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Abstract. This paper presents Qtorch+, a tool which enables next gen-
eration number formats on Pytorch, a widely popular high-level Deep
Learning framework. With hand-crafted GPU accelerated kernels for pro-
cessing novel number formats, Qtorch+ allows developers and researchers
to freely experiment with their choice of cutting-edge number formats
for Deep Neural Network (DNN) training and inference. Qtorch+ works
seamlessly with Pytorch, one of the most versatile DNN frameworks, with
little added effort. At the current stage of development, we not only sup-
port the novel posit number format, but also any other arbitrary set of
points in the real number domain. Training and inference results show
that a vanilla 8-bit format would suffice for training, while a format
with 6 bits or less would suffice to run accurate inference for various
networks ranging from image classification to natural language process-
ing and generative adversarial networks. Furthermore, the support for
arbitrary number sets can contribute towards designing more efficient
number formats for inference in the near future. Qtorch+ and tutorials
are available on GitHub (https://github.com/minhhn2910/QPyTorch).

Keywords: Deep learning · Posit format · Novel number formats · Py-
torch framework

1 Introduction

Reducing the bitwidth of number representations employed in Neural Networks
to improve their efficiency is a powerful technique that can be used to make
Deep Learning more accessible to a wider community. This is especially impor-
tant when the variety of applications that use Deep Learning and the size and
complexity of models have all increased drastically. For example, even with the
latest GPU hardware capabilities, the GPT-3 model with 175 billion parame-
ters requires 288 years to train [4]. The reason for the extraordinary training
time and computational resources required is primarily due to the fact that the
gargantuan amount of parameters cannot fit into the main memory of even the
largest GPU [30]. Therefore, lowering the precision to reduce the memory con-
sumption is extremely helpful to improve execution times and enable models to
be run on a wider range of general-purpose hardware.

https://github.com/minhhn2910/QPyTorch
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Research into low-precision number representations and their related arith-
metic operations for Deep Learning has made many inroads in recent years.
Several new low-precision floating-point formats have been proposed, many of
them specifically targeted towards this domain. Posit™ arithmetic [13] with its
ability to provide tailor-made accuracy to values that are of significance in the
application, has seen increasing interest. Due to the arithmetic properties of
posits, they naturally lend themselves to low-precision neural network training
and inference. In the case of low-precision inference, custom sets of values can
also be designed for quantization to achieve high levels of model compression.
Therefore, these formats merit comprehensive investigations for the use in DNN
training and inference.

Due to the fast-pace and significant interest, a pressing issue the Deep Learn-
ing research community has had to grapple with in the recent past is the dif-
ficulty for independent groups to reproduce model results that are being pub-
lished. Though publicly available industry benchmarks [28] have been created
to address the problem, even those results cannot practically be reproduced by
research groups without access to significant expertise and resources. The fine-
tuning and hand-tweaked kernels are almost always proprietary and not publicly
available. An open-source Deep Learning framework which enables experiment-
ing with the aforementioned arithmetic formats, will allow researchers to quickly
prototype and test newer number representations for Deep Learning.

In this paper we present Qtorch+, a framework for experimenting with posits
and arbitrary number sets with flexible rounding for Deep Learning. Qtorch+
is developed upon QPyTorch, a low-precision arithmetic simulation package in
PyTorch that supports fixed-point and block floating-point formats [48]. Because
our framework operates seamlessly with PyTorch, users are granted all the flexi-
bility that come with it for low-precision experimentation. This includes support
for a rich set of models, benchmarks, hardware configurations and extendable
APIs. Leveraging the many capabilities of Qtorch+, we evaluate an extensive
set of benchmarks for both training and inference with low-precision posits and
arbitrary number sets.

The remainder of the paper is organized as follows. Section 2 presents some
background into Neural Networks, floating-point and fixed-point formats, posits
and arbitrary number sets. It also gives an introduction into integer quantization
and discusses work in the area relevant to these topics. In Section 3 we present
the design and implementation details of the Qtorch+ framework. Section 4 gives
and overview of the practical usage of the framework for training and inference.
Section 5 details the results the framework achieved on inference tasks. Some
case studies related to training with posits and performing inference with a
customized number set are presented in Section 6. Section 7 concludes.
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2 Background and Related Work

2.1 Neural Networks

Neural networks have achieved astonishing performance on different complex
tasks in recent years. Starting with the introduction of Convolutional Neural
Networks (CNN) for image classification, they have branched out to many other
diverse tasks today [25]. The initial CNNs were typically trained using the back-
propagation method [24] which required intensive computational power. Hard-
ware that could handle such computational demands and the representative
datasets required for training more complex tasks remained an obstacle for a
long period of time. More recently, with the introduction of GPUs for acceler-
ated training and inference at multiple magnitudes faster than traditional proces-
sors, more and more deeper neural network architectures have been designed to
tackle more complex datasets and challenges (e.g. Imagenet [10]). Most notably,
the introduction of very deep networks such as Resnet [14] have revolutionized
the approach to computer vision with Deep Learning increasingly adopted for
more difficult tasks. To this day, neural networks have been used for many tasks
including vision [14,45,49], language [43,4], audio [37,31], security [36,42], health-
care [39,12], general approximation [47,19], etc.

2.2 Floating-Point and Fixed-Point formats

Floating-point and fixed-point formats have been widely used for general compu-
tation since the early days of the computing era. They have different characteris-
tics which make them suitable for different application domains and for different
approximations. This led to various works on tuning those formats [1,6,11,18,8,15].
Recently, with the popularity of deep neural networks, hardware vendors and re-
searchers have found that lower bitwidth on these formats can still achieve high
accuracy both on inference and training while improving system energy efficiency
and performance [29,40]. Thus, there are several works that target the reduced
precision of floating point and fixed point format for neural network inference
and training [41,5,40,44] [38,3,26,17].

Both arbitrary bitwidth floating-point and fixed-point formats have been
supported by the original QPytorch framework. In this paper, we focus on ex-
tending the framework to support novel number formats such as posits and,
more generally, arbitrary sets of numbers.

2.3 Integer Quantization

Integer quantization in neural networks refers to the mapping FP32 values to 8-
bit integer (INT8) values. This process requires selecting the quantization range
and defining the mapping function between FP32 values to the closest INT8 value
and back (quantize and dequantize). If the selected range is [α, β], then uniform
quantization takes an FP32 value, x ∈ [α, β] and maps it to an 8-bit value. The
most popular mapping function used is f(x) = s · x (scale quantization) where



4 Ho, Nhut-Minh, et al.

s, x, z ∈ R; s is the scale factor by which x will be multiplied. The uniform scale
quantization is the most popular in hardware [46]. Let s1 and s2 be the scales
used to quantize weight W and activation A of a dot product operation (⊗).
The scale quantized dot product result R′ can be dequantized by multiplying
with the appropriate factor:

R′ = W ′ ⊗A′ =

K∑
1

wi × s1 × ai × s2 = R× s1 × s2

Integer quantization is already supported by mainstream frameworks and
hardware vendors [46,21]. Thus, it is not the primary focus of this paper.

2.4 Posit Format

The posit number format has a distinctive property compared to other formats
which results in better numerical stability in many application domains. The
distribution of representable values in posits is more concentrated to a central
point in the log2 domain (around 20) as seen in Figure 1b. This property will
benefit certain applications where most of the values are concentrated to a spe-
cific range. In contrast, this will overwhelm the number of representable values of
both floating-point and fixed-point formats. As seen in the Figure, the floating-
point accuracy distribution is uniform when compared to the tapered accuracy
of posits. Consequently, many studies [16,27,22,23,7] have shown that DNNs
and some specific domain applications [20] are among the beneficiaries of this
property of posits.

The above described property is due to the unique representation of posits.
Figure 1a shows an example of a posit. A posit environment is defined by the
length of the posit, nsize, and the size of the exponent field, es, which in this
case is 16 bits and 3 bits. The first bit is reserved for the sign of the number.
What follows after the sign is the regime field which is of variable length. To
decode the regime, one can simply count the number of 0s (or 1s) after the sign
until a 1 (or 0) is reached. If the first regime bit is 0 the regime is negative and
vice-versa. In this case, the regime is therefore −3. The regime value is used
as the power to be raised for a value known as useed which is computed by
using the exponent length: (22

es

). There is always an implicit hidden bit in the
fraction (except for zero). All these fields are read as shown in the Figure to
obtain the value the posit is representing. Complete details of the posit format
and its related arithmetic can be found in the posit standard [32].

2.5 Arbitrary Number Sets

Apart from the aforementioned formats, we found that allowing arbitrary num-
ber sets for inference can help accelerate the research and development of cus-
tomized hardware for machine learning applications [2,34]. Thus, we also extend
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the exponent bits, if any. If the set of fraction bits is {f1f2 . . . ffs}, possibly the empty set, let f

be the value represented by 1.f1f2 . . . ffs. Then p represents

x = ⎧⎪⎪⎨⎪⎪⎩
0, p = 0,±∞, p = −2n−1,
sign(p) × useedk × 2e × f , all other p.

The regime and es bits serve the function of the exponent bits in a standard float; together,

they set the power-of-2 scaling of the fraction where each useed increment is a batch shift of

2es bits. The maxpos is useedn−2 and the minpos is useed2−n. An example decoding of a posit is

shown in fig. 5 (with a “nonstandard” value for es here, for clarity).

× × (1 + )

0

sign

+

regime

0 0 0 1

256-3

exponent

1 0 1

25

fraction

1 1 0 1 1 1 0 1

221 / 256

Figure 5. Example of a posit bit string and its mathematical meaning

The sign bit 0 means the value is positive. The regime bits 0001 have a run of three 0s,
which means k is −3; hence, the scale factor contributed by the regime is 256−3. The exponent

bits, 101, represent 5 as an unsigned binary integer, and contribute another scale factor of

25. Lastly, the fraction bits 11011101 represent 221 as an unsigned binary integer, so the

fraction is 1 + 221/256. The expression shown underneath the bit fields in fig. 5 works out to

477/134217728 ≈ 3.55393 × 10−6.
2.2. 8-bit Posits and Neural Network Training

While IEEE floats do not define a “quarter-precision” 8-bit float, an 8-bit posit with es = 0
has proved to be surprisingly useful for some purposes; they are sufficiently powerful to train

neural networks [3, 8]. Currently, half-precision (16-bit) IEEE floats are often used for this

purpose, but 8-bit posits have the potential to be 2−4× faster. An important function for neural

network training is a sigmoid function, a function f(x) that is asymptotically 0 as x → −∞
and asymptotically 1 as x → ∞. A common sigmoid function is 1/(1 + e−x) which is expensive

to compute, easily requiring over a hundred clock cycles because of the math library call to

evaluate exp(x), and because of the divide. With posits, you can simply flip the first bit of the

posit representing x, shift it two bits to the right (shifting in 0 bits on the left), and the resulting

posit function in fig. 6 (shown in magenta) closely resembles 1/(1 + e−x) (shown in green); it

even has the correct slope where it intersects the y-axis.
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Figure 6. Fast sigmoid function using posit representation
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Fig. 1: Posit Format

the framework to support any number format which can be customized depend-
ing on the application. For this feature, the user will use their own method
to craft a highly specialized table set for rounding. The arbitrary number set
feature can also directly simulate any number format and other table lookup
techniques. In general, any number format can be simulated with this method
given the set of all representable values in the format. However, due to the table
size, we recommend using this for very low bitwidth representations. As case
studies of this feature, we will give some examples of using this to achieve very
small sets while maintaining high output quality for selected applications. This
feature will support two main research directions :

– Hardware friendly number formats with strict rules on the distribution of
representable values. This category consist of number formats that are known
to be efficient in multiplication (logarithmic domain, additive of logarithmic
numbers).

– Arbitrary number sets which have no rules on the distribution of repre-
sentable values. To implement this category in hardware, we need a cus-
tomized table lookup or integer-to-integer mapping combinational logic cir-
cuit.

3 Design and implementation of Qtorch+

Because most Deep Learning frameworks and accelerators support extremely
fast FP32 inference, we can take advantage of highly optimized FP32 implemen-
tations as the intermediate form to simulate our number formats with sufficient
rounding. For this to work correctly, we assume that FP32 is the superset of our
target format to be simulated. This remains true when the number simulated
is low bitwith (e.g. 8-bit and below). For simulating higher bitwith (above 16
bits) arbitrary number formats, we can opt to use FP64 as the intermediate
number format to store the rounded values. In the context of this paper, we
focus on very low bitwith number formats and using FP32 as the intermediate
format. The workflow of a DNN operation simulated in a low bitwidth number
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format with correct rounding can be viewed in Figure 2. This method has been
widely used to simulate low precision fixed-point and floating-point formats and
integer quantization in state-of-the-art techniques [48]. By introducing posits to
the framework, the quantizers in Figure 2 will have configuration parameters :
nsize, es for posit format and scaling which is used to implementing exponent
bias as in Section 3.2. All of the quantizers and their usage will be demonstrated
in Section 4.2.

Weight

ActivationPrevious Layer
Qact Activation

Accumulator

Gradient

X

+ ErrorQgradQacc

Qweight

XQerrBackward Error

Fig. 2: Qtorch+’s training model and APIs are inherited from the original QPy-
torch framework with the separated kernel approach to quantize the values to
new formats while using FP32 matrix multiplication for fast simulation time.
We extend these functionalities to support posits, exponent biases and arbitrary
number sets

.

3.1 Floating-point and posit conversion

To simulate posits efficiently, we implement the conversion between the number
format and FP32 in Qtorch+ using integer and bit operations as well as built-in
hardware instructions. The implementation of the functions are based on efficient
encoding and decoding of a 16 bit posit into FP32 [9].

To convert a posit into FP32, the sign bit is first extracted and the two’s
complement value of the number is obtained if the sign is negative. Thereafter,
the regime is decoded as described in Section 2.4. Once these two operations
are completed, we can remove these two fields with a right shift operation and
directly superimpose the remaining exponent and fraction fields to the corre-
sponding fields of an FP32 value. To get the final exponent, the decoded regime
value and the exponent point bias has to be added to the exponent field.

To convert an FP32 value to a posit, first the FP32 value needs to be checked
against the maximum and minimum bounds of the posit’s representable range.
If it can be represented as a posit, then as in the case before the sign can be
extracted. The regime and exponent field of the posit can be decoded directly
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from the exponent field of the FP32 number. Some post-processing is done to
format the regime field afterwards. Once all the fields are known, the posit can be
assembled and formatted. There are many tweaks to these algorithms described
that are performed to make these two operations very efficient.

3.2 Scaling and using the exponent bias in posit

After studying the the value distribution histograms of many neural networks, we
found that both the weights and the activations can be scaled for a more accurate
posit representation. For example, in some GANs, the weights are concentrated
in the range [2−4 to 2−5]. Therefore, we can shift the peak of the histogram
to the range with highest posit accuracy, near 20. Note that scaling cannot
provide additional accuracy for floating-point formats because their accuracy
distribution is flat (see Figure 1b).

Before and after a computation using a posit value, the encoder and decoder
are used to achieve scaling. The decoder will decode the binary data in posit
format to {S,R,E, F} which represent {sign, regime, exponent, fraction}, ready
for computation. The definitions of biased encoder and decoder for posit data P
and a bias t are as follow:

Biased Decoder : {P, t} → {S,R,E − t, F} (1)

Biased Encoder : {S,R,E + t, F} → {P}

We scale using the posit encoder and decoder instead of floating-point mul-
tiplications for efficiency. If we choose an integer power of 2 for the scale, input
scaling and output descaling can be done by simply biasing and un-biasing the
exponent value in the encoder and decoder, as shown in Eq. 1. This exponent
bias can be easily implemented in hardware by additional integer adder circuit
with minimal hardware cost [16].

3.3 Arbitrary number sets

This feature is fully supported by the extended quantizer. To use this, the user
will create a full set of all possible representable values of their format and pass
it as an input to the quantizer. All the real values will then be rounded to
their nearest value in the given set. This feature will be described in detail and
demonstrated in Section 6.4.

4 Practical usage of Qtorch+

This section describes the APIs of Qtorch+ and how to use novel number formats
in Deep Learning applications.
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4.1 Leverage Forward hook and Forward pre hook in Pytorch

To use Qtorch+ in inference seamlessly without any additional effort from the
user, we leverage the ”hook function” feature in Pytorch [33]. The weights can
be quantized with our posit quant function without the need for modifying the
original model. However, for activation, changing the model code to intercept
the dataflow of layers is required to apply custom number format simulation.
With the recent Pytorch version and the introduction of ”hook” functions, there
is no need to modify the original model to achieve the same result. The for-
ward hook function is to process the output of the current layer before going to
the next layer. The forward pre hook function is used to process the input of
the current layer before doing the layer operations. Thus, forward pre hook is
a universal way to intercept the input of any layers while forward hook is the
convenient way to intercept the output of any layer. For general usage, we can
use forward pre hook and preprocess activations of the current layer with low
bitwidth number formats. Likewise, we use forward hook for extra simulation of
the precision of the accumulator when we do not assume the exact dot product.

Weight
Posit-6

Activation
Posit-6

Dot product
FP32 or FP64 

Previous Layer

Output
Posit-16

Activation
Posit-6

Simulate exact dot 
product 

Weight
FP32

forward_pre_hook:
new_activation = posit_quant(activation)

posit_quant

forward_hook:
new_output= posit_quant(output)

Fig. 3: Using Pytorch’s feature to intercept the dataflow and simulate inference.

4.2 Qtorch+ in Training

Listing 1 shows the modification required to prepare the model for training.
As we can see, the steps taken are not much different from the standard pytorch
models preparation and construction. There are two main steps that we need to
perform in order to use posit training:

– Declare all the quantizer used for each component of the optimizer and
initialize the new optimizer with these parameters.

– Modify the model source code (MyModelConstructor) to use the argument
act error quant in the forward pass of the model. The quant function must
intercept the dataflow between each Convolutional/Linear layer for correct
simulation. User can decide their own policy of skipping some layers to use
higher precision (posit16, FP16 or FP32) if necessary.
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1 from qtorch.quant import Quantizer, quantizer

2 from qtorch.optim import OptimLP

3 from qtorch import Posit

4 # define two different formats for ease of use

5 bit_8 = posit(nsize=8, es=2)

6 bit_16 = posit(nsize=16, es=2)

7

8 # define quantization function for each component of the neural network

9 weight_quant = quantizer(bit_8)

10 grad_quant = quantizer(bit_8)

11 momentum_quant = quantizer(bit_16)

12 acc_quant = quantizer(bit_16)

13

14 # define a lambda function so that the Quantizer module can be duplicated easily

15 act_error_quant = lambda : Quantizer(forward_number=bit_8, backward_number=bit_8)

16

17 #Step not included here: modify model forward pass to add quant() between layers.

18 model = MyModelConstrutor(act_error_quant)

19

20 #define normal optimizer as usual

21 optimizer = SGD(model.parameters(), lr=0.05, momentum=0.9, weight_decay=5e-4)

22 #user the enhanced optimizer with different number formats.

23 optimizer = OptimLP(optimizer,

24 weight_quant=weight_quant,

25 grad_quant=grad_quant,

26 momentum_quant=momentum_quant,

27 acc_quant=acc_quant,

28 grad_scaling=2**10 ) # do loss scaling if necessary

Listing 1: Example of the modification needed to add to prepare the model for
training with Qtorch+.

4.3 Qtorch+ in Inference

Listing 2 shows how to utilize posits (or other number formats) in inference. The
code in details involve two main steps:

– Decide the number formats for processing convolutional/linear layer. It is im-
plemented as two functions: linear weight and linear activation (e.g. posit(6,1)
in Listing 2. Decide the number formats for processing other layers (and the
layers in excluded list). This number format for other layers needs to be in
high precision to prevent accuracy loss. It also needs to be compatible with
the low-bitwidth format for efficient hardware design (an accelerator that
supports both FP32 and posit6 is likely more expensive than the one that
only support posit6 and posit16)

– Given a pretrained model, instead of looking into the model definition, we
can prepare and call the prepare model() function with the logic in Listing 2.
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– In general, the simulation of the number format for output with forward hook
as in Figure 3 can be skipped when we assume the dot product is done using
the quire and the output format has enough precision to hold the output
value (high precision as posit 16-bit or 32-bit).

1 from qtorch.quant import posit_quantize

2 def other_weight(input):

3 return posit_quantize(input, nsize=16, es=1)

4 def other_activation(input):

5 return posit_quantize(input, nsize=16, es=1)

6 def linear_weight(input):

7 return posit_quantize(input, nsize=6, es=1, scale=scale_weight)

8 def linear_activation(input):

9 return posit_quantize(input, nsize=6, es=1, scale=scale_act)

10

11 def forward_pre_hook_other(m, input):

12 return (other_activation(input[0]),)

13 def forward_pre_hook_linear(m, input):

14 return (linear_activation(input[0]),)

15

16 layer_count = 0

17 excluded_list = [] # list of all layers to be excluded from using low precision

18 model = torchvision.models.efficientnet_b7(pretrained=True) #load pretrained model

19 for name, module in model.named_modules():

20 if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear) \

21 and layer_count not in excluded_list:

22 module.weight.data = linear_weight(module.weight.data)

23 module.register_forward_pre_hook(forward_pre_hook_linear)

24 layer_count +=1

25 else: #should use fixed-point or posit 16 bits for other layers' weight

26 if hasattr(module, 'weight'):

27 layer_count +=1

28 module.weight.data = other_weight(module.weight.data)

29 module.register_forward_pre_hook(forward_pre_hook_other)

Listing 2: Example of the preprocessing code needed to add to prepare the model
for inference with Qtorch+. Note that this code is generic to all models which
can be loaded at line 18. We do not need to modify the source code of the
model definition as other frameworks. For user convenience, we can hide this
whole procedure into a single function prepare model which does exactly the
same task.
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5 Inference Results of Posit

Table 1 shows the inference results of low bitwidth posit formats on different
tasks. Because our framework is fully compatible with Pytorch, we can choose
a diverse set of models for difficult tasks, especially the recent state-of-the-art
models [45,49,4]. Any model that has a script which can be run using Pytorch
can leverage our framework. Our models include the state-of-the-art image clas-
sification model EfficientNet B7 which reaches 84.3% top 1 accuracy on Ima-
genet. We also include the released GPT-2 model of OpenAI which achieved
state-of-the-art performance in Language Modeling when it was introduced. For
performance metric, we follow the guideline of other benchmark suites which
set the threshold 99% of FP32 quality when using lower precision. The vanilla
posit8 (without scaling) can achieve beyond 99% accuracy of FP32 in half of the
models. The accuracy of image classification models when using posit8 conforms
with the 99% standard (except GoogleNet which achieves 98.9% FP32 Accu-
racy). The pretrained models are retrieved from the official Pytorch 3, hugging
face framework 4 and the respective authors. The inference models and scripts
to run with posits are accessible online 5. For image classification task, the test
dataset is Imagenet. For Object detection, the test set is COCO 2017. For style
transfer and super resolution models, we use custom datasets provided by the au-
thors [49,45]. Question answering and language modelling task uses the SQuaD
v1.1 and WikiText-103 dataset respectively.

When hardware modification is not allowed, the rest of the model can achieve
99% FP32 standard by dropping the first and the last layer of the models and
apply higher precision to them (posit(16,1)). With little modification to the
hardware to include an exponent bias, we can increase the accuracy of the model
vastly as can be observed in column P6+DS in Table 1. The effect of scaling
can increase the accuracy up to 7.8% in ResNEXT101. In GANs (Style Transfer
and Super resolution tasks), the effect of skipping the first and the last few layers
are more important than scaling posit format. Thus, we can see the P6+D can
surpass posit8 in most cases. We will provide the results of posit8 when applying
scaling and skipping to reach 99% FP32 standard.

6 Case Studies

6.1 Training with posit8

Previous works have shown that posit8 is enough for training neural network
to reach near FP32 accuracy both in conventional image classification appli-
cation [27] and GANs [16]. In the context of this paper, we do not enhance
previous results. Instead, we try to show the completeness of the framework
which supports several training tasks. Because many pretrained neural networks

3 https://pytorch.org/vision/stable/models.html
4 https://huggingface.co
5 https://github.com/minhhn2910/conga2022
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Task Model FP32 P(8,1) P(8,2) P(6,1) P(6,2) P6+D P6+DS

Image Classification Resnet50 76.1 75.7 75.3 66.3 54.9 69.1 74.4

Image Classification ResNEXT101 79.3 78.8 78.4 66.3 65.8 69.8 77.6

Image Classification GoogleNet 69.8 69.0 68.8 55.8 34.9 59.4 65.5

Image Classification EfficientNetB7 84.3 84.0 83.7 79.8 75.3 80.2 82.7

Object Detection FasterRCNN 36.9 36.4 36.2 25.5 24.0 28.2 35.5

Object Detection MaskRCNN 37.9 37.5 37.2 36.9 25.3 28.8 36.5

Object Detection SSD 25.1 21.3 24.1 1.6 10.8 15.3 22.6

Style Transfer Horse-to-Zebra 100 96.4 93.7 84.8 79.6 98.0 98.4

Style Transfer VanGogh Style 100 95.0 90.6 80.7 72.3 96.2 96.7

Super Resolution ESRGAN 100 95.1 89.7 72.9 61.1 99.2 99.6

Question Answering BERT-large 93.2 93.2 93.2 92.8 92.9 92.9 92.9

Language Modeling GPT2-large ↓ 19.1 19.1 19.2 21.4 22.0 20.8 19.5

Table 1: Inference results of 12 models on different tasks. For Image classification
applications, the values are accuracy %. For Object Detection application, the
values are box average precision (boxAP %). For GAN (style transfer and super
resolution), the values are structural similarity index measure (SSIM %). For
Question Answering, the values are F1 scores. For Language Modelling task,
the value are Perplexity(lower better). P(6,1) means posit format with 6-bit
nsize and 1-bit es. P6+D means applying the best posit 6-bit configuration
while dropping (excluding) ≈ 2 layers in the original models for use in higher
precision. P6+DS mean applying both dropping layers and weight/activation
scale (exponent bias). The cells in bold font are where the configurations reach
99% FP32 quality as specified by MLPerf benchmark [35].

have been fine tuned for weeks or even months, we also do not replicate the
training results of these tasks. Instead, we will show a diverse training tasks on
neural networks which converge in less than a day due to time constraints. For
other high time-consuming tasks when training with posit, please refer to the
related work which used our extension to train Generative Adversarial Networks
which typically takes days to weeks to complete one experiment [16]. The results
can be seen in Table 3. This training results can be reproduced with our sample
code and gradient scaling configuration for P8+ available at 6. From the table
we can see that, in contrast with inference, P(8,2) has dominant performance
in training compared to P(8,1). With correct scaling, the P8+ can reach FP32
accuracy. This agrees with previous works [29] that gradient scaling (also known
as loss scaling) in low precision is advantageous and should be applied as a stan-
dard procedure in other training framework. For network like VGG11, we saw
that correct gradient scaling can recover the training accuracy from 22.9% to
88.6%. In this experiment, we manually set the gradient scales based on experi-

6 Same link as footnote 5
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Models GoogleNet FasterRCNN SSD Horse-to-Zebra VanGoghStyle ESRGAN

P8+ 69.5 36.6 24.8 99.8 99.7 99.9

Table 2: Enhancing the benchmarks in Table 1 to reach the 99% FP32 standard
with posit 8-bit and with layer skipping and scaling. We pick the best accuracy
among P(8,1) and P(8,2) for each model to present the result

menting all the power-of-2 scales possible (from 2−10 to 210) and choose the best
scale which results in the best training output. The scale is static and be used
for the entire training without changes. We set the number of training epochs
to be 10 epochs for Lenet and Transformer 7 and 20 epochs for other networks.

Model Task (metric) Dataset FP32 P(8,1) P(8,2) P8+

Lenet Classification (Top1 %) MNIST 98.7 9.8 98.6 99.0

Resnet Classification (Top1 %) Cifar10 91.0 11.1 89.7 91.6

VGG Classification (Top1 %) Cifar10 87.5 10.0 22.9 88.6

Resnet Classification (Top1 %) Cifar100 72.9 61.8 72.4 72.7

Transformer Translation (BLEU %) 30k 35.4 32.9 34.5 35.0

Table 3: Training and inference with Qtorch+ and Posit. P8+ means the posit
8-bit configuration is used with gradient scaling that achieves highest output
quality.

6.2 Tips for training with 8-bit posit

After trial and error, we have summarized a few tips on how to successfully train
neural networks with posit8, especially with model that is difficult to train in
low precision and fail to converge:

– Reduce batch size and use the built-in gradient/loss scaling. The effect of
batch size and gradient scaling will be studied in this section.

– If gradient scaling still does not help convergence, the bitwidths need to be
increased. Heuristically, we found that increasing the backward error pre-
cision is enough for convergence. Because the forward pass of most models
is working well with posit8, they generally do not need higher bitwidth in
training.

– Adjusting gradient scaling in training is generally more important than ad-
justing the weight scaling and exponent bias of posits.

7 For Transformer, we had to use P(16,2) for the backward error propagating instead
of P(8,2) to achieve convergence
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It is a rule of thumb that using mini-batch will improve training accuracy.
However, small batches mean low utilization of GPUs and longer training time.
Each model has their own default batch size which is used in our experiment
in Table 3. The experiment with different batch sizes are presented in Figure 4.
From the figure, we can see that the batch size parameter affects the accuracy
of both FP32 and posit training. However, large batch size has stronger adverse
effect on the vanilla posit format. We also conclude that, where the vanilla
posit format cannot help convergence, gradient scaling must be used. In rare
cases, when the gradient scaling on low bitwidth posit format still cannot help
convergence, increasing the bitwidth should be considered. In the experiment
in Figure 4, we try to further use weight scaling and gradient bias similar to
inference but the effect is not significant and weight-scaling/exponent bias alone
cannot help posit8 training reach FP32 accuracy as gradient scaling does.

0
10

20
30

40
50
60

70
80

90
100

VGG-B128 VGG-B256 VGG-B512 Resnet-B128 Resnet-B256 Resnet-B512

To
p 

1 
Ac

cu
ra

cy
 (%

)

Training with different batch sizes

FP32 P8 P8+

Fig. 4: Training with different batch sizes and the effect of gradient scaling. The
variants used are VGG11 and Resnet18. VGG-B128 means VGG11 with 128
images in a batch.

6.3 Inference with lower posit bitwidth

Section 5 shows that posit6 is still good for some inference tasks. In this section
we will pick a few tasks which have high posit6 quality and further reduce the
precision down to 3 bits to observe the output quality. For each bitwidth, we only
select the format with the best accuracy and perform scaling and layer skipping
similar to Section 5. The results can be seen in Figure 5.

6.4 Inference with arbitrary number set

To demonstrate the ability of the framework to support designing custom number
formats, we conduct experiments with a logarithmic number format. The format
is a series of power-of-two values, with the exponent represented with the fixed-
point format with N bit. Let I.F be a signed fixed point format with I bits signed
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Fig. 5: Inference with bitwidth lower than 6.

integer and F bit fraction part. We can construct a logarithmic format based on
the equation : ±2I.F . The total number of bits required to represent the format
is: I+F+1(sign bit). For this type of format, the multiplication is simple because
it can be performed by adding the I.F fixed point numbers. To use this feature,
the user will generate all possible representable values of the format and supply
to our quantizer (configurable table quantize). Our new quantizer will take all the
representable values as an array and round real values to their nearest entry in
the given numbers set. Figure 6 shows the inference results of multiple networks
on the aforementioned formats. Figure 6, the L2(7− bit) means the 2I.F format
with I+F+1 = 7 bit. As we can see, a customized format can perform reasonable
well on different neural networks with enough bitwidth. However, it cannot reach
posit accuracy when using extreme low bitwidth (3-4 bits)

User can easily create their own format, or even a random number set with-
out generating rules and optimized the values in the set to improve accuracy. For
optimize number sets with only 4-8 distinct values but achieve good output qual-
ity on other networks (ESRGAN, GPT-2), we will have an online demonstration
on our GitHub repository. Describing and implementing optimizing method for
arbitrary numbers set is beyond the scope of this paper. In this section we only
present the features and demonstrations.

6.5 Overhead of the framework

Simulating number formats without hardware support will incur certain over-
head on converting the format from and to the primitive FP32 format in the
hardware. Our conversions are implemented both in CPU and GPU to support
the variety of systems. In the end-to-end pipeline, especially in training, the
overhead of simulating novel number formats is overshadowed by other time
consuming tasks (data fetching, optimizer, weight update). The overhead of in-
ference and training varies vastly between models. Measuring the computation
time to complete one epoch, we got 29% slowdown when training Resnet and 81%
slowdown when training VGG. However, when considering the whole end-to-end
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Fig. 6: Inference with a custom 2I.F number format

training of 20 epochs, Resnet and VGG got 21% and 70% slowdown respec-
tively. The measured time for inference the whole Imagenet test dataset showed
insignificant overhead (<10% in the models we tested). For generic models, our
overhead is in range with the original QPytorch framework [48] ≈ 30%

7 Conclusion

We have presented the design, implementation and usage of Qtorch+, an exten-
sion to Pytorch framework to enable effortless novel number formats inference
and training of neural networks. The extension is fully compatible with recent
Pytorch version and therefore can be applied to many state-of-the-art models.
As shown in our experiment, 8-bit posit arithmetic with scaling and kipping
layers are sufficient to pass the 99% FP32 quality standard set by the commu-
nity. With further extension to remove the restriction on representable number
distribution, we support and arbitrary number set for use in Pytorch. This can
lead to further development and research on novel low-bitwidth number formats
and hardware accelerators in the near future. The tool is available open source
and can also be install with pip package manager. At the time of writing this
paper, our first version of Qtorch+ has received more than 2,000 Python package
installations from around the world.
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