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Abstract
Virtual memory is optimized for SRAM-based memory devices in
which memory accesses are symmetric, i.e., the latency of read and
write accesses are similar. Unfortunately, with the emergence of
newer non-volatile memory (NVM) technologies that are denser
and more energy efficient, this assumption is no longer valid. For
example, STT-RAMs are known to have high write latencies and
limited write endurance which the virtual memory is unaware of.
A popular architecture is a hybrid cache that uses both SRAM and
NVM. There are a number of proposals for such architectures at
nearly all the levels of the cache. However, these proposals are of-
ten self-contained with monitoring and management schemes im-
plemented with special hardware at the level where the cache is
deployed. With moves to use NVM at several levels of the memory
hierarchy, such solutions may lead to duplication and higher over-
heads. Worse, because the management algorithms implemented
can be different at different levels of memory, it may lead to nega-
tive interference between them resulting in impaired efficiency.

In this paper, we propose a virtual memory design, EnVM, that
takes into consideration the idiosyncrasies of NVM-based hybrid
caches. The new virtual memory layout is implicitly used to allo-
cate data to NVM and SRAM at any level of the memory hierar-
chy and is not dependant on the particular arrangements of the two
partitions. The proposed design successfully filters out write oper-
ations and allocates them to SRAM. Moreover, it can be applied to
any existing fine-grained data allocation technique to enhance the
efficiency of these memories.

1. Introduction
The concept of virtual memory is the key to managing multiple
processes efficiently with the limits of the physical memory of a
system. Virtual memory allows programs to execute with memory
footprints that are larger than the available physical memory. How-
ever, the classic virtual memory is designed with the assumption
that the underlying cache hierarchy is built using fast SRAM. Re-
cently, non-volatile memories (NVM), say, STT-RAM technology,
are becoming viable alternatives of SRAM for cache memories.
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These technologies allow caches to be denser and more energy ef-
ficient. However, these NVM technologies show characteristics that
are different from that of SRAM. For example, their access laten-
cies are asymmetric. In particular, writes are significantly slower
than reads [1, 18]. Furthermore, they face the issue of write en-
durance, i.e. the number of write operations a NVM cell can endure
before failing is lesser than that for SRAM.

From systems’ perspective, allocating data without differenti-
ating between read and write accesses is therefore detrimental to
NVM memories. Unmonitored and excessive write operations can
impede performance, and, in addition, reduce the lifetime of the
on-chip caches and hence the processors [8, 22]. It is essential to
judiciously manage memory accesses based on their access pat-
terns and access types in order to achieve a balance between en-
ergy efficiency and performance. Researchers favoured the use of
hybrid caches comprising of a smaller SRAM and a larger NVM
partition as a promising design [2, 6, 11, 18]. The smaller SRAM
filters out write operations, protecting the write sensitive NVM
partition. Recent works have explored novel data allocation tech-
niques to manage the hybrid caches efficiently. Chen et.al. [2] pro-
poses a hardware-software co-optimized framework to allocate data
to hybrid caches. Their compile-time analysis produces hints for
each instruction that influences data placement in the partitions.
The hardware support ensures that write intensive data is migrated
from NVM to SRAM to ameliorate the write endurance issue. Li
et.al. [11] proposed a new stack layout to optimize data allocation
to the hybrid caches. They present a specialized address genera-
tion policy that reduces data migration between the two partitions,
while, at the same time, reducing write operations to NVM. Their
technique can be applied to global data too. However, all the tech-
niques are specialized for a particular cache level and architecture.
Most of the methods have hardware overheads. These partial ap-
proaches will result in even higher overheads when NVM based
hybrid caches are adapted at all levels. Worse, it would lead to mu-
tual interference between the different cache levels, subsequently
resulting in impaired efficiency.

Our Proposal In this paper, we propose a new virtual memory
design EnVM, that is aware of NVM based caches. The revised
virtual memory design is able to influence data allocation across
all the levels of memory hierarchy seamlessly. EnVM consists of a
static code analysis that generates virtual addresses for statically al-
located data and facilitates virtual memory layout of the global data
and stack. The static analysis is able to discern the memory access
affinity for each data and generates virtual address accordingly. The
key idea is to enhance locality of data based on their memory ac-
cess affinity i.e. read affinity and write affinity. For dynamically al-
located memory i.e. heap area in the virtual address space, EnVM
makes use of modified system libraries. Our new dynamic mem-
ory allocator interface is exposed to the programmer and provides



the programmer with distinctive functions for read intensive and
write intensive data structures. Virtual address generation for heap
accesses is performed at runtime by the operating system. Our mod-
ified kernel supports the system libraries to manage the new heap
area of virtual address space. The virtual to physical address trans-
lation is intersected by a group of conventional segment registers to
facilitate data allocation to SRAM and NVM partitions.

Contribution There are several advantages of EnVM. First, it is
able to influence the data allocation across all levels of memory hi-
erarchy without requiring specialized hardware at each cache level.
This helps in easier adoption and scalability to deeper cache hier-
archies. Secondly, EnVM provides a holistic design with support
for both statically allocated and dynamically allocated data, span-
ning the entire virtual memory address space. Finally, our exper-
iments show that EnVM eliminates the need for data migration
as the write operations are optimized and filtered out to SRAM.
Although, cache management can be further optimized by some
form of migration, EnVM serves as the base virtual memory for
the new memory technologies. We implemented EnVM using the
GCC compiler and GNU malloc library. In order to quantify the
gain, we implemented a hybrid cache model described in [18] and
compare EnVM with two existing works on software assisted data
allocation for hybrid caches [2, 11]. Details of evaluation and ex-
perimental results are presented in Section 5. In summary, the con-
tributions of this paper are as follows -

• We propose EnVM, the first virtual memory design that is aware
of memory hierarchies built using the new memory technolo-
gies. EnVM provides an uniform data allocation mechanism to
all the levels in the memory hierarchy. This is an important step
towards an all NVM based memory hierarchy.

• EnVM provides a novel static code analysis that can identify
and allocate data with read and write affinity separately in the
virtual address space. It enables data allocation accordingly and
reduces write operations to NVM.

• We provide a new programmer’s interface to be able to allo-
cate read and write intensive heap memory exclusively during
runtime. The system libraries and the operating system are op-
timized for this new heap memory region.

• EnVM is the only virtual memory design that enables data
allocation to hybrid caches built with SRAM and NVMs. It
utilizes existing hardware and advocates migration-less cache
design.

2. Related Works & Background
To further motivate our proposal, we will elaborate on state of the
art techniques of hybrid cache management. In addition, we will
provide a brief background on existing virtual memory manage-
ment schemes.

2.1 Compiler Assisted Hybrid Caches
NVM-based hybrid caches are being studied in depth in recent
years. Researchers proposed many solutions [5, 20, 23] that are
either hardware or software controlled. In this paper, we are par-
ticularly interested in compiler assisted management of the hybrid
memories and hence we shall illustrate the state-of-the-art of these
methods.

Li et.al. [10] introduced one of the first compiler assisted ap-
proaches for managing hybrid caches. They assumed a hybrid L1
cache architecture that allows for migration of data from STT-RAM
to SRAM to reduce write operations. They presented a novel stack
data placement and proposed an arrangement of memory blocks in
such a way that reduces migrations because copying data from one

cache to another is an expensive operation. Further in [11], they
proposed a preferential cache allocation policy that places migra-
tion intensive blocks into SRAM to further reduce write accesses
to STT-RAM. Chen et.al. [2] presents a hardware and software co-
optimized framework to aid STT-RAM based hybrid L2 caches.
They proposed a memory-reuse distance based program analysis
that allocates write intensive data in SRAM and read intensive data
in STT-RAM. This analysis is supported by a runtime data migra-
tion technique using hardware counters for cache lines. Though
their framework improved performance and also showed energy
efficiency, they are based on the profiling of application. Profiling
based methods suffer the well-known shortcomings in usability and
scalability. Moreover, their memory-reuse distance based algorithm
is applicable to L2 caches only.

The two works mentioned above targeted L1 and L2 caches,
respectively. When we consider the use of NVM based memories
at all levels of memory hierarchy, these techniques to manage a
single level of cache in isolation may interfere with each other if
used together. For example, in the algorithm in [2], memory blocks
with a large memory reuse distance are assumed to incur write op-
erations to L2 due to L1 capacity miss. Based on such heuristics,
every memory block is provided with hints to be considered while
placing the cache block in L2 SRAM partition or STT-RAM par-
tition. Suppose we also have a hybrid L1 that uses the algorithm
in [10] which places read and write intensive blocks in different
localities if they are in the stack region. The data locality, then, be-
comes a function of the type of memory access and not temporal
relationships. In such a setup of L1 and L2 caches, a large mem-
ory reuse distance for a L1 cache block does not necessarily result
in capacity misses. Therefore the assumption for algorithm for L2
cache management is weaken significantly. These two cache man-
agement techniques for L1 and L2 will fail to cooperate with each
other, and may in fact be detrimental to one another.

All the works proposed in literature target a specific level in
the cache hierarchy. Many are profile based program analysis with
hardware support to manage the cache blocks in accordance with
the program behaviour obtained. Such hardware supports and pro-
gram analyses are not scalable to the entire memory hierarchy.
Though Li et.al. did take advantage of the virtual memory to influ-
ence data allocation across the memory hierarchy in [11], they only
propose stack and global data arrangement based on a static code
analysis customized only for L1 data caches as mentioned before.
There is, therefore, a need for a holistic framework that manages
the virtual memory area of a process to aid hybrid memories at any
level of the memory hierarchy. The cache hierarchy is generally ac-
cessed using physical addresses that are computed from virtual ad-
dresses using specialized hardware. Virtual memory layout, there-
fore, influences optimized cache management. As the underlying
memory technology changes, a shift in virtual memory design is
inevitable for maintaining performance and energy efficiency. Be-
fore proposing our virtual memory design EnVM, we will briefly
present a summary of existing virtual memory management.

2.2 Virtual Memory and Supporting Architecture
The virtual memory address space of a process is usually separated
in sections. These sections are logically contiguous segments of
virtual address that shows common characteristics. For example,
the text section contains the code of a program and the data
section contains all global variables and memory objects. In a
Linux operating system, information about virtual address space of
a process is usually embedded in the executable using a special for-
mat known as the Executable and Linkable Format (ELF). During
the creation of a process or context switches, the operating system
kernel loads the virtual memory address space of that process with
all the related information from the ELF binary file. Every virtual
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Figure 1: Percentage of variables

address gets translated to a physical address. This physical address
is then used to access memory objects in the physical memories i.e.
caches and main memories. A typical layout of the virtual memory
address space is shown in Figure 2(a). Our proposed technique uti-
lizes the virtual memory space of processes to provide a uniform
scheme to manage hybrid caches and main memory.

3. EnVM
In this section, we will describe EnVM and its functionality in
detail. We will first describe EnVM’s new memory layout followed
by the data management techniques for both statically allocated and
dynamically allocated data.

Traditionally, the virtual memory space is divided in logical
segments as described in Section 2. EnVM contains fine-grained
logical segments that are based on the memory access affinity of the
memory objects. In other words, memory objects that exhibits read
affinity are placed separately from those that shows write affinity.
Figure 1 shows that memory objects that shows affinity to both
read and write operations are less in proportion. In most of the
benchmarks, only 5% of the variables show a high read and write
affinity, where as 92% variables (on average) shows affinity towards
either read or write accesses.

In EnVM, the read and write intensive groups are separated by
segment boundaries known to the operating system (OS). At run-
time, the OS will manage the data allocation to underlying hybrid
memories using the segment boundaries. This is analogous to man-
aging text segment and non-text segment for instruction caches and
data caches separately. It is worth pointing out that the EnVM lay-
out would work on existing systems with no modification.

3.1 Statically Allocated Data
Runtime behaviour of statically allocated data is possible to analyze
at compile-time. To arrange the global and stack data in EnVM, we
propose a new static code analysis for placing variables according
to their memory access affinity. The analysis we present here esti-
mates the number of reads and writes of each program variable. Un-
like profiling techniques, it path insensitive, and therefore does not
focus only on the frequently executed program path(s). The analy-
sis is a dataflow analysis(DFA) problem. The DFA is applied as an
interprocedural analysis on the control flow graph of the program.

Definition The abstract domain of the analysis is a tuple contain-
ing an identifier for the variable, its read and write count repre-
sented as (V,R,W ), where V ∈ set of all variables in the program,
R and W ∈ N. The domain forms a lattice, ((V,N,N)∪{�},�F ),
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Figure 2: Existing and Proposed Virtual Memory Design

where � is the top element and �F is the partial order defined as

(X �F Y ) iff (X(V ) �RW Y (V )) for each variable Vi ∈ V (1)

(Vi �RW Vj) iff (Ri ≤ Rj) ∧ (Wi ≤ Wj) (2)

where Ri,Wi, Rj and Wj denotes the read and write counts for
variables Vi and Vj respectively.

The partial order defined above is significant for the termination
of the dataflow analysis. It also plays an important role in analysing
branches and joins in the control flow graph. The partial ordering
rule says that two variables are partially ordered if and only if
both the read and write counts are in natural order. For example,
if the read count of one variable is higher than that of the other but
opposite for the write count, then the analysis cannot determine any
partial order between the two variables.

As the DFA we propose is counting based, the partial order be-
tween different variables do not influence the outcome of the anal-
ysis. However, the partial ordering between instances of the same
variable is important during branch joins. This phenomena is de-
scribed later with the discussion of meet operator. Each instruction
i, in a basic block is passed through define two transfer functions,
F and B, for forward and back edges, respectively.

Definition At each program point, the set of tuples (V,R,W ),
denoted as X , and the transfer function for the current instruction
i, is defined as

Fi(X) = Gen[i] � Probei(X) (3)



The function Gen[i] discovers a variable from the instruction i, and
the function Probei(X) examines all the elements of the set X and
updates it according to the rule below -

∀V ′ ∈ X, where V ′ = (V,R,W )

R = R+ 1 if i reads V

W = W + 1 if i writes V
(4)

The key idea is to examine whether an instruction i has a read
operation on variable V , then read counter is incremented, and if i
has a write operation on V , the write counter is incremented. For
all back edges in the CFG, most likely a loop edge back to the start
of the loop, we have a transfer function Bi(X). For an instruction
i succeeding instruction j through a back edge, all variables V ∈
instructions between j and i, R = R+k and W = W +k, where k
is a static loop bound [21]. This will have a similar effect as going
through the loop instructions k times. When resolving branches and
phi functions, we apply the meet operator �.

Definition The meet operator � is applied when two basic blocks
have a common successor basic block. The OUT information from
the two parent basic blocks are unified using the meet operator to
form the IN information of the successor. It is defined as

(Vi, Ri,Wi)�(Vj , Rj ,Wj) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

� , if(Vi = Vj) ∧ (Vi �� Vj)

(Vi,max(Ri, Rj),max(Wi,Wj))

, if(Vi = Vj) ∧ (Vi � Vj)

{(Vi, Ri,Wi) ∪ (Vj , Rj ,Wj)}
, if(Vi �= Vj)

(5)

The above rule says that when different instances of a variable
along different paths are not in partial order then it is assigned the
� element. For example, if a variable has a read count that is more
than the write count for one path, but it is the other way around for
another path, then we assign � to the variable. This means that it
was not possible to conclude whether this variable has more reads
or writes. For all other variables, we take the maximum of read
and write counts over all the paths. This gives us an estimate of
the upper bound. The dataflow problem is solved using iterative
algorithm.

Definition For each basic block l, we have two dataflow equations
RWAentry(l) and RWAexit(l). These represent the set of tuples
before and after processing a basic block. For our analysis, we
define the dataflow equations as follows -

RWAentry(l) = ∅ if l ∈ init(S�) (6)

RWAentry(l) = �(RWAexit(l
′) ∪Bi, if (l, l′) ∈ F low(S�) (7)

RWAexit(l) = (RWAentry(l) ∪ Fi(RWAentry(l)) (8)

where init(S�) denotes the set of initial labels i.e. the starting
basic blocks, Flow(S�) denotes the flow of the program and (l, l′)
is a valid edge in the control flow graph.

As mentioned before, Bi is the transfer function applied while
traversing a backward edge. If there is no back edge to the entry of
the basic block then Bi = ∅.

Indirect memory accesses Apart from static variables, there are
a large number of variables in a program which are accessed in-
directly through pointers. Our analysis extends to the pointers to
static variables through the help of ”may” aliases of each variable.
Points-to information gathered from the alias sets helps to asso-
ciate variables to their probable source of access and the type (read
or write). All pointer variables that points to statically allocated
data are treated as independent data objects and can be classified
differently than the points-to object. However, with each load and
store that accesses a variable through the pointer, the read and write

Algorithm 1 Partial Algorithm for Address Generation for Global
and Stack Data

Require: source code of the program
Ensure: virtual addresses for statically allocated memory objects
1: CFG ← Control Flow Graph of the program
2: procedure ADD GEN(CFG)
3: Initialize var array ← ∅ /* var array is a 2-d array with

variables and their assigned classes */
4: Initialize analysis outcome ← ∅ /* analysis outcome con-

tains all the variables with read and write counts */
5: for all function(F ) in CFG do
6: analysis outcome ← PASS RW ANALYSIS(F )
7: end for
8: var array ← CLUSTERIZE(analysis outcome)
9: current global ← .text section end

10: current stack ← .stack base
11: for all variable(V ) in var array do
12: if V is global data and CLASS(V ) !=3 then
13: allocate V to current global
14: realign current global
15: remove V from var array
16: else if V is stack data and CLASS(V ) == 1 or 2 then
17: allocate V to current stack
18: realign current stack
19: remove V from var array
20: end if
21: end for
22: .global write ← current global
23: .stack write ← current stack
24: for remaining variables(V ) in var array do
25: if V is global data then
26: current ← current global
27: else if V is stack data then
28: current ← current stack
29: end if
30: allocate V to current
31: realign current
32: remove V from var array
33: end for
34: end procedure

counts of that variable is updated. This satisfies two cases - firstly,
where the pointer variable itself is updated or read, which is a com-
mon practice in pointer arithmetic and secondly, the data that the
pointer points to is updated or read after dereferencing.

Address Generation The analysis provides an estimation of read
and write counts for each program variable. Our aim is to partition
the variables into two groups, i.e., read intensive and write inten-
sive variables using this estimated counts. The memory access be-
haviour of applications differs to a large extent. Some applications
are computation intensive, where memory accesses have different
pattern than that of an I/O intensive application. Therefore, to en-
hance scalability of EnVM, we rely on an unsupervised machine
learning technique to partition the variables. Although, a thresh-
old based partitioning is simpler, it is inefficient as the threshold
requires to be tuned for different applications separately. EnVM
leverages on the K-Means clustering algorithm to partition the vari-
ables. The read and write information gathered are the feature in-
puts i.e. observations to the clustering algorithm. The program vari-
ables are partitioned into 4 classes, namely, write intensive ; non-
write intensive; read intensive; and non-read intensive. The initial
seed points are set to be the maximum and the minimum read and
write counts obtained from the analysis. The four extreme values
as seed points will move the clusters towards the read and write
extremities. We obtain the following four classes by applying clus-
tering over the read count and write arrays:

1. Class 0 - Low read and low write



2. Class 1 - Low read and high write

3. Class 2 - High read and low write

4. Class 3 - High read and high write

Algorithm 1 shows the address generation scheme for statically
allocated data. Global variables usually show high affinity towards
either read or write operations. Number of global variables showing
high read and write counts are few. Therefore, for global data, we
place Class 0,2,3 variables contiguously and then Class 1 variables.
The virtual address separating these two sections are embedded
in the final executable. For stack data, we place Class 0 and 2
variables contiguously and then Class 1 and 3 variables. The virtual
addresses separating the two sections are also embedded in the final
executable. This yields the read and write intensive virtual memory
segments shown in Figure 2(b).

3.2 Dynamically Allocated Data
The previous section describes the memory layout for static data
i.e. global and stack data. Next, we will describe the management
of heap region in EnVM. Dynamically allocated memory objects
occupy a large region in the virtual address space of many pro-
cesses, and is managed at runtime. Precise analysis of dynamically
allocated memory at compile time is computationally hard [16].
Though, heap memory management is well studied for efficient
garbage collection and detecting memory leaks [9, 14], analysing
dynamically allocated memory for read and write patterns is espe-
cially difficult at compile time due to their unbounded sizes and
abstract types. For example, if a static memory object is marked
as read intensive, a pointer to the static variable can be analyzed
by de-referencing it symbolically at compile time. However, for
dynamically allocated memory regions, the de-referencing of the
pointers creates an unbounded space that is hard to analyse.

Coburn et.al. explores the possibilities and threats of heap mem-
ory management for persistent memory systems such as NVMs [3].
However, in their work, the read and write properties of the heap
region is unexplored. For EnVM, an estimate on the read and write
counts of any memory object is sufficient for the layout and ad-
dress generation. However, an inappropriate data allocation would
be detrimental to performance and lifetime of the chips. There-
fore, for heap region, we rely on programmers’ interface to pro-
vide distinction between read and write intensive heap accesses.
EnVM provides new library functions, namely, r_malloc() and
w_malloc() that would allocate from two heaps - one for read and
another for write intensive dynamic objects. To incorporate these
malloc calls, either the source can be annotated by the programmer
or heuristic estimates may be applied. In this paper, we have done
the former and annotated the source codes of our benchmarks with
the new malloc function calls, as shown in Figure 3.

Just like the standard malloc(), the two new functions -
r_malloc() and w_malloc() are tied to the system calls sbrk()
and brk(). The allocation and deallocation from the two heaps are
independently managed. During initialization, both r malloc()
and w malloc() functions will each request for a sizeable mem-
ory chunk, usually spanning multiple pages, from the kernel. They
subsequently maintain bins to cater to the malloc requests. De-
pending on the call, r malloc() or w malloc(), the requests are
served from the respective chunks. Figure 3 shows an example of
a code implemented with the two malloc calls. As the interaction
of the malloc library and the kernel is usually through the page
requests, there will not be any additional fragmentation (or holes)
in the virtual memory area due to the split heap. In case when one
of the heaps run out of memory space to allocate, mainly due to a
boundary limit, we allow the use of the other.

For management of the two heaps at runtime, EnVM requires
operating system support. The two heaps are bounded by markers

Algorithm 2 Dual Heap Management

Require: modified malloc library support
Ensure: runtime dual heap management

1: kernel variables read malloc, start brk and nv brk set by
operating system

2: malloc() sets read malloc ← 0
3: nv malloc() sets read malloc ← 1
4: while 1 do
5: for all brk() system calls do
6: if read malloc then
7: dummy ← start brk ; start brk ← nv brk
8: service system call and allocate memory space
9: update nv brk ← start brk

10: restore start brk ← dummy
11: else
12: service system call and allocate memory space
13: end if
14: end for
15: end while

start brk,brk, nv brk and max stack, where both start brk,
brk and max stack are conventional markers. start brk and
max stack denotes the start and permissible end of heap area.
brk is the virtual address marking the end of allocated memory.
We introduce a new marker nv brk to denote the end of allocated
read intensive heap memory. The operating system is responsible
for loading a boundary register (see Section 4) with the boundary
addresses so that the cache fills and write-backs to the two parti-
tions are managed accordingly. For evaluation, we modified only
malloc() function calls. Programs that use other ways to dynamic
memory allocation and deallocation, for example new(), are only
evaluated based on the static analysis. However, we see no difficulty
in extending this to other dynamic memory allocation functions.

Algorithm 2 describes the overall runtime functionality of the
dual heap management. With a malloc() system call, the library
sets a kernel variable to denote the heap type i.e. read or write in-
tensive heap (lines 2-3). Once the context is switched to the kernel,
it checks whether the malloc() is for the read or write intensive
heap (line 6), and will then sets the address in the variable brk ac-
cordingly (lines 7-10). The kernel proceeds to allocate memory to
the requested heap (line 8 or 12). The variable brk is then restored
to the default i.e. write intensive heap (line 10). The default heap al-
location is serviced from write intensive heap to avoid unmonitored
write accesses, for example security threats, to NVM.

3.3 Putting It All Together
The framework to create EnVM is illustrated in Figure 4. During
compilation, a program is analysed for read and write intensive
memory variables. The outcome of the analysis dictates the virtual
address generation of these variables. As in the case of conventional
virtual memory layout, static memory objects are placed in the vir-
tual address space and the executable is generated. For dynamic
memory objects, we provide a dual-heap management module that
is assisted by the operating system. Customized system calls are
used as a wrapper function to enable the dual heap structure. Dur-
ing runtime, the operating system allocates dynamic memory ob-
jects from distinctive read and write intensive heaps. Thus, in our
proposed new virtual memory design, EnVM, memory objects ar-
ranged in the order of their memory access affinity.

4. Architectural Support
In this section, we shall describe the architecture support required
for our virtual memory design. For evaluation, we assume a hybrid



if ((sfp->fileformat= malloc(sizeof(sqd_uint32) *  
                               sfp->nfiles)) == NULL)

status = SSI_ERR_MALLOC; goto FAILURE;

Iterator is always updated to point 
to next element. Thus, marked as 
write intensive

File descriptor are rarely 
manipulated and modified at 
different point in execution. Hence, 
can be considered read intensive.

int *iterator_to;
iterator_to = (int *)malloc(GA->extras->dim * sizeof(int));
for(dim = 0; dim < GA->extras->dim; dim++)
                       /* other codes*/
        iterator_to[dim] = istart_to[dim];

int *iterator_to;
iterator_to = (int *)w_malloc(GA->extras->dim * sizeof 
                                                                              (int));
for(dim = 0; dim < GA->extras->dim; dim++)
                       /* other codes*/

        iterator_to[dim] = istart_to[dim];

436.cactusADM – PUGH/Comm.c

456.hmmer – ssi.c

if ((sfp->fileformat=r_malloc(sizeof(sqd_uint32) * 
                                                     sfp->nfiles)) == NULL)

status = SSI_ERR_MALLOC; goto FAILURE;

dest->streamBuffer = malloc(MAXRTPPAYLOADLEN);
dest->streamBuffer[dest->byte_pos++]=dest->byte_buf;
memset( dest->streamBuffer, 0, MAXRTPPAYLOADLEN);
while(/*code*/){
dest->streamBuffer[dest->byte_pos++]=dest->byte_buf;
/*code*/ }

464.h264ref – sei.c

dest->streamBuffer = w_malloc(MAXRTPPAYLOADLEN);
dest->streamBuffer[dest->byte_pos++]=dest->byte_buf;
memset( dest->streamBuffer, 0, MAXRTPPAYLOADLEN);
while(/*code*/){
dest->streamBuffer[dest->byte_pos++]=dest->byte_buf;
/*code*/ }

A stream buffer is expected to have 
continuous data written to it. So it 
is implemented as write intensive.

if ((sfp->bpl= malloc(sizeof(sqd_uint32) *  
                               sfp->nfiles)) == NULL)

status = SSI_ERR_MALLOC; goto FAILURE;

These two signify the privilege 
levels of each file. This is constant 
throughout the program. Thus, they 
are functionally read only.

if ((sfp->bpl=r_malloc(sizeof(sqd_uint32) *  sfp->nfiles)) 
                                                                                  == NULL)

status = SSI_ERR_MALLOC; goto FAILURE;

int size = (save_last + 1) * sizeof(int);
search_next = malloc(size);
while (pdfa->indexes[i].next != pdfa->indexes[k].next) {
        if (!search_next[i]) {
          search_next[i] = ++last;

445.gobmk – patterns/dfa.c

List node, usually incremented to 
traverse through the entire list. 
Therefore a memory address is 
continuously written to this variable.

int size = (save_last + 1) * sizeof(int);
search_next = w_malloc(size);
while (pdfa->indexes[i].next != pdfa->indexes[k].next) {
        if (!search_next[i]) {
          search_next[i] = ++last;

456.hmmer – ssi.c

Figure 3: Example of modified code in the benchmarks with new malloc calls
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Figure 4: Framework

cache model presented in [18]. In addition we will discuss few
aspects of virtual to physical address mapping, and other hardware
implications of EnVM.

4.1 Boundary Registers
The layout of EnVM is used to influence the data allocation for
caches across various levels. This is made possible by a set of
boundary registers at the address translation hardware unit. For
the x86 architecture, the existing segment registers can be used

for this purpose. During process creation and context switches, the
operating system is responsible for loading these boundary reg-
isters with the boundary addresses. For our evaluation, we pro-
pose six such boundary registers holding the addresses nv data,
start brk, brk, nv brk, max stack and nv stack. During the
virtual to physical address translation, a simple hardware logic
shown in Figure 5) enables the correct cache partition to be probed.
However, the boundary registers are consulted for cache selection
only for write operations to caches, i.e. either a cache fill from lower
memory or a write-back from higher level. For read operations,
the entire cache is probed without checking the boundary regis-
ter. This optimization reduces any performance degradation due to
the boundary address checking. Moreover, for indirect memory ac-
cesses, checking the entire cache prevents incorrect reads and extra
cache fills.

4.2 Cache Properties
The delay associated with the boundary registers and address
checking is dependant on the cache probe logic. We consider
two kinds of caches here to analyse the delay - PIPT (physically
tagged, physically indexed) and VIPT (virtually tagged, physically
indexed). In PIPT caches, the TLB (translation lookaside buffer)
is responsible for a complete virtual to physical address mapping.
The TLB look-up is a blocking operation for PIPT caches and
thus, the boundary registers are checked in parallel. Therefore, we
do not consider any additional delay in PIPT caches. However, in
VIPT caches, the TLB and tag array of the caches are looked up
in parallel. In this case, the boundary register checking becomes a
blocking operation. We assume that this delay is one clock cycle.
For our evaluation framework, we assumed VIPT caches, adding
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Figure 5: Cache Selection Logic

1 cycle delay for the boundary register checking. The delay over-
head is minimal as the registers are checked only for write accesses.
Moreover, if hybrid caches are adapted at L2 or L3 levels, the delay
overhead is masked by L1 hit rate.

5. Evaluation
5.1 Tools & Benchmark
The dataflow analysis is implemented in GCC-4.7.1 as an optimiza-
tion pass. We provide modified glibc-2.5 interface for the new dual-
heap malloc function calls. For our experiments, we used the en-
tire SPEC2006 benchmark suite [17]. The results are based on the
‘ref’ input on all the benchmarks. Our backend operating system
is Linux (kernel version 3.2.51). We implement the hybrid caches
in MARSSx86 [15] cycle-accurate full system simulator. The com-
plete configuration is given in Table 1. As an instance of resistive
memory technology, we have chosen to use the parameters of spin
transfer torque RAM (STT-RAM). NVSim [4] was used to gen-
erate the latency and energy parameters for STT-RAM assuming
a 32nm process technology. All the hybrid cache configurations
roughly occupies the same silicon area as their pure SRAM coun-
terpart [4]. We further assumed that the STT-RAM partition has
error-correcting code (ECC) to mitigate stochastic bit-flip error as
was proposed in [13] as the retention time for STT-RAM cells are
myriad [7, 19].

5.2 Results
For evaluation, we implemented two hybrid cache designs at L1 [2]
and L2 [11] referred to as SW1 and SW2, respectively. We compare
our method with another hardware based hybrid memory manage-
ment scheme [6] referred to as HW. The primary objective of all
the schemes and proposals is to reduce the number of write op-
erations to the NVM caches by redirecting write intensive data to
the SRAM counterpart. Figure 6 shows the number of write ac-
cesses to the STT-RAM partition. HW method incurs the maxi-
mum write accesses as data is primarily fetched into STT-RAM
and migrated to SRAM only upon saturation of a 3-bit counter.
SW2 is a profile-based technique that is co-optimized by hardware
and software having a priori information about memory accesses,
and thus shows least number of writes to the STT-RAM. Unlike
SW1 which proposes stack data placement scheme, EnVM man-

Simulator Configuration
Processor : Unicore, 3 GHz, Commit Width - 4

Memory - Hybrid L1 Design
L1 I-Cache (SRAM) 64KB, 8-way, 64B Line, 3 cycles
L1 D-Cache (Hybrid) SRAM : 4KB, 4-way 3 cycles,

STTRAM : 64KB 4-way Read 3 cy-
cles, Write 10 cycles

L2 (SRAM) 2MB, 8-way, 15 cycles, 64B Line
Memory - Hybrid L2 Design

L1 I-Cache (SRAM) 64KB, 8-way, 3 cycles, 64B Line
L1 D-Cache (SRAM) 32KB, 8-way 3 cycles, 64B Line
L2 (Hybrid) SRAM : 1MB, 4-way 3 cycles,

STTRAM : 2MB 8-way Read 11 cy-
cles, Write 30 cycles

L3 (SRAM) 4MB, 8-way, 35 cycles, 64B Line

Table 1: Simulation Configuration

ages the entire virtual memory of a process and thus places all data
accordingly, to the two partitions. EnVM reduces the total number
of write accesses to STT-RAM by 47.6% as compared to HW and
15% as compared to SW1. In addition, for some benchmarks such
as 403.gcc and 456.hmmer, EnVM achieves a comparable write
traffic to STT-RAM as compared to SW2, a profile-based technique.
NVMs use high write current that affects the total energy consump-
tion. As all the schemes propose STT-RAM based hybrid caches,
we will compare the energy consumption by the data arrays of the
caches. The energy model is given by the sum of leakage energy,
dynamic energy and overheads due to various additional hardware
units.

Etotal = Eleakage + Edynamic + Eoverhead (9)

Eleakage = Pleakage ∗ texec (10)

Eleakage = Ewrite ∗Nwrites + Eread ∗Nreads (11)

where, Eleakage is leakage energy (in joules), Pleakage is the leak-
age power (in Watts) and texec is the total execution time (in sec-
onds) (of each benchmark). Edynamic is the total dynamic en-
ergy (in joules), Ewrite and Eread are the dynamic write energy
and dynamic read energy, respectively. The energy required to al-
locate a cache block upon each miss is already accounted for in
the total number of writes as Nwrites and cache reads as Nreads.
Eoverhead is the energy consumed by the additional boundary reg-
isters to manage EnVM. We used CACTI 5.3 [12] to calculate
the energy consumption by the boundary registers. Figure 7 shows
the total energy per instruction for each of the methods. Just as is
the case for write reduction, EnVM is more energy efficient than
SW1 and HW showing an average of 21% and 6% reduction in en-
ergy consumption, respectively. For some C benchmarks, such as
400.perlbench, 401.bzip2, EnVM showed a lower energy con-
sumption than even SW2 with a maximum reduction of 50% for
458.sjeng. The energy efficiency of EnVM is a result of includ-
ing all memory objects, especially heap data, in its management.
Figure 8 shows the energy overhead due to additional hardware
units (Eoverhead) of EnVM as compared to HW which is below
3%. In HW, there are two sets of 3-bit and 5-bit saturating coun-
ters per cache line and set respectively, accounting for the energy
and space overhead. Figure 9 further shows the energy overhead
of SW1, SW2 as compared to EnVM. While there is no additional
hardware component for SW1, it assumes a migration based L1
cache architecture. SW2 too assumes a migration based L2 cache
architecture. Migrating cache lines at L1 and L2 levels requires
hardware to copy the cache lines, and incurs additional cache reads
and writes. Though, EnVM requires a set of boundary registers,
it can be used on a migration-less cache architecture at any level.
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Figure 6: Total number of writes to STT-RAM in a hybrid cache design normalized to the total number of writes by HW.
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Figure 7: Energy per instruction normalized against pure SRAM cache.

Benchmarks HW EnVM Benchmarks HW EnVM
400.perlbench 0.0346 1E-04 434.zeusmp 0.0339 0.0001
401.bzip2 0.0284 0.0002 435.gromacs 0.0411 0.0001
403.gcc 0.067 0.0002 436.cactusADM 0.0454 0.0001
429.mcf 0.055 0.0002 437.leslie3d 0.0454 1E-04
445.gobmk 0.0702 0.0003 444.namd 0.0256 7E-05
456.hmmer 0.0254 6E-05 447.dealII 0.0367 9E-05
458.sjeng 0.0554 0.0003 450.soplex 0.0323 1E-04
462.libquantum0.0275 7E-05 453.povray 0.0443 0.0002
464.h264ref 0.0507 0.0001 454.calculix 0.066 0.0001
471.omnetpp 0.0349 8E-05 459.GemsFDTD0.0602 8E-05
473.astar 0.0483 0.0001 465.tonto 0.0401 6E-05
483.xalancbmk 0.0304 0.0001 470.lbm 0.0274 0.0001
410.bwaves 0.0151 4E-05 481.wrf 0.0468 9E-05
416.gamess 0.042 9E-05 482.sphinx3 0.0212 0.0001
433.milc 0.0632 0.0002 AVERAGE 0.0413 0.0001

Figure 8: Energy(joules/instruction) consumed by the additional
hardware units for HW and EnVM.
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Figure 9: Total energy consumption by additional hardware com-
ponents.

In our evaluation, we measured the energy overhead of the three
techniques as shown in Figure 9. In Figure 10 we show that the
performance of the system (an out-of-order x86 processor in our
case), remains unperturbed with the introduction of EnVM based
migration-less STT-RAM based hybrid cache at L1. We measured
the IPC (Instructions per cycle), taking into accounts all additional



delays required by the boundary address checking. The IPC is nor-
malized to a baseline of 32K SRAM L1 cache and 2MB L2 cache.

While the high write latency of STT-RAM and other resistive
memories may erode overall performance, as they are denser, much
bigger caches can be accommodated in the same die area. This in-
crease in cache sizes compensates for the performance deteriora-
tion due to the higher write latency. To further quantify the impact
of cache sizes on performance, we measured the cache hit rate (see
Figure 11). The cache hit rate is measured only for L1 cache as
it is most critical to the overall performance of a system. Though
SW2 assumes a hybrid L2 cache, we have reported the hit rate
of L1 when SW2 is applied. Table 12 summarizes the features of

Scheme Target Cache Migration Overhead Additional Hardware
HW L1 � �
SW1 L1 � Nil
SW2 L2 � �

EnVM Any Nil �

Figure 12: Summary of state-of-the-art methods and EnVM.

the state-of-the-art schemes and EnVM. HW scheme is optimized
for L1 caches requiring hardware counters and assumes a migra-
tion based cache design. SW1 and SW2 assumes migration based
caches for L1 and L2 respectively. Though SW1 is a pure software
based technique, it only optimizes stack data and is not scalable to
other memory regions. SW2 is hardware and software co-optimized
scheme requiring hardware counters and buffers. EnVM is applica-
ble to any level of caches and is not dependant on migration based
design. While it does require hardware support, the hardware cost
is amortized over the entire memory hierarchy as it is not exclu-
sive to any particular level. Thus, we believe that EnVM is more
scalable.

6. Conclusion
In this paper, we have proposed EnVM, a virtual memory design
optimized for NVM based memory hierarchy. Enhancing the state-
of-the-art, EnVM manages the entire virtual memory area of a pro-
cess including code, static data, stack and dynamic data. It provides
an uniform and holistic management of NVM based memory hier-
archies, unlike current techniques that optimizes for specific levels
of the memory hierarchy. As a part of EnVM, we propose a new
static code analysis that distinguishes read-intensive from write-
intensive variables. We also propose a new dual heap scheme that
enables distinct memory regions for read and write intensive dy-
namically allocated variables at runtime.

EnVM is capable of managing any design of hybrid caches
comprising SRAM and NVM partitions. Furthermore, it assumes
a migration-less hybrid cache architecture and thus is not depen-
dant on the effectiveness of migration techniques. EnVM serves as
a base virtual memory for any further optimizations on architectural
design and is thus orthogonal to state-of-the-art hardware managed
schemes for hybrid caches. Furthermore, EnVM is backward com-
patible to the conventional SRAM/DRAM based memory systems.

References
[1] Y. Chen, W.-F. Wong, H. Li, and C.-K. Koh. Processor caches with

multi-level spin-transfer torque ram cells. In Proceedings of the 17th
IEEE/ACM international symposium on Low-power electronics and
design, ISLPED ’11, pages 73–78, Piscataway, NJ, USA, 2011. IEEE
Press.

[2] Y.-T. Chen, J. Cong, H. Huang, C. Liu, R. Prabhakar, and G. Reinman.
Static and dynamic co-optimizations for blocks mapping in hybrid

caches. In Proceedings of the 2012 ACM/IEEE International Sym-
posium on Low Power Electronics and Design, ISLPED ’12, pages
237–242, New York, NY, USA, 2012. ACM.

[3] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson. Nv-heaps: Making persistent objects fast
and safe with next-generation, non-volatile memories. SIGPLAN Not.,
47(4):105–118, Mar. 2011.

[4] X. Dong, C. Xu, Y. Xie, and N. Jouppi. Nvsim: A circuit-level per-
formance, energy, and area model for emerging nonvolatile mem-
ory. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 31(7):994 –1007, Jul 2012.

[5] Y. Huang, T. Liu, and C. Xue. Register allocation for write activity
minimization on non-volatile main memory. In Design Automation
Conference (ASP-DAC), 2011 16th Asia and South Pacific, pages 129
–134, Jan 2011.

[6] A. Jadidi, M. Arjomand, and H. Sarbazi-Azad. High-endurance and
performance-efficient design of hybrid cache architectures through
adaptive line replacement. In Low Power Electronics and Design
(ISLPED) 2011 International Symposium on, pages 79 –84, Aug 2011.

[7] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and C. R.
Das. Cache revive: Architecting volatile stt-ram caches for enhanced
performance in cmps. In Proceedings of the 49th Annual Design
Automation Conference, DAC ’12, pages 243–252, New York, NY,
USA, 2012. ACM.

[8] Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y. Xie. Energy-
and endurance-aware design of phase change memory caches. In
Design, Automation Test in Europe Conference Exhibition (DATE),
2010, pages 136 –141, Mar 2010.

[9] U. P. Khedker, A. Sanyal, and A. Karkare. Heap reference analysis
using access graphs. ACM Trans. Program. Lang. Syst., 30(1), Nov.
2007.

[10] Q. Li, J. Li, L. Shi, C. J. Xue, and Y. He. Mac: migration-aware
compilation for STT-RAM based hybrid cache in embedded systems.
In Proceedings of the 2012 ACM/IEEE international symposium on
Low power electronics and design, ISLPED ’12, pages 351–356, New
York, NY, USA, 2012. ACM.

[11] Q. Li, M. Zhao, C. J. Xue, and Y. He. Compiler-assisted preferred
caching for embedded systems with STT-RAM based hybrid cache. In
Proceedings of the 13th ACM SIGPLAN/SIGBED International Con-
ference on Languages, Compilers, Tools and Theory for Embedded
Systems, LCTES ’12, pages 109–118, New York, NY, USA, 2012.
ACM.

[12] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Architecting
efficient interconnects for large caches with cacti 6.0. Micro, IEEE,
28(1):69–79, Jan.-Feb.

[13] H. Naeimi, C. Augustine, A. Raychowdhury, S.-L. Lu, and J. Tschanz.
Sttram scaling and retention failure. Intel Technology Journal,
17(1):54–75, 2013.

[14] G. Novark, E. D. Berger, and B. G. Zorn. Efficiently and precisely
locating memory leaks and bloat. SIGPLAN Not., 44(6):397–407, June
2009.

[15] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSSx86: A Full
System Simulator for x86 CPUs. In Design Automation Conference
2011 (DAC’11), 2011.

[16] N. Rinetzky, G. Ramalingam, M. Sagiv, and E. Yahav. On the com-
plexity of partially-flow-sensitive alias analysis. ACM Trans. Program.
Lang. Syst., 30(3):13:1–13:28, May 2008.

[17] SPEC. Spec cpu2006. In http://www.spec.org/cpu2006/, 2006.

[18] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen. A novel architecture of the
3d stacked mram l2 cache for cmps. In High Performance Computer
Architecture, 2009. HPCA 2009. IEEE 15th International Symposium
on, pages 239–249, Feb 2009.

[19] Z. Sun, X. Bi, H. H. Li, W.-F. Wong, Z.-L. Ong, X. Zhu, and W. Wu.
Multi retention level STT-RAM cache designs with a dynamic refresh
scheme. In Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-44 ’11, pages 329–338,
New York, NY, USA, 2011. ACM.



0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 
1.1 
1.2 

N
or

m
al

iz
ed

 IP
C

 

Benchmarks 

HW SW1 SW2 EnVM 

Figure 10: Instructions Per Cycle (IPC) normalized to conventional SRAM based cache design.
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Figure 11: Cache hit rate for the hybrid L1 cache design.
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