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Abstract. This paper presents an optimization method to build the
smallest possible integer mapping unit that can replace a conventional
multiply-and-accumulate unit in deep learning applications. The unit is
built using a hardware-software co-design strategy that minimizes the set
of represented real values and energy consumed. We target larger and
more complex deep learning applications domains than those explored
in previous related works, namely generative models for image and text
content. Our key result is that using our proposed method, we can
produce a set as small as 4 entries for an image enhancement application,
and 16–32 entries for the GPT2 model, all with minimal loss of quality.
Experimental results show that a hardware accelerator designed using
our approach can reduce the processing time up to 1.98×/3.62× and
reduce computation energy consumed up to 1.7×/8.4× compared to 8-bit
integer/16-bit floating-point alternatives, respectively.

Keywords: Number format · Deep learning · Generative Adversarial
Networks · Generative Models · Energy Efficient Machine Learning

1 Introduction

Deep learning has permeated a wide variety of computer applications ranging from
image recognition to the more creative uses of generative adversarial networks
(GAN) and generative models in general to produce realistic artifacts like images
and text. Performing inference for these models as efficiently as possible is crucial
to promoting their wider adoption, for example, on edge devices. For example,
low quality video can be upscaled to higher quality at the monitor end using deep
learning based upscaling. To this end, compressing large models by reducing the
number of bits used to represent model parameters has garnered considerable
interest. This technique has been frequently used for more popular networks such
as convolutional neural networks (CNN). However, applying it to more recent
networks such as OpenAI’s GPT models for language modelling as well as GANs
is not straightforward. While CNN inference can be done with a very few number
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of bits, the state-of-the-art for language models’ bit requirements remain at 8
bits [1]. Similarly, while quantization mechanisms have been marginally explored
for GANs, they are inefficient, require re-training, and are only able to represent
weights [2]. Moreover, a systematic method of obtaining the quantization levels
can be beneficial for extending the technique to even newer models. In this paper,
we apply a new multiply-accumulate (MAC) approach for the emerging neural
networks (the deep generative models) for which the output and error metrics
are vastly different from the most popular classification tasks in the literature.

Depending on the number of bits required to represent the model, different
types of hardware can be used. Traditional MAC units with accumulators of
various sizes have been used in many studies to date. Approaches that use lookup
tables have been scarcely studied due to the complexities involved with large
table sizes that increase the look-up time. However, when the number of bits
needed are significantly reduced, custom tables can be used to speed-up execution.
Furthermore, by implementing efficient lookup mechanisms, the circuitry required
for traditional MACs can also be replaced by integer mappings, bringing about
substantial energy savings.

Our contributions in this work are as follows.

– We reduce the number of bits required to 2–3 bits for weights and 2–5 bits
for activation on large generative models such as GPT2 using our optimizing
algorithm.

– We implement a new, highly efficient MAC method that uses integer summa-
tion of mapped inputs.

– We propose an architecture to perform exact dot products with much higher
performance and energy efficiency than fixed-point or floating-point architec-
tures.

2 Background and Related work

2.1 Neural networks and emerging architectures

Deep neural networks (DNNs) have recently achieved enormous success in a variety
of domains, such as image classification, object detection, image segmentation,
language, and media-related tasks. Initial efforts focused primarily on classification
and detection. More recently, research interest has shifted to designing neural
networks to address an even more complex challenge: content generation. Content
generation tasks range from simple image style transfer, colorization, and super
resolution to generating deepfake videos, synthetic voice and text which utilize
GANs. In GANs, the input is either a random vector (for random data generation)
or an original image (for style transfer or image enhancement). Graphic output
introduces another challenge for low-precision approaches; in contrast with image
classification where the output are only a vector of N values for N classes being
classified, the outputs of GANs are image pixels. For example, an image of size
512× 512× 3 needs all 786432 values to be in the output layers instead of 1000
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Fig. 1. Overview of some generative models used in this paper

real values in the output layer of ImageNet classification DNNs. Pixel values
also need to remain in high precision to construct output images, e.g. 8 bits per
channel for high quality color output. Figure 1 shows some samples of the tasks
that will be optimized in this paper.

Previous work on quantization of Convolutional Neural Networks (CNNs) for
image classification can reduce the required precision of parameters down to 4–8
bits with minimal loss of accuracy, with the help of quantization-aware training.
However, the current retraining method is difficult to apply since training data
is not available in some models (training settings for GPT2 and GPT-3 are
proprietary). Another obstacle of this approach is the cost and time associated
with training. Millions of dollars are required to train the latest GPT models.
They are trained with non-disclosed training data to be a general model for
various language-related tasks. For other GANs, fine-tuning methods are still
not easy and training is difficult to converge [3]. Thus, in this paper, we present
a method to optimize both weights and activations of these models without
fine-tuning. The techniques of fine-tuning to enhance the output quality can
always be applied on top of our method.

2.2 Quantization and Table Lookup

Two predominant approaches exist to reduce the bitwidths of parameters for
low-precision neural network inference: Applying quantization functions to high-
precision values, and looking up corresponding low-precision values from a table.
Several quantization methods have been developed; for simplicity, we consider
the uniform quantization method which is widely used in frameworks with 8-bit
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tensor instructions since the actual values and the quantized values are convertible
using a scale s.

Consider the quantization operation of mapping 32-bit floating-point (FP32)
values to 8-bit integer (INT8) values. Quantization in this case involves selecting
the range for the quantized values and defining functions that will map the
FP32 values to the closest INT8 value and back (quantize and dequantize). If
the selected range is [α, β], then uniform quantization takes an FP32 value,
x ∈ [α, β] and maps it to a value in [0, 255] or [−128, 127]. Values outside of [α, β]
are clipped to the nearest bound. There are two possible uniform quantization
functions: f(x) = s ·x+z (affine quantization) or f(x) = s ·x (scale quantization)
where s, x, z ∈ R; s is the scale factor by which x will be multiplied, and z is the
zero-point to which the zero value of the FP32 values will be mapped in the INT8
range. The uniform scale quantization is common when deploying to INT8 tensor
hardware because of its lower dequantization overhead [4]. Let s1 and s2 be the
scales used to quantize weight W and activation A of a dot product operation
(⊗). The scale quantized dot product result R′ can be dequantized by using the
appropriate factor:

R′ = W ′ ⊗A′ =

K∑
1

wi × s1 × ai × s2

R =

K∑
1

wi × ai = R′/(s1 × s2)

For our new MAC approach, we allow the numerical inputs to be anywhere in R.
Instead of requiring N -bit integer multiplier logic, we use a low-precision integer
form of logarithm and antilogarithm mappings that need not produce rounding
error. Instead of filling out a two-dimensional multiplication table of size 2N+M

where M is the number of wi values and N is the number of ai values, we map
inputs to low-precision unsigned integers that are added and the resulting sum
mapped to a (potentially exact) fixed-point product that can be accumulated.
This eliminates “decoding” of a bit format into sign, exponent, and fraction fields,
and any need for an integer multiplier in the MAC unit. In this paper we show
that by allowing the precision of the fixed-point product to be 10–16 bits and
optimizing the “vocabulary” of input real values, the sizes of M and N can be
as low as 2 or 3 bits.

There are four main enhancements in Bedot compared to conventional INT8
quantization in current general-purpose tensor core architectures (see Figure 2):

1. Activation of the previous layers are kept at fixed point while the weights are
kept at as small as 3-bit pointers to our carefully chosen real-valued weights.

2. The product of two operands is obtained by integer mapping instead of
traditional multiplier hardware.

3. The accumulator is smaller than 32 bits, and optimized to preserve dot
product correctness (no rounding).
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Fig. 2. A conventional integer quantization architecture for inference and the main
differences in Bedot

4. We introduce rounding hints. This enhancement yields additional tuning
knobs for improving output quality compared to the conventional round-to-
nearest.

This motivates the first part of our paper to search for the smallest number set
(vocabulary) possible while maintaining high output quality. The search results
will be used for customized hardware design with the details in Section 5.

2.3 Related work

Due to the high energy consumption of single precision floating point arithmentic,
there have been many proposals to use lower precision arithmetic such as fixed
point [5,6,7], half precision and mixed precision [8,9,10,11], posit [12,13] for
general applications. In the specific domain of deep learning, there have been
several proposals to optimize both inference and training phases. Our work is
specific to inference optimization. This method can be considered as the last-step
optimization after all other optimizations have been applied (e.g. network pruning,
retraining, fine-tuning). Regardless of how the model was trained and optimized,
our technique produces a high-efficiency model that is ready to deploy.

There are several approaches to quantizing network models to lower bitwidths,
mainly in the area of image classification with well organized surveys in [14,15].
Notably, recent works have explored hardware-friendly nonuniform quantization
methods with the restriction being that quantized values are additive power-
of-two [16]. More recently, next generation arithmetic such as Posit plays an
important role in neural network training and inference [12,17,18]. However, most
of these methods are not directly applicable to more complex generative models
such as GPT and GANs. Most analytical methods for quantization target the
convolutional layer and rely on RELU activation and a softmax layer when deriv-
ing cross-layer relationships and error formulae [19,20]. Unfortunately, activation
and network architectures vary greatly in recent systems. INT8 quantization has
been used for emerging neural networks include transformer architectures [1,21].
The current standard method for quantization of deep generative models that
can be easily reproduced is to use INT8 inference module on Pytorch and Nvidia
TensorRT. These frameworks provide standard methods for quantizing image
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Fig. 3. Workflow to produce a Bedot-ready model.

classification models, with support for language and generative models in ex-
perimental mode. To the best of our knowledge, we are the first to attempt
ultra-low-bitwidth tuning of the GPT2 model.

On the hardware design front, Eyeriss [22] is a systolic array system for CNNs.
[23] proposes a systolic array engine using table lookup instead of a multiplier.
Their table lookup unit uses 4-bit addresses. To ensure high output quality, their
architecture also requires higher precision (8–16 bit) data. Most designs focus
on CNNs for image classification or normal applications. Current widely-used
hardware for generative model inference is still GPGPU-based. Our work uses
the multiply-accumulate design but with very low bitwidth. It is possible because
our software module detects accuracy-sensitive layers so the rest of the layers
can use 2–3 bit inputs for most models.

3 Overview of Bedot

Our work consist of two components working in synergy: software to find the
smallest possible real number set that preserves answer quality, and hardware
based on those sets. Given a neural network and a specified output quality, our
software framework runs inference many times to find the smallest set of real
values for wi and ai that works and optimize the set entries using our proposed
algorithm.

The set is then used in the hardware module to speed up the actual inference
of the network for low energy environments (e.g. edge devices). Because we
aggressively reduce the set size in our software module, the MAC task becomes
simple integer-to-integer mapping that can be implemented using combinational
logic instead of addressed ROM. This yields a massive performance and effi-
ciency gain compared to both conventional low-precision units and table lookup
approaches for neural network inference. In the trade-off for energy gain, we
have to sacrifice the flexibility of the hardware module. Our target application
is edge devices designed for a limited number of applications. For example, in
image super resolution for TVs, the video can be transferred using low quality
to conserve bandwidth and the higher resolution video can be reconstructed
efficiently by our module for display.
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4 Set Construction

4.1 Detecting the sensitive layers

Generating the minimal real number sets that preserve quality is the main focus
of our work. This is particularly difficult given that the applications we target are
diverse, large, and complex. We need to address error sensitivity. For example,
quantization pixel color channel of sensitive GAN’s layer to below 8 bits will
likely result in a loss of information in the input image and incorrect colors in
the output. Typically, reduced-precision designs use higher precision for the first
and last layers of a CNN. Although this heuristics can be applied to generative
models, we found that more layers needed to be excluded to preserve quality than
conventional CNNs. We apply a low-precision format (e.g. floating-point 8-bit [24])
to each layer in turn, while maintaining the rest at full 32-bit precision, and then
measuring the output quality to quantify the sensitivity of a layer to precision
reduction. Using this method, we found that the number of high-sensitive layers
varies among models.

For image generative models, the structural similarity index measure (SSIM)
identifies sensitive outliers; a 1% drop of SSIM is the outlier threshold. For
GPT2, we use perplexity (PPL) as the quality metric since it is widely used for
text models. It is difficult to tell what amount of increase in PPL is “too high.”
Thus, for GPT2 we use an outlier detection method, the Boxplot method using
inter-quartile range (IQR) [25,26]. Let Q1 and Q3 be the first and third quartiles
of the data (25th and 75th percentiles). The IQR = Q3−Q1 is computed and
thresholds Q3 + 3× IQR and Q1− 3× IQR are used to detect extreme sensitive
outliers. As a result, we exclude three layers (17th, 141th, and 145th) out of the
145 layers in GPT2 model. For ESRGAN, the first layer and the last five layers
were excluded. For other models, two layers are excluded (the first and last layers).
We use fixed-point 16-bit for these excluded layers.

4.2 Building optimized real number sets

In the next step, we construct a single set of real magnitudes for both positive
and negative numbers, to reduce hardware cost. The sign bit of the product is
simply the XOR of the two input sign bits. We start with a large set that yields
high output quality (e.g. FP16 [27]). However, because the set of possible 16-bit
values is large, building a smaller set from such large set by testing every possible
value is very time-consuming. Instead, we use smaller sets of numbers that are
known to be good for inference. For this purpose, we chose the best among
posit [28,29,18] and [24] floating-point formats (64–128 unsigned entries) as the
starting sets. We simply try different configurations with 7 or 8 bits, and choose
the configuration with the fewest bits that yields acceptable quality (which in
our experiment means ‘less than 1% quality drop’). For the rest of this paper,
the set represents magnitudes and will be used along with the sign bit of the
original value for dot product computation.
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4.3 Fast derivation of the small set from a seed set

After obtaining a seed set yielding good quality, we turn to reducing its size. Our
algorithm halves the set size in rounds. From 128 unsigned entries, to find a set
with only eight entries, we need to perform four rounds: 128 → 64 → 32 → 16 → 8.
At each step, we loop over the L entries of the set, record the output quality of
the neural network after removing each entry. We then sort the output quality
array to find the L/2 entries with the least impact on output accuracy. We remove
these from the set and repeat the process. Assuming we want to reduce set size
from 2A to 2B , B < A, the algorithm stops after A−B iterations. The threshold
ε is chosen based on our desired output quality. Since output quality will be
improved in the next step by our set optimization algorithm, we actually select ε
below the desired threshold. Based on our experiments, the search algorithm can
improve accuracy up to 10%, thus we can pick ε about 10% worse quality than
desired before running the optimization algorithm in the next Section.

Note that, removing the entries one by one (like a Jenga game) instead
of deleting half of the set in line 13 will give a slightly better set with the
same number of entries. However, the advantage is minimal when applying our
optimizing algorithm afterwards while incurring huge additional overhead (from
A − B iterations to 2(A−B) iterations). Thus, we chose to execute this phase
batch by batch.

4.4 Enhancing output quality

The next step iteratively tunes each value in the set to improve output quality.
The pseudocode can be seen in Algorithm 1. Each iteration measures the effect
of changing each entry by δ in both directions. Let O′[i] be the current value of
an entry, the algorithm tests the result quality for O′[i]± δ ·O′[i]. The algorithm
then picks the best candidate (lines 21–28). If the best candidate improves the
results compared to the previous iteration, the original set value is replaced by
the best candidate and the algorithm continues with the same rate of change (δ).
If all candidates worsen output quality, we reduce δ by half. The δ value will
thus decrease rapidly and eventually converge when δ becomes too small (< 1%
change). Note that, in Algorithm 1, there is only one set to be optimized. We
concatenate the weight and activation sets into a single set to optimize.

The Test(O′) function in lines 11 and 17 in Algorithm 1 is where we assess
the output quality of the current set (O′) with a separate representative dataset,
different from that used to optimize set entries. The representative dataset is
different for each model. If the model has multiple recommended evaluation
datasets, we pick one for tuning and test against all others. For example, for
ESRGAN, we pick Set14 for our tuning process but at the end of the optimization
process measure the output quality of another test set (Set5). Both results will
be presented in our Section 6. The result of Test(O′) is in form of the metric
for measuring output quality. The default setting in Algorithm 1 assumes the
higher metric indicates better results. For models with the lower-better metric
(i.e. Perplexity of GPT2), we simply pass −Test(O′) to line 11 and 17 and other
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Algorithm 1 Algorithm for optimizing set entries
1: Input Table I : [I1 . . . IN ] // Input unoptimized set entries, sorted in ascending order
2: Output Table O : [O1 . . . ON ]
3: O ← I
4: δ ← 0.5 // Initialize changing rate, 50% of each table entry’s value
5: Qcurr = Test(O) // Initialize the table
6: while δ >= 0.01 do
7: Inc← [0 . . . 0] // Store output quality when increasing table entries
8: for i = 1 to N do
9: O′ ← copy(O)
10: O′[i]← O′[i] + O′[i]× δ
11: Inc[i]← Test(O′)
12: end for
13: Dec← [0 . . . 0] // Store output quality when decreasing table entries
14: for i = 1 to N do
15: O′ ← copy(O)
16: O′[i]← O′[i]−O′[i]× δ
17: Dec[i]← Test(O′)
18: end for
19: Inc idx← max(Inc) // Get the index of the entry having maximum output quality in Inc
20: Dec idx← max(Dec) // Get the index of the entry having maximum output quality in Dec
21: if max(max(Inc),max(Dec)) > Qcurr then
22: if max(Inc) > max(Dec) then
23: O[Inc idx]← O[Inc idx] + O[Inc idx]× δ // Increase the corresponding table entry
24: Qcurr = max(Inc)
25: else
26: O[Dec idx]← O[Dec idx]−O[Dec idx]× δ // Decrease the corresponding table entry
27: Qcurr = max(Dec)
28: end if
29: else
30: Quality not improved, decrease changing rate by half
31: δ ← δ/2
32: end if
33: end while

parts of the algorithm can remain the same. The complexity of this algorithm
is low because halving the changing rate δ converges quickly. For the longest
experiment we ran (GPT2), it cost 33 + 6 iterations as demonstrated in Figure 4
(6 more iterations where the condition in line 30 is met, δ is decreased).

4.5 The rounding hint table and its effect

There are several ways to convert any real value to one of our set’s entries.
Initially, we use round-to-nearest. Consider a value x and the set O[O1..ON ] with
N entries from Algorithm 1, sorted in ascending order. Let M [M1..MN ] be the
set of midpoints. The round-to-nearest mode can be implemented by comparing
the absolute value |x| against the midpoints and taking the index of the entry
with its midpoint just below |x|:

M [i] =

{
(O[i] + 0)/2 if i = 1

(O[i] +O[i− 1])/2 if i > 1

Encode(x) = i where max
i

M [i] ≤ |x| (1)

During our experiments, we realized these comparison points can be tuned.
Better “midpoints” can improve the output quality of the model with no addi-
tional hardware overhead. Naive round to nearest requires a comparison unit. In
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rounding in the range [O[i], O[i− 1]], we can replace the midpoint with any real
value M [i] (a rounding hint) that is in the same range:

M [i] =

{
0 ≤ M [i] ≤ O[i] if i = 1

O[i− 1] ≤ M [i] ≤ O[i] if i > 1

Note that in the actual implementation, the index will begin with 0 instead
of 1. The initial rounding hints table is set to be mid-points (round to nearest
mode) and concatenated with the set entries. The whole table will be used in
Algorithm 1 for optimization. To support efficient hardware implementation, the
optimized rounding hints are rounded to a fixed-point format with lower bitwidth
with the hardware design in Section 5.5. Figure 5 shows set entries and rounding
hints after optimizing the ESRGAN model. The effect of rounding hints will be
presented in Section 6.

5 Set Mapping Based Inference

5.1 Processing element utilizing table lookup

The number of weight and activation entries is reduced significantly by our
algorithms. We can use a “wired ROM” to create a MAC based on the integer
mappings. In this paper, we introduce and evaluate the wired ROM unit imple-
mented with combinational logic, and show that the design has smaller area,
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Fig. 6. Set mapping unit to find the product of weight and activation, and comparison
of the power and area size of a two-input MAC for several input formats.

lower cost, and higher speed per watt than MAC hardware based on integer
multipliers or addressed lookup tables.

Fig. 7. An example design of our lookup unit with 2-bit inputs and example Rounding
Hint module of ESRGAN

5.2 Wired ROM logic for multiplication

For each neural network, after we obtain the optimized values from Algorithm 1,
conventional table lookup units would decode the weights and activations to
fixed-point numbers before multiplication. However, we pre-compute the exact
Cartesian products of the weights and activations at full precision and find integer
mappings with the same Cartesian sum ranking as the Cartesian products, like
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Fig. 8. 32-bit SIMD MAC architecture to compute dot product of 2 N -element vectors

a low-precision logarithm table. Analogously, the “inverse logarithm” can then
be a rounding-free map to the fixed-point product as shown in Figure 6. For
inference, a table lookup using the combined weight and activation bits yields
the exact fixed-point product. The result is accumulated exactly in fixed-point
with just enough precision to protect against underflow and overflow. We shall
call the ROM-based unit a lookup unit (LU) in our design.

5.3 Combinational logic implementation of ROM

We can derive basic logic gates to map a pair (w, a) to their product represented
in fixed-point. For example, we can build a “wired ROM” with two 2-bit inputs
and n output bits as shown in Figure 7. The circuit needs only NOT, AND, and
OR gates, and the rest are wires with crosses indicating a connection. In contrast
with other circuit ROMs, we can simply deploy it into reconfigurable designs
such as an FPGA. The main components in combinational logic ROM are 1)
logic decoder, and 2) ROM data. For each possible input, the ROM decoder will
produce the required bit strings with only a few logic delays. The bit strings
are the integer “log tables” (Section 5.2). This approach has very high energy
efficiency compared to FP32, BF16, and the state-of-the-art INT8 inference. For
our MAC unit, we estimate the energy using 45 nm CMOS at 200 MHz. Our
ROM designs with 16/128/256 entries achieve significantly higher speed and
lower power consumption than INT8, FP32 and BF16, as shown in Figure 6.

5.4 SIMD MAC unit utilizing our lookup units

With the LU as the multiplier, we can design a dot product engine to perform
the dominant operation in neural networks. Besides the dot product, simpler
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Design
Power,
mW

Dot-product
Speedup

GOPs/W
(improvement)

Area µm2

(reduction)

FP32 3.80 1× 0.11 (1×) 19.4k (1×)

BF16 1.49 2× 0.53 (4.81×) 12.48k (1.56×)

INT8 0.57 4× 2.81 (25.18×) 3.2k (6×)

Bedot
16 entries

0.79 10× 5.04 (45.14×) 4.3k (4.5×)

Bedot
128 entries

0.67 6× 3.55 (31.8×) 8.7k (2.2×)

Bedot
256 entries

0.68 5× 2.93 (26.27×) 12.51k (1.55×)

Table 1. Normalized GOPs/W and area reduction of 32-bit SIMD MAC design for
each design in Figure 8 for 45 nm CMOS at 200 MHz. FP32 is used as baseline.

operations such as scaling, pooling, and averaging can be performed using fixed-
point units. We focus only on the dot product engine in this paper since it
accounts for > 95% of the energy. Note that any activation function can be
implemented with zero cost by incorporating it into the rounding hints step.

Each LU multiplies a weight by an activation. A conventional floating-point
multiply-accumulate (FMA) instruction requires fetching 32-bit FP32 operands.
Each such fetch is equivalent to fetching multiple inputs in parallel if we use
BF16, INT8, or our Bedot design instead. As shown in Figure 8, with different
precisions for weights and activations, we can speed up the dot product by 2×
to 10× compared to a 32-bit FMA because of this parallelism. As mentioned in
Section 5.4, our combinational logic ROMs consume the same power as a 2-input
MAC design; however, Bedot (Figure 8) is more energy efficient (GOPs/W) than
other formats because of the lower number of bits, as shown in Table 1.

5.5 The implementation of rounding hints

Encoded weights are pre-computed, but activations must be encoded back to
2–5 bits at runtime via rounding. Rounding hints can be implemented by a few
logic gates found by Karnaugh maps (K-map). For example, the set of rounding
hints is {0, 0.0625, 0.1875, 0.625} for activation for the ESRGAN applications
and it is applied to the encoded two-bit activation set. For this set, we only
need a (1, 5) (1-bit integer, 5-bit fraction) fixed-point number to represent the
rounding hint values, as shown in Figure. 7. Hence, we only need to truncate
the raw activations to this (1, 5)-fixed-point. We then simply solve the K-map
problems to provide the encoder logic circuit for activation data. As a result, the
rounding hint can be implemented using just a few logic gates (14 AND/OR
gates), negligible compared to the MAC.

6 Experiments

In this section, we provide the experimental results of our software and hardware
modules. For the software module, we tested different applications from text
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generation to style transfer and image super resolution. For the hardware module,
we estimate the 32-bit MAC design specs as discussed in Section 5.4 to evaluate
Bedot.

Model Name ESRGAN Horse to Zebra Van Gogh Style Monet Style GPT2-large

Dataset Set14 Set5 h2z h2z v2p v2p m2p m2p
Wiki-2

(19.1)

Wiki-2

(19.44)

Wiki-103

(19.09)

Bedot 0.932/30.9 0.925/31.9 0.928/28.3 0.928/28.1 0.930/27.9 0.928/27.9 0.947/30.8 0.945/30.4 20.552 20.969 20.539

Bedot+H 0.954/33.2 0.956/34.7 0.938/29.9 0.938/29.9 0.935/28.4 0.932/28.4 0.951/31.1 0.949/30.4 20.435 20.828 20.367

INT8 0.975/34.5 0.987/40.7 0.726/24.4 0.645/22.6 0.773/21.3 0.775/21.4 0.627/19.7 0.623/19.3 20.229 20.629 20.235

Metric(s) S/P S/P S/P S/P S/P S/P S/P S/P PPL PPL PPL

Table 2. Output quality of models used in our experiment. There are two or three
columns for each model. The first column is the tuning data used to test for output
quality and guide the search in Algorithm 1. The remaining column(s) is the testing
data that has not been used in the tuning process. Entries with two numbers show
“SSIM / PSNR (dB)”.

Input FP32 Bedot

Fig. 9. Sample visual outputs of models. From top to bottom: Image super-resolution
using ESRGAN, Horse-2-Zebra transform, Monet Style transform, Van Gogh Style
transform. A live demo for ESRGAN is available at [30].
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Fig. 10. Processing time and processing energy for several deep generative models using
a 32-bit SIMD MAC design

6.1 Table configurations and accuracy

The software module (with rounding hints enabled) is developed and tested using
our extension Qtorch+ [31] based on the design of QPytorch library [32]. We test
our software module to optimize five emerging applications including GANs and
GPT2. The Horse2Zebra model is used to transform an image of a horse to a zebra.
The Van Gogh and Monet style models are used to transform a photo to a drawing
mimicking the styles of those artists. These image transforming tasks use the
custom datasets described in the original paper [33] (h2z : Horse2zebra dataset,
v2p: VanGogh2photo dataset, m2p: Monet2photo dataset in Table 2). The image
superresolution model (ESRGAN) was introduced in [34] with Set14 and Set5
datasets [35,36]. We also process a language model for text generation. For this
task, we choose OpenAI’s GPT2-large (762 million parameters) model [37] for
Wikitext-2, Wikitext-103 datasets [38]. Note that only the model is released by
OpenAI. Input pre-processing and measurement parameters affect the perplexity
results but are not publicly released. So perplexity is measured using the guide
from [39] which closely matches the result reported in the original OpenAI
paper. For comparison, we use all available INT8 quantization in both the
quantization module of Pytorch [40] and Nvidia’s TensorRT [4]. Because each
of these frameworks and quantization modes has their own limitations in the
supported models and layer types, they also produce different output quality as
the hyper parameters need to be manually chosen. We present only the highest
output quality obtained after trying many possible variants of the configurations
described in these frameworks. These configurations include: Pytorch quantization,
TensorRT with different calibrations for amax : max, histogram, entropy, percentile
and mse. We tried 99.9 and 99.99 as percentile and 2 and 10 images for the
number of calibration images. Apart from trying these manual configurations,
we use their automatic quantization modules with all default settings.

For image generation tasks, we use the structural similarity index metric
(SSIM [41]), a standard way to measure image quality by comparison with a
reference image. The highest quality is SSIM = 1.0. We also included the peak
signal-to-noise ratio (PSNR) metrics for image-related tasks. The best result in
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each column is in bold. Note that, for most GANs, we do not have a reference
image other than the image generated by the FP32 version. Thus, we use FP32
as the reference for comparison4. Sample visual output can be seen in Figure 9.

For GPT2, we use perplexity (PPL) as the metric, where a lower value
indicates a better text generated [42]. The results are presented in Table 2 with
FP32 reference perplexity included in the dataset’s name (e.g. WikiText-2: FP32
achieves 19.1 PPL on the tuning set). When compared with the data published by
OpenAI, we can see that the smaller variant of GPT2 (GPT2-medium 345 million
parameters) was reported to have perplexity of 22-26 for WikiText tasks. Bedot
only need a 3-bit table to encode weights while having better perplexity. Bedot
can reduce the parameters size to 32/4 = 8× (1 more bit for the sign of weight)
compared to FP32. In the table, ‘Bedot+H’ means rounding hints are enabled
for tuning. Tuning the rounding hints can improve the output quality by up to
3% in ESRGAN. In general, quality decreases only slightly when testing datasets
other than the tuning dataset. We obtained mixed results when comparing Bedot
with uniform INT8 quantization in the different standard frameworks. In general,
INT8 uniform quantization works better than Bedot when the range is tight, and
worse than Bedot when the dynamic range required is high.

6.2 Performance and Energy estimation

We estimate the processing time of deep generative applications. For the GPT2
and Horse-2-Zebra, we use Bedot with 128 entries. For the ESRGAN, we use
Bedot with 16 entries. For the Van Gogh and Monet styles, we use Bedot with
256 entries. We assume a deep learning system that has only one MAC unit
with speed and power as shown in Table 1, with the other operations performed
sequentially at 200 MHz. Bedot reduces processing time by up to 1.98× and
3.62× compared to INT8 and BF16, respectively. For energy consumption, we
only consider computation and do not include the register file, SRAM and DRAM
accessing energy. Bedot also reduces the computation energy by 1.7× and 8.4×
compared to INT8 and BF16, respectively. All results are in Figure 10.

7 Conclusion

We have introduced a suite of methods from software to hardware to realize an
accelerator for emerging deep generative models based on a novel approach to the
MAC operation. With the table optimization algorithm, we successfully deliver
high quality output with only four lookup entries for image resolution upscaling.
For other more difficult tasks, the table has to be larger but never exceeds 32
(5-bit) entries. We believe our approach will empower future devices to perform
difficult deep learning tasks with very low energy consumption.

4 ESRGAN can compare its output against the original images. For Set5, the model
achieves a PSNR of 30.8/28/29/30.3 dB on FP32/Bedot/Bedot+H/INT8. The
reduction in quality has the same trend when we compare against FP32. Thus we
also use FP32 images in Table 2 for a consistent comparison.
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