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Abstract—A biomonitoring application running on wireless
BAN has stringent timing and energy requirements. Developing
such applications therefore presents unique challenges in both
hardware and software designs. This paper shows how we
successfully apply our full-system simulator to a MEMSWear-
Biomonitoring application. The simulation results, together with
a set of investigative guidelines, enable us to identify and
overcome performance bottlenecks. Our simulator is able to
obtain timing and energy measurements for each function in the
program as well as for each module in the hardware. Without
such detail and accurate information, we would not be able
to identify the reason for the low performance in the original
application.

I. INTRODUCTION

Developing and tuning an application over a body area

wireless sensor network (BAN) is an unique challenge due to

conflicting trade-offs in its system requirements: it needs high

processing power to meet certain computation goals, and it

also needs to consume less energy in order to preserve battery

life. Consequently, the developer has to design and optimize

both hardware and software in order to build a fast and efficient

system.

We have argued that a full system simulator is more suitable

in helping the developers achieve their goals, especially when

the hardware platform is not yet available at the design stage,

or when fine-grained simulation results are needed to tune

the system [10]. Particularly, the breakdown in the timing and

energy consumption by each function in the application and by

each module in the hardware are critical information needed by

the developers. It also allows quick design space exploration

when there are multiple setup configurations.

We have developed a SystemC-based fast simulator for

biomonitoring applications running on a wireless BAN. Our

work is part of Embedded and Hybrid System program in

Singapore, centered on the development of a Body Sensor

Node (BSN) system and of relevant health-care applications.

The project is carried out by Singapore Agency of Science

Technology and Research (A*STAR) with collaborations from

Institute of Infocomm Research (I2R), Institute of Microelec-

tronics (IME), Nanyang Technological University (NTU) and

National University of Singapore (NUS).

In this paper we present a case study of how our full

system simulator, together with a set of investigative guide-

lines, help us in identifying and fixing performance issues on

a MEMSWear-Biomonitoring application called SpO2nECG

application [20]. We use physical measurements on the timing

and energy consumption to validate the results of our simula-

tion. Based on the simulation results, we are able to identify

the reason why the messages are sent at a much lower rate

than expected, as well as discover a very efficient mechanism

to reduce energy consumption and hence improve battery life.

Without the full system simulation, the performance bottleneck

would be impossible to detect by just merely looking at the

application code: the issue lies with how it interacts with the

underlying TinyOS code.

The rest of the paper is organized as follows. We briefly

review related work in Section II. In Section III we briefly de-

scribe our full-system simulator. Section IV presents our case

study with the SpO2nECG application. Section V concludes

the paper.

II. RELATED WORK

Numerous simulation tools are available to aid programmers

in understanding the performance and behaviour of body

sensor networks (BSNs). These tools vary widely in scalability,

accuracy and feedback details. Surprisingly, relatively few

exist for the purpose of timing and power analysis—the two

most essential aspects in the design and optimisation of body

sensor applications. In fact, to the best of our knowledge, none

of the existing instruction-level simulation tools for MSP430

platform supports timing and power analysis of sensor motes

at the functional level.

Well-known discrete event-based simulation environments

such as NS-2 [2], TOSSIM [8], and OMNeT++ [23] provide

effective ways to validate the behaviour of network protocols.

However, they do not capture internal operations of the indi-

vidual motes that might assist developers in debugging and

optimizing applications.

Along the line of our work, there have been a number

of instruction-level mote simulators; for example, Atemu [6],

Avrora [21], COOJA [12] and their extensions. Atemu sim-

ulates the operations of individual motes and communica-

tion between them, though it does not supply timing and

power consumption information of the motes. Similar to our

simulator, Avora and its extension AEON [7] allow for the

evaluation of energy consumption and lifetime prediction of

sensor network. However, they are both limited to Mica2
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platform, which is not applicable to our context where our

focus is on the MSP430 platform.

Eriksson et al. [1] introduces an instruction level simulator

called MSPsim, targeting the MSP430 microcontroller that

contains a sensor board simulator as well which simulates

hardware peripherals such as sensors, communication ports,

LEDs, and sound devices. Although comprehensive in features

and easy to be integrated into the cross-level simulation plat-

form COOJA, MSPsim shares the same limitation as Atemu: it

supports source-level stepping and run-time variable inspection

only, without displaying any timing or power consumption

information of the various components of a mote.

Recently, TOSSIM has been extended to estimate the power

consumption of the Mica2 sensor mote. The extension, Power-

TOSSIM [17], is built on top of TinyOS and is highly scalable.

This benefit comes at a price as the tool is coupled with

the TinyOS written code. In contrast, our simulator works

on machine code level, and it can simulate sensor network

applications written in any language with any operating system

components, such as both TinyOS and SOS. Further, Power-

TOSSIM follows a high-level of abstraction approach, which

might not provide enough details necessary for application

optimisation and may potentially lead to poor accuracy in the

analysis results.

Several other tools that work at the abstract level, for ex-

ample, SensorSim [13] and SENS [19], unfortunately, assume

rather simplistic power usage and battery models which may

not be realistic in actual hardware and practical applications.

In the Embedded System domain, several power simulation

tools for energy profiling have been proposed (see e.g. [5],

[18]). However, most of these tools are limited to profiling of

microprocessor energy consumption only as they are designed

for general embedded systems,

Despite simulation being the de-facto standard tool for the

evaluation of body sensor networks, lately there is a growing

interest in the formal method community. Owing to their

expressiveness, automata-based techniques have been used to

analyse wireless communication and protocols (see e.g. [3],

[4]). Recently, Timed-automata has been employed to validate

QoS properties of BSNs such as packet end-to-end delay,

packet delivery ratio and network connectivity [22].

Another contrasting line of work is the Sensor Network

Calculus (SNC) [15], a worst-case analysis framework that

uses algebraic techniques. It is developed based on the Net-

work Calculus in Computer Networks domain. SNC has been

continuously adapted and extended to effectively model and

analyse worst-case behaviour of sensor networks, such as these

examples in [9] and [16].

Although comparatively much less explored and limited by

their ability to scale up, formal techniques are much faster than

simulation and provide formal guarantees. Thus, they can be

used in early development, for instance to identify worst-case

scenarios of the systems for a given architecture. With further

investigation and appropriately incorporated with simulation-

based techniques, such formal techniques will certainly benefit

system designers and developers to a great extent.

III. SYSTEM LEVEL SIMULATION

A. Simulator

We implemented a fast, cycle-accurate simulator for

biomonitoring applications. This simulator allows the devel-

oper to determine accurately the processing and energy perfor-

mance of individual modules in the application, under different

configurations. The simulator assumes the applications utilize

multiple motes which are connected via a wireless BAN.

Following is a brief description of our simulator; for a full

description please refer to [10].

The mote simulator is implemented in SystemC and it takes

in any application code written in NesC. In order to handle a

network of sensor motes, multiple instances of these simulators

are created as different threads in the same simulation process.
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Fig. 1. The structure of the mote simulator.

Figure 1 shows the general structure of our mote simulator.

It consists of four main components: a micro-controller mod-

ule, a ChipCon 2420 module, a sensor module, and a power

monitor.

The micro-controller in the BSN IC mote is Texas Instru-

ments MSP430. This module incorporates a CPU module, a

clock module, RAM, Flash and other peripherals. The CPU

module includes an instruction set simulator and an interrupt

manager.

The CC2420 module is an abstraction of the real radio chip.

It provides only the basic functionalities, as our focus is to

capture information on timing and power consumption.

The power monitor is not part of the MSP430 architecture

and it is designated solely to monitor the power consumed by

each component of the mote. It is also able to compute the

energy consumed by each function of the application being

simulated. This information is very useful for determining the

functions that need to be optimized in order to reduce the

energy consumption.

B. Application

Our simulator provides simulation for the full system of a

generic wireless BAN. Typically, a wireless BAN consists of

several wearable sensors on a human body. These sensor motes

transmit vital body parameters such as ECG or SpO2 blood

level through wireless technology to a gateway mote which
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in turn is connected to a PDA, whose job is to process data,

send commands to the motes, and forward data to a doctors

clinic. Additional information on full system simulation can

be found in our previous work [11].

The users interact with our simulator through a friendly

Graphical User Interface. To simulate an application, the users

follow these steps:

• Choose the number of sensor motes.

• Choose the application running on the gateway mote and

on each sensor mote.

• Start the simulation. While running, the GUI displays

the PDAs screen and a multi-tab window for the motes.

For example, the PDA screen can show graphs of data

received from the motes. Each tab in the sensor window

shows the current status of the corresponding mote.

• Stop the simulation. A summary of total energy and

timing for each mote is showed on its corresponding

window tab.

C. Functionalities

Our simulator provides the following functionalities to help

developers debug or optimize their applications:

a) Total Energy and Timing: After simulating an applica-

tion, the total energy and timing are shown. This in-

formation is extremely important to evaluate the overall

performance of an application.

b) Functions Energy and Timing: A breakdown of timing

and energy for each application function running on each

mote is also listed. These numbers enable developers

to optimize the application by providing deep insights

into the behaviour of the application and help them

focus effectively on the most time-consuming or energy-

consuming functions.

c) Monitoring points: The user can choose several critical

points in a program as monitoring points. During simu-

lation, whenever the execution reaches these monitoring

points, an instant snapshot of the following information

is automatically saved in a log file:

• Energy and timing: This is the energy and time

consumed so far by that mote. It gives user a quick

look at the rate the code running on the mote is

consuming power.

• Register values: The values of CPUs registers are

shown for functional debugging. For example, a

jump instruction whose destination is indexed mode

jumps to different locations depending on the run-

time value of the indexing register. Thus, the value

of that indexing register could tell which instruction

and/or function the simulator is going to execute

next. This knowledge is useful for user to validate

the control flow.

• Radio buffer: The number of filled bytes in

CC2420s transmitting and receiving buffers are cap-

tured and displayed. This helps detecting buffer

overflow and dropped messages, which enable the

developer to adjust the message sizes and the sam-

pling rates.

• Transmission summary: the snapshot provides a

count of bytes sent or received so far by the radio

chip and the serial port. These data, together with

timing information, can be used to compute the

average transmission rate.

Figure 2 shows an example of the collected data at vari-

ous monitor points. This is particularly useful when the

user wants to compute time or energy for a fragment of

code which could be part of a function or a combination

of several continuous functions.

Fig. 2. Simulation data collected at monitor points.

d) Monitoring memory addresses: The user can choose

several important memory addresses in a program to

monitor their evolution. These addresses may refer to

variables used by the application or they may correspond

to the internal registers of various peripherals. During

simulation, whenever the value of such a monitored

address is modified the new value and the address of

the current instruction are logged to a file.

e) Battery life computation: We employ Rakhmatov’s bat-

tery model [14] to capture the battery performance and

to compute its life time. Since BAN applications are on

human body, they require mobility, flexibility and long

duration. Thus, the battery life time is a critical factor

while developing the applications; the longer the battery

can last, the more convenient it is for device-wearing

patients.

f) Control flow: Last but not least, our simulator provides

users with an option to record the control flow of

the application running on a mote in a log file. Since

applications written in NesC code are compiled with

TinyOS library to generate complete C code and then

executable code on a specific platform, details of an
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applications control flow is only available at C/assembly

code level which is significantly different and much

more comprehensive than the original NesC code. Un-

derstanding the control flow of an application is vital for

debugging and optimizing purposes.

D. Guideline to debug/optimize an application

We give a general list of guidelines which the developers can

adopt in the process of debugging or optimizing applications.

These guidelines are created based on our experiences and

on the general principle of top-down problem solving. The

steps and their order are flexible and could be modified to suit

different applications, problems and objectives.

a) First, the user should set up and run the application

once to get a summary of the total time and energy

consumed by the application for a standard sensor input.

Together with a breakdown of timing and energy for

each function, this gives a comprehensive overview of

the application. Based on this overview, the user might

have a general idea if a problem exists and what the

problem is.

b) Other information such as battery life and transmission

rate could also be a good source to detect the problem.

c) Look at the generated C code or control flow log file to

understand the application and how different functions

are linked together either as caller-callee relationship or

as a sequence of tasks/events.

d) Check the control flow log file if everything is in order.

If something goes wrong, the control flow may show

some unexpected runtime behaviour.

e) With a good understanding of the application control

flow, the user can identify critical points in the program

where local information may reveal the cause of the

problem. She can run the whole simulation once more

to collect data at these monitoring points. Then she may

investigate the result to narrow down the problem.

f) If the problem is with application code, fix or improve

it. If the problem is with TinyOS code, consult TinyOS

developer guide to find if there is any solution or

possible optimization. After fixing the code, go back

to step a), run the simulation one more time to get the

new performance summary. If the result is not satisfying,

repeat the steps for further optimization.

Our simulator is very fast, incurring only 5–20 times slower

than native execution on real motes yet able to provide critical

performance data for developers to tune their applications.

This is apparently an advantage compared to other methods.

For example, running applications multiple times directly on

the real hardware gives very little insight about the applications

running on it.

In Section IV, we present an example of how we use our

simulator to obtain useful data about the performance of an

application and how the developer uses this information to

identify and remove a bottleneck in the application.

Fig. 3. Control flow of message transmission

IV. CASE STUDY

In this section, we focus on a case study of a MEMSWear-

Biomonitoring application, SpO2nECG application [20]. In

this application, a single sensor mote collects data such as

RED, IR and ECG from attached sensor at a sampling rate of

250Hz and then sends them all to the gateway station (PDA)

for processing. The gateway stattion uses these data as input

to compute heart rate, SpO2 and blood pressure. These outputs

might be displayed on the LCD or to be used as input to other

programs such as fall detection.

Following the guideline, first we run simulation for this ap-

plication once to obtain a performance summary. We notice the

total energy consumption is dominated by the radio on sensor

mote, compared to those by the CPU and other peripheral

devices. This leads to battery running out quickly in several

hours while the developers expect it to last at least half day.

Next, checking other data in the summary, we find a

problem with the transmission rate on sensor motes. Although

the transmission rate for radio chip CC2420 is specified to be

250kb/s in the manual, this application achieves a much lower

rate of 20kb/s. This causes a serious delay in collecting data,

computing important output and detecting critical conditions

on the PDA side.

After identifying the two problems, we follow the guideline

to fix them.

a) Transmission rate: First, we try to optimize the low

transmission rate. By investigating the C code and the

generated control flow log file, we come to under-

stand the control flow of the sending process shown

in Figure 3. Note that this figure is just one simplified

scenario applied for this application for illustration pur-

pose; TinyOS has other scenarios to handle hardware or

network congestion as well.

To gain more insight about this process, we perform an-

other tip in the guidelines, which is to set up monitoring

points in functions involved in message transmissions,

and run the simulation to collect data at these points.

From the collected data, we derive, as shown in Figure 4,

the timing percentage of different tasks involved in
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Fig. 4. Timing percentage of different tasks involved in transmission

sending a message. These are average numbers after

transmitting over 100 messages.

The simulation result helps us narrow the problem and

look into the right place to seek for improvement.

Contrast to our initial intuition, actual sending data

through radio costs only 11.6% of the total time. Indeed,

our simulation brings to our attention that the most time-

consuming task is buffering message in CC2420. In this

case, the bottleneck lies in TinyOS code rather than the

application code, which is impossible to detect by just

merely looking at NesC code. From the control flow, we

notice that CPU sends only 2 bytes each time to buffer in

CC2420, waits for acknowledgment, before continuing

with the remaining of a message. This is very time-

consuming. Our solution is to change the TinyOS code

so that each message is sent as a whole, and thus avoid

waiting for (too many) acknowledgment.

After implementing this change and running the simu-

lation once time, the transmission rate improves by 20

percents. However, note that in general this solution is

not a good idea because removing synchronous mech-

anism might cause out-of-synch in hardware state and

packet loss.

Another idea that the developers suggested is to move

part of data processing from the gateway mote to the

sensor mote. Instead of collecting and sending raw

data to the gateway mote, the sensor mote can actually

extract important information and send only critical data

to the gateway mote for further action. This has two

advantages: reducing network workload and packet loss,

and saving energy for the radio chip CC2420 by sending

fewer and shorter messages.

This second suggestion proves itself to be a very good

idea. Because the sensor mote now scarcely send critical

data to the gateway mote, the slow transmission for

a message is tolerable. It also balances the workload

between the sensor mote and gateway mote, and reduces

the chance of packet loss due to buffer overflow. Energy

consumed by the gateway mote drawn from the PDA is

also reduced, and hence the PDA could last longer for

its other tasks.

b) Radio Energy: Next we analyze the second problem, en-

ergy consumed by the SpO2nECG application. Through

summary of simulation result and extrapolation, we

know that battery will get exhausted quickly due to high

consumption rate of the radio chip. Again, following tip

(c) of the guideline, inspecting the radio chip manual and

the control flow log file, we find that the reason is that

the radio is continuously active in its sending/receiving

mode.

At first, since the sensor mote keeps sending data at

a rate of 250 messages per second, it is reasonable to

keep the radio on all the time to avoid message dropping.

However, after the first optimization, the motes no longer

need to send messages at such high rate. Because our

simulator is able to accurately measure the interval

between message sending events, the new simulation

result shows that the sensor mote now sends critical

messages at peak point of data about every 300ms.

Therefore, we suggest to the developers to turn off the

radio during inactive periods.

Using the Low-Power Listening Interface that comes

with TinyOS, we put the radio to sleep whenever there is

no packet to send. The amount of on-time and sleep-time

of the radio in each cycle was controlled by the local

duty cycle rate, which is the ratio between the radio-on

time to the total cycle time:

DutyCycleRate =
OnTime

OnTime + SleepTime

Our objective is to obtain as small duty cycle as possible

while ensuring there is no message loss. Toward this, we

experimented with a wide range of duty cycle values and

simulated each corresponding modified application using

our simulator. Based on the simulated analysis, we chose

the value that produced the least energy consumption

and an acceptable end-to-end delay of the messages.

After implementing this Low Power Listening on radio

chip CC2420, which enables us to turn off the radio

during inactive periods, the total consumed energy com-

puted by our simulator is reduced significantly by nearly

40%. We verify the result with real measurement, and we

found that there is a small gap. This is expected because

we have not implemented the LEDs, voltage converter,

and battery adaptor in our simulator, and hence we did

not estimate the energy consumed by them in our energy

computation. Currently we are trying to close the gap by

improving the simulator.

These optimizations not only benefit the SpO2nECG

application but several other groups in EHS project as

well. They applied these optimizations in their design

and gained significant improvement in their applications

performance.
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V. CONCLUSION

In this paper we have described a case study of how we

successfully use our full-system simulator to dissect the per-

formance of a MEMSWear-Biomonitoring application. Base

on the detail results on timing and energy, we are able to

identify bottlenecks in the application. The bottlenecks are

contrary to our initial suspicious culprits. The results also

enable us to come up with solutions that significantly improve

the performance, which in turn improve the life time of the

batteries.
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