SMCLK can be wired to any
of the three sources while ACLK needs to be wired to
LFXT1CLK. MCLK is the main source for the microcon-
troller. SMCLK is the source for most peripherals and ACLK
is for slower subsystems to conserve power.

2) CPU Module: The CPU model includes an instruc-
tion set simulator, interrupt manager and 16 registers. The
MSP430 incorporates a 16-bit RISC CPU. The instruction
set simulator handles 27 core instructions and 24 emulated
instructions of this RISC CPU. The simulator also imple-
ments seven possible addressing modes.

During the execution of an instruction, the simulator
updates the contents of the affected registers, memory and
flags in the status register. In addition, it inserts cycle-
accurate delay based on the instruction’s opcode, source and
destination addressing mode. The CPU module also features
an interrupt manager that services any pending interrupts
after each instruction is executed. Moreover, the interrupt
manager can handle interrupt priorities and nested interrupts.

3) Timers: MPS430 includes two 16-bit timers: Timer A
and B. Both timers can be used in four operating modes
(up, continuous, up/down, stop). The timers have interrupt
capabilities and the architecture includes a number of con-
figurable capture/compare units: three for Timer A and seven
for Timer B. Timer B has configurable length and can be
programmed as 8, 10, 12 or 16 bits. The clock source
is selectable via the control registers. The capture mode
is used to record time events while the compare mode is
used to generate interrupts and output signals at specific
time intervals. Our implementation for each timer module
consists of a SystemC thread. The thread waits for any of the



following events: (1) a capture signal, (2) counter reaching
the next compare value, or (3) reconfiguration of the timer
by modifying the control registers. The waiting delay is
computed by considering the selected clock frequency and
the next compare value. On capture, compare or overflow,
the timers can request interrupts.

4) USART: The universal synchronous/asynchronous re-
ceive/transit (USART) peripheral interface supports two se-
rial transmission modes, namely UART for asynchronous
data transfers and SPI for synchronous data transfers. The
USART is connected to the CC2420 to transfer data to
and from the radio channels. Our simulator abstracts this
connection but it contains sufficient details to capture the
timing and power consumption information.

5) CC2420: Our simulator provides an abstracted im-
plementation of the CC2420 radio chip. Only the basic
functionalities are supported and the focus is to capture
timing and power consumption information. The CC2420
model includes 33 16-bit configuration registers for status,
15 command strobe registers for instructions, 128-byte trans-
mit(TX) RAM and 128-byte receive(RX) RAM for outgoing
and incoming data packets respectively.

6) Sensor Module: The SpO2 sensor is a TSL257 light-
to-voltage converter produced by Texas Advanced Optoelec-
tronic Solutions. The sensor converts light into voltage output
through the use of a photodiode and a operational amplifier.
The dynamic power dissipation depends on the input [4].
The energy model involves non-trivial calculations, and its
integration with our framework is still in progress.

7) Power monitor: The power monitor module is des-
ignated to accumulate the total energy consumed by each
component in the BSN mote. Every change in operating
modes in any component will update the power monitor.
The power monitor, in turn, will obtain the simulation time
spent in the previous operating mode and compute the energy
consumed during that period. By accumulating the energy
consumed by the individual components and by the BSN
mote, when the application completes execution, we obtain
a breakdown of total energy consumption.

The simulator also performs profiling at functional level.
Each time a function is invoked, the energy consumed while
executing the instructions within that function is accumu-
lated. Hence, when the application completes execution, we
obtain a breakdown of energy consumption by each function.
This information can identify candidate functions that might
be optimized to reduce energy consumption.

C. Battery Life Analysis

Battery life is dependent on the comsumption rate as well
as the physical constraints such as battery size and weight. In
our simulator, we incorporated a battery analysis to estimate
the battery lifetime under an application workload for a
selected battery model. The estimation provides a means
to understand battery behavior to facilitate in tweaking and
optimizing the power consumption of the system.

Because the output energy of a battery depends on its
discharged loads and it is also not possible to exhaust all

energy stored in the battery [11], it is necessary to consider
the discharge profiles and non-linearities of the battery when
estimating its lifetime. Additionally, the speed in computing
the lifetime is also a critical factor.

A number of battery models have been proposed. In
this work, we adopt the analytic model by Rakhmatov et
al. [12] for its flexibility in modeling diverse batteries types
and its good balance between accuracy and efficiency. With
this model, we are able to predict battery lifetime for any
discharge profile and battery model. The integration of this
model with our simulator is in progress.

D. GUI

The Graphical User Interface (GUI) is designed to ease
the use of our simulator. First, the simulator can display
application input and output in real time. RED, IR (red and
infrared light input signal for SpO2 computation) and ECG
(output received at the gateway) signals are displayed in wave
form; other output like heart rate, SpO2 and blood pressure
are also displayed. The left snapshot in Figure 2 shows the
interface while the simulation is in progress.

Once the simulation completes, the energy consumption of
the different software functions (Figure 2(ii)) and hardware
components, as well as estimated battery life, are displayed.
In addition, the simulator can report the time consumed
by each function. All this information provide hints to the
designers for optimizing both timing and energy performance
of the application.

IV. EXPERIMENTAL EVALUATION

In this section, we perform functional validation of
the simulator through a case study of the MEMSWear-
Biomonitoring application [14]. We run the application both
on the actual hardware platform and on the simulator, with
the same input taken in from memory, not sensors because
we have not modeled the sensors yet. We compare and detect
no difference in the heart rate, SpO2 and blood pressure
waveforms generated by actual execution on the hardware
and those by the simulator.

Battery

BSN IC

Voltage Input

Current Input

PCI
Connects to

SC2345

Fig. 3. Experimental set-up block diagram.

1) Energy Measurements: In order to validate the energy
estimated by the simulator, we first measure the actual energy
consumed by the BSN mote while running the application.
We design a special experimental setup for this purpose. We
use National Instruments SC2345 board along with a PCI-
based data acquisition board to collect the voltage and current
readings from the BSN mote, as shown in Figure 3. We
connect the voltage input of SC2345 to the BSN mote in
parallel and the current input of SC2345 in serial to the BSN
mote. The data are forwarded to the PCI board attached to the
PC, which runs LABVIEW software [2] to analyze the data.



(i) (ii)

No of Simulated Measured
samples power (µW) power (µW)

1000 51,633 52,485
3000 51,700 52,485
5000 51,900 52,485

(iii)

Fig. 2. Simulator GUI: snapshots showing (i) simulator in progress and (ii) energy consumption by functions. (iii) Power consumption for BSN board.

The voltage and current data are multiplied and summed up
over time to calculate the energy consumption.

2) Simulator Accuracy: To compare the measured and
simulated power usage, we used three sets of inputs, each
containing different number of samples, to the biomonitoring
application. The results are depicted in Figure 2(iii). In
addition, we have determined the energy consumed by the
CC2420 individually, which consumes 97% of energy con-
sumed by the whole BSN board. We observe that the BAN
simulator can predict the energy usage of the application
rather accurately. In addition, the differences between the
actual and simulated execution time range from 0.5–11%
(average 3.5%) depending on the sampling rates. This verifies
our claim that the BSN motes’s timing/energy behavior has
been well captured in our simulator.

We also perform additional experiments by modifying the
sampling rate of the application. However, we do not observe
any significant variations in the total power consumption.
This observation can be attributed to the radio chip. By
default, the radio chip is always in receiving mode and
this increases the overall energy consumption. The energy
used by the application during its computations is rather
insignificant compared to the energy used by the radio chip.
This information is vital to application developers because
powering down the radio when it is not in use can conserve
energy. However, the developer has to strike a balance
between conserving energy and compromising deadlines due
to the delays in powering up the radio chip. Our simulator
can be of immense help in testing and obtaining optimal
performance parameters to optimize the application.

Our simulator is quite fast: it incurs 4–17× slowdown
compared to native execution, depending on the sampling
rate (50–200Hz). Of course the slowdown is highly depen-
dent on the application. For the current application, the CPU
is in inactive mode for a short amount of time each cycle,
thus saving some simulation time.

V. CONCLUSIONS

In this paper, we have described a fast simulator for
biomonitoring applications implemented over a body area
network. The simulation enables a developer to determine
the energy and time requirements of individual components
in the system. Experimental data, obtained by simulating
an ECG and SpO2 monitoring application over an Imperial
College BSN architecture, shows that our simulator provides

accurate readings. With this information, a design space
exploration is possible at both the hardware and software
levels. Our future work include providing timing and energy
simulation for the base station (e.g. PDA) and providing more
support for design space exploration.

Acknowledgements: We would like to thank Samarjit
Chakraborty, Abhik Roychoudhury, P.S. Thiagarajan for their
advice and Zhenxin Sun for preparing some of the figures.

REFERENCES

[1] Avrora - The AVR simulation and analysis framework.
http://compilers.cs.ucla.edu/avrora/, 2007.

[2] LABVIEW software. http://www.ni.com/labview/, 2007.
[3] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,

P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu. Advances in
network simulation. In Procs. IEEE HLDVT, 2000.

[4] Giorgio Casinovi and Chad Young. Estimation of power dissipation
in switched-capacitor circuits. IEEE Trans. on CAD of Integrated
Circuits and Systems, 22(12):1625–1636, 2003.

[5] N. Fournel, A. Fraboulet, G. Chelius, E. Fleury, B. Allard, and
O. Brevet. Worldsens: from lab to sensor network application de-
velopment and deployment. In Procs. 6th International Conference
on Information Processing in Sensor Networks, pages 551–552, 2007.

[6] K. Hung, Y. T. Zhang, and B. Tai. Wearable medical devices for tele-
home healthcare. In Procs. 26th Annual International Conference on
the IEEE EMBS, 2004.

[7] G. Y. Jeong, K. H. Yu, and Kim. N. G. Continuous blood pressure
monitoring using pulse wave transit time. In International Conference
on Control, Automation and Systems (ICCAS), 2005.

[8] Y. Liang, A. Roychoudhury, and T. Mitra. Timing analysis of body
area network application. In 7th International Workshop on Worst-
Case Execution Time Analysis (WCET), 2007.

[9] Y. Liu, B. Veeravalli, and S. Viswanathan. Critical-path based low-
energy scheduling algorithms for body area network. In 13th IEEE
International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2007.

[10] C. Otto, J. P. Gober, R. W. McMurtrey, A. Milenkovic, and E. Jovanov.
An implementation of hierarchical signal processing on wireless sensor
in tinyos environment. In Procs. 43rd Annual Southeast Regional
Conference - Volume 2, 2005.

[11] D. Panigrahi, S. Dey, R. Rao, K. Lahiri, C. Chiasserini, and A. Raghu-
nathan. Battery life estimation of mobile embedded systems. In Proc.
14th International Conference on VLSI Design, 2001.

[12] D. Rakhmatov, S. Vrudhula, and D.A. Wallach. A model for battery
lifetime analysis for organizing applications on a pocket computer.
In Proc. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2003.

[13] G. Sachdeva, R. Dömer, and P. Chou. System modeling a case study
on a wireless sensor network. Technical Report CECS-TR-05-12,
University of California, Irvine, 2005.

[14] F. E. H. Tay, D. G. Guo, L. Xu, M. N. Nyan, and Yap K. L. Memswear-
Biomonitoring System for Remote Vital Signs Monitoring. In Procs.
4th International Symposium on Mechatronics and its Applications
(ISMA07), 2007.

[15] K. Virk, K. Hansen, and J. Madsen. System-level modeling of wireless
integrated sensor networks. In Procs. 2005 International Symposium
on System-on-Chip, 2005.


