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Abstract. Error resilience in neural networks has allowed for the adop-
tion of low-precision floating-point representations for mixed-precision
training to improve efficiency. Although the IEEE 754 standard had long
defined a 16-bit float representation, several other alternatives targeting
mixed-precision training have also emerged. However, their varying nu-
merical properties and differing hardware characteristics, among other
things, make them more or less suitable for the task. Therefore, there is
no clear choice of a 16-bit floating-point representation for neural net-
work training that is commonly accepted. In this work, we evaluate all
16-bit float variants and upcoming posit™ number representations pro-
posed for neural network training on a set of Convolutional Neural Net-
works (CNNs) and other benchmarks to compare their suitability. Posits
generally achieve better results, indicating that their non-uniform accu-
racy distribution is more conducive for the training task. Our analysis
suggests that instead of having the same accuracy for all weight values,
as is the case with floats, having greater accuracy for the more com-
monly occurring weights with larger magnitude improves the training
results, thereby challenging previously held assumptions while bringing
new insight into the dynamic range and precision requirements. We also
evaluate the efficiency on hardware for mixed-precision training based on
FPGA implementations. Finally, we propose the use of statistics based
on the distribution of network weight values as a heuristic for selecting
the number representation to be used.

Keywords: Neural Networks · 16-bit Floating-point · Half-precision,
Posit

1 Introduction

Owing to the size of datasets and the complexity of models used for learning
at present, training a large neural network can easily require days or weeks
even on modern GPUs. Because 16-bit data types halve the required memory
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and bandwidth demands of 32-bit floating-point and therefore can significantly
improve performance and energy efficiency, IEEE 754 standard “half-precision“
floats (IEEE16) and several other 16-bit floating-point variations have been pro-
posed for deep learning. However, each of these formats have significantly dif-
ferent properties giving them varying degrees of suitability for training neural
networks. Figure 1 shows the relative decimal accuracy (RDA) (defined in Sec-
tion 7) between consecutive number pairs for 16-bit float formats (all published
variations) and posit formats studied in this work, which we collectively refer
to as FP16. The width of a graph shows the dynamic range while the height
shows the RDA distribution in that range, for each format. The different ac-
curacy distributions of the number representations lead to varying success in
neural network training, as demonstrated by the test loss for a representative
benchmark in Figure 2. To overcome accuracy degradation, researchers have
had to rely on custom accuracy saving techniques. However, the exact accuracy
degradation behavior of each FP16 format and the generality of each technique
is not known. While mixed-precision training with IEEE16 has reported 2–4.5×
speedup, mechanisms used to improve training accuracy also increases training
overhead [19]. Therefore, there is no clear consensus as to what the optimal 16-
bit float representation is for training or what characteristics of a number format
lead to better training results.

bfloat16
DLFloat

IEEE16
IEEE16_6

IEEE16_7

posit16_1 posit16_2

posit16_3

- 40 - 20 0 20 40
0

1

2

3

4

log10(absolute_value(v))

R
e
la

ti
v
e
 D

e
ci

m
a
lA
cc

u
ra

cy

log
10
(abs_value(v))

R
D
A

Fig. 1: RDA - FP16

CNNs have been studied and adopted widely for tasks such as image classifi-
cation. Here, we test all FP16 number formats previously proposed for CNNs (as
well as new ones), under identical conditions, to assess their relative capabilities
for CNN training benchmarks of varying sizes. We also do the same for newer
language translation models to test the versatility of the formats. In this paper
we will:

– Demonstrate empirically that for a 16-bit IEEE-type float format, the opti-
mal number of exponent bits producing the best results is 6.

– Show that posits produce better accuracy results, which suggests that their
non-uniform accuracy distribution is more suitable for training.
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– Analyze the accuracy for a selected benchmark to show that having more ac-
curacy for commonly occurring weights with larger magnitude is key. Because
all previously studied 16-bit float formats have uniform accuracy distribu-
tions (Figure 1), this idea has not been presented previously.

– Propose a new accuracy saving technique for neural network training that
adds no overhead, which is that of shifting the peak RDA of posits based on
the distribution of weight values.

– Evaluate the FP16 formats in terms of hardware costs for conversion and
accuracy under different rounding modes to gain a more holistic and practical
understanding of their capabilities in mixed-precision training.
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Fig. 2: Test loss - FP16

2 Related Work

The IEEE 754 standard [3] provides all details related to floating-point data
types that are implemented on most systems. Its “half-precision” format, IEEE16,
specifies 5 exponent bits. To achieve training results comparable to IEEE32 using
IEEE16 representations for weights, activations and gradients, several accuracy
saving mechanisms need to be employed. They include maintaining copies of
master weights in IEEE32 for weight update, loss scaling (not required for CNNs)
and accumulating IEEE16 vector dot products into IEEE32 values [17]. Mixed-
precision training with bfloat16 requires the same techniques except for loss
scaling [2]. Another FP16 format, DLFloat, has a 6-bit exponent and aims to
simplify the hardware for floating-point computations [1]. When it is used in
training, weights, biases, activations, errors and weight updates are represented



4 H. De Silva et al.

in DLfloat, with fused-multiply-add instructions used to perform the matrix
multiplications and convolution operations at 16-bit precision.

A reduced-precision dot product algorithm which initially accumulates smaller
chunks of a long dot product and then accumulates their partial sums hierar-
chically coupled with stochastic floating-point rounding has been used to reduce
the representation of weights, activations and gradients to an 8-bit float format.
The accumulations for forward and backward passes occur in a 16-bit float with
a 6-bit exponent and so does the regularization, momentum computation and
weight update — which uses a master copy of the weights at 16-bit precision [24].
Another attempt at reducing the representation to 8-bit float format for weights,
activations, errors and gradients uses techniques such as quantization, stochastic
rounding, loss scaling, IEEE32 computations and accumulations and maintain-
ing master weight copies in IEEE16 [16].

A hybrid exponent size scheme has been proposed to enable 8-bit floats to
work across a broader range of networks and models. This scheme stores weights
and activations with a 4-bit exponent while tensors in the backward pass are
stored with a 5-bit exponent. The very low number of bits of significance re-
quires loss scaling with multiple scaling factors, and conversion across different
formats along with other optimizations [22]. Recently, ultra-low (4-bit) preci-
sion combined with other techniques have been proposed for training [23]. These
training schemes require either enhanced versions of 16-bit accuracy-saving tech-
niques or even more complex mechanisms that add overhead. Because all of them
still make use of 16-bit or 32-bit floats, assessing the various 16-bit formats and
their capabilities is still useful even when using such 8-bit representations.

Taking a cue from neural network inference, floats with precision as low as a
single bit have been tested for training [25]. Similarly, 16-bit (and smaller) fixed-
point representations have also been studied for training DNNs [4,6,12]. However,
these either work only on small training examples or require mechanisms such
as dynamic scaling, shared exponents, specialized instructions for high precision
steps, or other complex accuracy management schemes and improvements to
match IEEE32 accuracy. For example, the Flexpoint format actually has a 16-bit
significand with separate exponent bits. Our own experiments with fixed-point
did not produce useful results even for the smallest benchmarks, thus we are
excluding it from discussion.

Although posits have been explored briefly for training and inference [7, 8,
15], it has not been evaluated or compared against other formats extensively.
Moreover, as we will demonstrate, layer-wise scaling is not necessary for training
with 16-bit posits.

3 16-Bit Float and Posit Formats

3.1 IEEE 754 Standard type float formats

An IEEE float contains three fields: a 1-bit sign S, a w-bit biased exponent E,
and a (t = p − 1)-bit trailing significand field digit string T = d1d2...dp−1; the
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leading significand bit, d0, is implicitly encoded in E. The value v inferred from
this representation is given by Eq. 1. The default rounding mode as defined by
the Standard is round-to-nearest-even (RNE).

v =



NaN (Not a Number) if E = 2w − 1, T ̸= 0

(−1)S × (+∞) if E = 2w − 1, T = 0

(−1)S × 21−emax×
(0 + 21−p × T ) if E = 0, T ̸= 0

0 if E = 0, T = 0

(−1)S × 2E−bias×
(1 + 21−p × T ) all other cases

(1)

Since 2008, the Standard defines a 16-bit binary16 format, commonly referred
to as “half-precision” and here referred to as IEEE16, for which w = 5, t = 10.
The value v of an IEEE16 float can be inferred by substituting these values along
with p = 11, emax = 15, bias = 15, in Eq. 1.

The bfloat16 format is supported in the deep learning framework Tensorflow.
According to information available, the bfloat16 format is used for storing acti-
vations and gradients in memory for mixed-precision training. While there is no
official standard for this format, a bfloat16 number is similar to an IEEE 754
floating-point data with a 1-bit sign, w = 8 and t = 7 [11]. Therefore the value
v of a bfloat16 representation can be derived by substituting these values along
with p = 8, emax = 127, bias = 127, in Eq. 1.

We also designed an IEEE-style 16-bit format that has a 6-bit exponent and
9-bit fraction and a format with a 7-bit exponent and 8-bit fraction. In our work,
we will refer to these formats as IEEE16_6 and IEEE16_7 respectively. The
IEEE16_6 format is similar to DLFloat in Section 3.2 except that IEEE16_6
supports the default rounding and all exceptions of the IEEE 754 Standard,
including subnormals. The value, v of a IEEE16_6 representation can be derived
by substituting values w = 6, p = 10, emax = 31, bias = 31, in Eq. 1. The value
v of a IEEE16_7 representation can be derived by substituting values w = 7,
p = 9, emax = 63, bias = 63, in Eq. 1.

3.2 DLFloat

DLFloat is a representation similar to IEEE16_6 [1]. However, to simplify the
hardware design for DLFloat, it does not support subnormals (i.e. when E = 0).
Instead, when E = 0, v is treated like a normal float with a bias of 31. Other
differences are that there is a single representation for infinities and NaN, the
sign of zero is ignored, and the only rounding mode for DLFloat is round to
nearest, up (RNU).

3.3 Posit

A posit number, as described in its Standard [20], is defined by four fields as
shown in Figure 3(a) and has recently shown promise in CNN training [15, 18].
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To decode a posit value, one must know the the total width of the posit, nbits
(16, in this case), and the width es of the exponent field E. We test es values
of 1, 2 and 3 referred to as posit16_1, posit16_2 and posit16_3. Other posit
environment variables of interest are maxpos, the largest real value expressible
as a posit and its reciprocal minpos, the smallest nonzero value expressible as a
posit.

S (sign) R (regime) E (exponent) F (fraction)

1 bit MSB LSBr + 1 bits

R0 . . . . . .Rr

MSB LSBe bits

E0 . . . . . .Ee−1

MSB LSBf bits

F0 . . . . . .Ff−1

Figure 1: General binary posit format

S (sign) R (regime)

1 bit MSB LSBr bits

R0 . . . . . .Rr−1

Figure 2: Binary posit format with zero-length exponent and fraction

3.2 Binary interchange format encoding

3.2.1 Posit format encoding

All posits have just one encoding in a binary interchange format shown in posit format encoding-general and
posit format encoding-signedregime. The four fields are:

1. Sign bit S

2. Regime R consisting of r bits identical to R0, terminated by 1−R0 (r+1 bits total length) or the end
of the posit (r bits total length).

3. Exponent E represented by e exponent bits, terminated by a maximum of es or the end of the posit

4. Fraction F represented by f fraction bits, terminated by the end of the posit

The meaning of each field is as follows:

1. S is its literal value, 0 or 1.

2. R is −r if R0 is 0, and r − 1 if R0 is 1.

3. E is an es-bit unsigned integer, with 0 bit padding in the least significant bits if the exponent field has
fewer than es bits because of the regime length.

4. F represents an unsigned integer divided by 2f .

Note
The exponent field size e and fraction field size f can each be 0, in which case they represent 0; 0 ≤ e ≤ es

and 0 ≤ f ≤ nbits− lg(nbits). The hidden bit is 1 even if f is 0.
The representation (S,R,E, F ) of the posit and value v of the datum represented are inferred from the

fields as follows:

1. If S = 0 and all other fields contain only 0 bits, then v = 0.

2. If S = 1 and all other fields contain only 0 bits, then v is NaR and undefined.

3. If any bits in the (R,E, F ) are 1, then (1− 3S + F )× 2(−1)S(R×2
es

+E+S).

7

(a) posit Binary Format

the exponent bits, if any. If the set of fraction bits is {f1f2 . . . ffs}, possibly the empty set, let f

be the value represented by 1.f1f2 . . . ffs. Then p represents

x = ⎧⎪⎪⎨⎪⎪⎩
0, p = 0,±∞, p = −2n−1,
sign(p) × useedk × 2e × f , all other p.

The regime and es bits serve the function of the exponent bits in a standard float; together,

they set the power-of-2 scaling of the fraction where each useed increment is a batch shift of

2es bits. The maxpos is useedn−2 and the minpos is useed2−n. An example decoding of a posit is

shown in fig. 5 (with a “nonstandard” value for es here, for clarity).

× × (1 + )

0

sign

+

regime

0 0 0 1

256-3

exponent

1 0 1

25

fraction

1 1 0 1 1 1 0 1

221 / 256

Figure 5. Example of a posit bit string and its mathematical meaning

The sign bit 0 means the value is positive. The regime bits 0001 have a run of three 0s,
which means k is −3; hence, the scale factor contributed by the regime is 256−3. The exponent

bits, 101, represent 5 as an unsigned binary integer, and contribute another scale factor of

25. Lastly, the fraction bits 11011101 represent 221 as an unsigned binary integer, so the

fraction is 1 + 221/256. The expression shown underneath the bit fields in fig. 5 works out to

477/134217728 ≈ 3.55393 × 10−6.
2.2. 8-bit Posits and Neural Network Training

While IEEE floats do not define a “quarter-precision” 8-bit float, an 8-bit posit with es = 0
has proved to be surprisingly useful for some purposes; they are sufficiently powerful to train

neural networks [3, 8]. Currently, half-precision (16-bit) IEEE floats are often used for this

purpose, but 8-bit posits have the potential to be 2−4× faster. An important function for neural

network training is a sigmoid function, a function f(x) that is asymptotically 0 as x → −∞
and asymptotically 1 as x → ∞. A common sigmoid function is 1/(1 + e−x) which is expensive

to compute, easily requiring over a hundred clock cycles because of the math library call to

evaluate exp(x), and because of the divide. With posits, you can simply flip the first bit of the

posit representing x, shift it two bits to the right (shifting in 0 bits on the left), and the resulting

posit function in fig. 6 (shown in magenta) closely resembles 1/(1 + e−x) (shown in green); it

even has the correct slope where it intersects the y-axis.
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8-bit posit with first bit

flipped, shifted right two places
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Figure 6. Fast sigmoid function using posit representation
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(b) Posit Example

Fig. 3: General Posit Format and 16-bit Posit Example

v =


0 if p = 00 · · · 0
Not-a-Real (NaR) if p = 10 · · · 0
(1− 3S + F )×

2(−1)S(R×2es+E+S) otherwise

(2)

The four fields of the posit are a 1-bit sign S, regime R consisting of r bits
identical to R0 terminated by 1 − R0 (r + 1 bits total length) or by reaching
the end of the posit (r bits total length), exponent E represented by e exponent
bits, terminated by a maximum of es or the end of the posit, and fraction F
represented by f fraction bits terminated by the end of the posit. The value of
R is −r if R0 is 0, and r−1 if R0 is 1. E is es bits wide, with 0 bit padding
in the least significant bits if the exponent field has fewer than es bits because
of the regime length. F represents an unsigned integer divided by 2f . The rep-
resentation (S,R,E, F ) of the posit p represents the value v which is inferred
from the fields by Eq. 2 (The equation gives the binary representation of p in
the first two cases). The equation for v looks quite different from that for stan-
dard floats because posits are based on 2’s complement representation whereas
floats are based on sign-magnitude representation. Not-a-Real (NaR) condenses
all exception values into a single case.
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Rounding for a real value x to a posit is given by the following rules; If x
is exactly expressible as a posit, it is unchanged. If |x| > maxpos, x is rounded
to sign(x) × maxpos. If 0 < |x| < minpos, x is rounded to sign(x) × minpos.
For all other values RNE is used. To further understand the decoding of a posit
number consider the example in Figure 3(b). Here nbits = 16, es = 3. The value
of the posit can be derived from Eq. 2. A more intuitive decoding that works
for positive values is to raise 22

es
to the power of R and multiply it by 2E and

1+F . Posits representing negative values can be decoded by negating them (2’s
complement) and applying the same technique.

4 Evaluation

Given that bandwidth improvements have a significant impact on training per-
formance, we evaluated the FP16 formats for storing parameters during learning.
We modified the training framework, such that it can take any new number for-
mat (of any bitwidth) and train, provided the conversion functions to and from
IEEE32 [10]. Specifically, the data type of the structure that stores and commu-
nicates data was changed to FP16 and so that it applied to all weights, biases,
activations and gradients. A conversion to IEEE32 from FP16 occurs just before
the computation and a conversion to FP16 from IEEE32 happens soon after.
This configuration was used for forward/backward passes and weight updates
and allows for maximum bandwidth savings for any 16-bit format. The same
setup was used both for training and validation.

Our goal with these experiments was to observe how each format will per-
form in training on its own to identify format characteristics that are most
suitable for training. Therefore, we did not use precision enhancement tech-
niques such as maintaining a master copy of weights. The original IEEE32 hyper-
parameters (i.e. batch size, training epochs, learning rates, momentum, weight
decay) were unchanged for the FP16 experiments. This approach is consistent
with current literature. For reproducibility, we fixed the random seed and did
not use cuDNN. Tests were conducted using publicly available models. To min-
imize conversion overhead between the formats and FP32, we also implemented
some BLAS routines. CNN datasets used are MNIST, FASHION-MNIST, CI-
FAR10, CIFAR100 [13], and ILSVRC 2012 [21]; the networks used are LeNet,
cuda-convnet, NIN [14], SqueezeNet [9], and AlexNet. All are publicly available,
or provided with the deep learning framework.

5 Results

Table 1 shows a summary of the CNN benchmark configurations that were used
for our experiments and accuracy results in the fourth block of rows for each
FP16 format. The results indicate that although all of the formats perform well
for the smallest models and datasets, some formats begin to struggle as the
benchmark complexity increases. The IEEE-type format that delivers the best
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Model LeNet LeNet convnet NIN Squeeze Alex Res Trans. Trans.
-Net -Net -Net18 Base Base

Dataset MNIST FMNIST CIFAR CIFAR Image Image Image 30K IWSLT
10 100 -Net -Net -Net 14

Batch Size 64 64 100 128 32 256 32 128 128
Iterations 10K 10K 60K 120 170 450 800 2270 30780
IEEE32 98.70% 89.10% 78.70% 56.06% 56.40% 57.04% 67.88% 35.42 23.54

bfloat16 98.24% 89.08% 76.02% 0.96% 0.32% 52.40% 61.88% 35.18 21.68
DLFloat 98.66% 89.38% 77.96% 45.48% 54.24% 46.56% 69.12% 35.49 9.43
IEEE16 98.70% 89.22% 73.02% NaN 0.00% 53.08% NaN 0 Error

IEEE16_6 98.72% 89.60% 78.56% 46.28% 54.72% 46.84% 68.00% 35.59 12.6
IEEE16_7 98.46% 89.54% 78.74% NaN 0.24% 9.96% 67.52% 35.16 9.46
posit16_1 98.72% 89.38% 9.76% 54.92% 50.80% 50.68% 0.00% 34.31 9.45
posit16_2 98.78% 89.36% 77.74% 53.92% 56.80% 53.60% 67.64% 35.18 24.97
posit16_3 98.66% 89.30% 79.72% 53.74% 56.48% 53.16% 67.60% 35.06 24.32

Table 1: Benchmark configuration, accuracy, BLEU score

accuracy across networks is IEEE16_6. DLFloat shows similar performance al-
though slightly inferior to IEEE16_6 possibly due to the absence of subnor-
mals. This clearly shows that the best configuration of bits for an IEEE 754
type format for CNN training is possibly IEEE16_6 with 6 bits of exponent
and 9 bits of fraction. The posit representations, especially posit16_2, perform
considerably better than any other format across all networks. It is closely fol-
lowed by posit16_3 in many cases and posit16_1 in some cases (for example
NIN/CIFAR100), despite posit16_1’s limited dynamic range.

Table 2 gives the dynamic ranges of all formats. Note that posit16_1’s dy-
namic range is smaller than all of the other formats except for IEEE16. Even
in that case, it is only marginally greater for values of smaller magnitude. How-
ever, formats with greater dynamic range such as bfloat16 do not perform as
well. This suggests that limited dynamic range is not the sole reason for the
failure of a format as it is often attributed to in the case of IEEE16. How-
ever, IEEE16 shows better performance than other float types in the case of
AlexNet/Imagenet, which highlights the challenges of developing a format that
can perform well across a wide range of networks and datasets.

Because neural networks are increasingly being used in application areas such
as language translation, we also tested these formats on the Transformer Base
Model for language translation from German to English. The last two columns
of Table 1 shows the BLEU score results from these experiments. All formats
perform well for the 30K dataset. However, for the IWSLT-14 dataset posit16_2
manages to perform as well as IEEE32, demonstrating again the versatility of
the posit formats.

Aside from accuracy, the FP16 formats also differ in their rounding modes.
Posits use saturation rounding (see Section 3.3) for values beyond their dynamic
range while floats underflow to 0 or overflow to infinity. We experimented with
changing the rounding mode to saturation rounding for float formats, as well as
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to underflow to 0 and overflow to infinity for posits, and performed the training.
Saturation rounding severely affected the accuracy of all the float formats. Due
to its larger dynamic range, underflows in posit16_3 are rare and therefore its
results remained unchanged. posit16_2’s results remained the same or improved
except in the case of Squeezenet. posit16_1 showed the most dramatic changes
in some cases due to its smaller dynamic range. This suggests that having the
posit distribution’s accuracy in the appropriate range of the learnt parameters
is more important than the choice of whether they saturate or underflow.

 

R
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10
log  (absolute IEEE32 value)

Fig. 4: RDA w.r.t IEEE32 of IEEE16_6 vs posit16_1

Maintaining a copy the weights at a higher precision (referred to as “mas-
ter“ weights) for weight updates is a technique used to improve the accuracy
for training with float formats [2, 17]. It works by updating 32-bit weights with
16-bit gradients and then converting them to 16-bit weights for use in the for-
ward and backward phases of the training. We implemented this technique for
the NIN/CIFAR100 benchmark and IEEE16 and bfloat16 formats. The NaN
result for IEEE16 did not change as the cause for it was activations overflowing
to infinity that were then being multiplied by zero. For bfloat16 the accuracy
improved to 47.86%. Given that this technique requires 3× more memory for
weights and that there are other formats that perform better without it, the
technique only adds additional work and is redundant.

6 Hardware Implications

All 16-bit floating point formats provide the same savings in memory consump-
tion. However, any performance gain they bring about is dampened by costs
associated with converting between the format and IEEE32 as well as their im-
plementation on hardware when employed in mixed-precision training. To under-
stand these hardware associated costs we implemented the conversion routines
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on an FPGA platform. Table 3 presents these results on a Xilinx U250 Alveo
Data Center Accelerator Card with synthesis done in Vivado 2018.2. Looking at
the depth, i.e., the number of cycles required for one conversion, bfloat16 is the
most efficient because it only involves rounding and right shifting to convert an
IEEE32 value to a bfloat16 value, and a left shift of a bfloat16 by 16 bits to get
to the IEEE32 value. DLFloats, which eliminate subnormals as well as simplify
rounding, follows bfloat16. Owing to the variable length regime R, the posit
formats have a slightly higher depth than these two formats. Among the posit
formats there is only a slight difference in depths. However, the IEEE 754 style
formats are the most expensive for conversion owing to the more complicated
conversion logic (subnormals, rounding modes, etc.).

7 Accuracy Analysis

Given the numerous differences between the floating-point formats, we set out to
identify which of their characteristics are responsible for better accuracy. Due to
the many complexities of the training process, we selected the NIN/CIFAR100
benchmark for the analysis as it is the simplest with discerning accuracy re-
sults. To further make our analysis concise, we picked the best performing posit
and float formats, which are posit16_1 and IEEE16_6 respectively. For both
formats, we sampled activations, weights, biases and gradients during training
and analyzed each value’s RDA as compared to the RDA of its corresponding
value when training with IEEE32. In effect, we treat the IEEE32 value as the
precise value. The RDA between an exact value x and its approximated value x̂
is obtained from the following equation [5];

RDA(x, x̂) = log10(|x|/|x− x̂|)
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We measure the RDA when x ̸= 0. When x = x̂, the RDA is ∞. Because
we treat the IEEE32 values as the reference, we measure how accurate each of
these formats are when representing IEEE32 values.

7.1 Accuracy differences between posit16_1 and IEEE16_6

Figure 4 shows the RDA of both formats w.r.t. IEEE32. Note that although
posit16_1 has a smaller dynamic range than IEEE16_6, in the range of approx-
imately [−1.2, 1.2] (i.e. 1/16 ≤ |x| ≤ 16) posits have superior accuracy. Figure
5 shows the distribution of values that exactly represent the IEEE32 value, i.e.
are infinitely accurate; posit16_1 shows a normal distribution around 0 while
IEEE16_6 has a mostly uniform distribution. These figures show that posit16_1
has accuracy superior to IEEE16_6 near zero, but the probability of superior
accuracy decreases as the magnitude of the value moves away from 0.

7.2 Loss behavior

The NIN training network contains layers of type convolution, pooling, relu,
dropout and softmax (with loss) at one end. It trains for a total of 120K itera-
tions. Figure 6 gives the training loss from the softmax with loss function E for
the two formats (and IEEE32). Posit16_1’s loss closely follows that of IEEE32
while IEEE16_6’s loss actually increases despite still converging. Therefore, we
start the analysis by looking at the end of the network which is the loss activa-
tion and gradient values at the last layer. Figures 7 and 8 show these activations
and gradients respectively near the end of training. The median loss activation
accuracy in the case of posit16_1 is greater than that of IEEE16_6 despite
most of the values falling outside of posit16_1’s optimal accuracy range. Even
in the case of gradients, the median value of posit16_1 is still slightly better even
though the gradients have more values of even smaller magnitude. Note that in
both these graphs, posit16_1’s accuracy for smaller values is substantially lower
as compared to that of IEEE16_6, due to its limited dynamic range, suggesting
that the accuracy of the values with smaller magnitude has a lesser impact on
the training accuracy.

7.3 Effect on Weights

The accuracy of loss gradients is affected by the weights and vice-versa. There-
fore, we shift our attention to the weight layer before the loss (convolution layer
cccp6 ) in the network. Figure 9 plots the accuracy of weight gradients in this
layer at the end of the training. These weight gradient values are computed
from the loss gradients and similarly although most values lie outside the opti-
mal posit accuracy range, posits still retain accuracy similar to IEEE16_6 for
weight gradients too. However, looking at the accuracy of weights at the end of
the training in Figure 10, posits clearly have better median accuracy. Figure 11
shows the distribution of the weight values in this layer at the end of training.



12 H. De Silva et al.

In combination with Figures 10 and 4 it is clear that a greater proportion of
weight values which are also larger in magnitude fall inside posit16_1’s optimal
accuracy range. The accuracy of weights in all other layers in the network also
showed similar behavior resulting in all of them having higher median accuracy
for posits when compared to IEEE16_6.

7.4 Posit Accuracy in Training

The accuracy of learned weights has a significant impact on the training process
as all other values (i.e. activations, gradients, loss) are computed from them.
Therefore, the higher posit accuracy for weights most likely transcends to other
values such as gradients which often may not fall into the posit optimal accuracy
range, as seen from Figures 7, 8 and 9. This in turn results in improved overall
training accuracy for posits. It is also worthwhile to note that the range of the
weight values stabilizes early on in the training, in this case within the first
500 iterations. This also helps to lessen the potential impact of deficiencies in
accuracy at the beginning of the training.
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Fig. 6: NIN/CIFAR100 Training Loss

In this benchmark, the weight values are less than 1 in magnitude. There-
fore, the posit accuracy distribution gives more accuracy to the weight values
with larger magnitude and less accuracy to the smaller ones. This in turn gives
larger activations more accuracy, which has a cascading effect through the net-
work. The larger weights are also less effected by the errors in the small gradient
values, as is evident in the plots. Moreover, the larger the gradient value, the
more accuracy it will have in the case of posits. We believe that the same prin-
ciple, which is to improve the accuracy of weight values by giving them more
accuracy in the representation, is behind the idea of maintaining a master copy
of weights at higher precision in CNN training. However, our analysis suggests
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Format Min. Exp. Max. Exp. Min. Value Max. Val(Normal) (Normal)

IEEE32 −149
127

1.4×10−45

3.4×1038
(−126) (1.8×10−38)

bfloat16 −133
127

9.2×10−41

3.4×1038
(−126) (1.8×10−38)

DLFloat −31 32 2.3×10−10 8.6×109

IEEE16 −24
15

6.0×10−8

6.6×104
(−14) (6.1×10−5)

IEEE16_6 −39
31

1.8×10−12

4.3×109
(−30) (9.3×10−10)

IEEE16_7 −70
63

8.5×10−22

1.8×1019
(−62) (2.2×10−19)

posit16_1 −28 28 3.7×10−9 2.7×108

posit16_2 −56 56 1.4×10−17 7.2×1016

posit16_3 −112 112 1.9×10−34 5.2×1033

Table 2: Exponent and dynamic ranges of the formats

that greater accuracy is needed mostly for the larger magnitude weights that are
more prevalent during training.

R
D

A

                       log  (absolute IEEE32 value)
10

Fig. 10: Accuracy - Weights

This hypothesis also rings true for other benchmarks that were tested. Figures
13 and 12 show the corresponding weight distributions and accuracy at the third
quartile for the best performing float and posit formats at the end of training
for the SqueezeNet/ImageNet and AlexNet/ImageNet benchmarks. We selected
the third quartile in this case to show the accuracy close to the peak of the
weight distribution. Note that in these cases too, posits retain superior accuracy
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for weights, although in the case with AlexNet/ImageNet when the peak of the
weight distribution (i.e. the highest frequency of weights) is more centered, the
difference is less pronounced. In such cases, the weight values tend to fall outside
of the optimal accuracy range of posits, and float formats with uniform accuracy
distributions such as IEEE16 can achieve comparable training results.

With these observations, we deduce that the larger weight values which also
occur more frequently inside the optimal accuracy range of posits, most likely
contributes to posits’ superior accuracy result of this benchmark.
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8 Shifting the Accuracy Peak

Based on our analysis, the accuracy peak of posits can be shifted into the de-
sirable range of the large magnitude and high frequency weights to improve
training accuracy. This technique can only be applied with posits, since float
formats have uniform accuracy distributions (Figure 1) and no peak. Therefore,
posits have the versatility to combat both dynamic range and precision issues in
training while float formats can only overcome dynamic range problems. Because
the bias for shifting can be determined offline after training a few iterations, this
technique adds no additional overhead except for shifting the weights.

The peak of posit16_1’s accuracy lies in the range [1/4, 4] ([−0.6, 0.6] in Fig-
ure 4). Figure 11 shows the value distribution of the layer cccp6 where the larger
weights begin around −0.6 on the x-axis. Based on this, we scaled posit16_1
by 1/4 to shift its peak accuracy by log10(1/4) ≈ −0.6. This improves the CI-
FAR/NIN accuracy to 55.58%, and increased the median value of weights of
the layer from −0.1790 to −0.0747. Using the same technique we were able to
drastically improve cuda-convnet/CIFAR10’s accuracy for posit16_1 to 79.28%
by using a bias of 1/64. Figure 14 shows the IEEE32 weights (which we consider
to be the actual weight value) and the difference in the accuracy of the posit
weights in the last layer at the end of the training before and after the accuracy
peak is shifted for this benchmark.

In our experience, because not all weight layers can be analyzed to figure
out a bias value, the last weight layer of the network, which is also closest
to the loss, can be used as a heuristic for this purpose. The distribution of
the significant weights, once identified, can explain the differences of the posit
results with different es values and also help pick which posit format and bias to
use for training. For example, the larger the range of the distribution of values,
the higher the es value that shows better performance for it. The bias can be
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FP16 Format Conversion LUT LUTMem Reg DSP Depth

bfloat16 F 0 0 0 0 1
B 3 0 0 0 1

DLFloat F 27 0 18 0 2
B 63 0 43 0 3

IEEE16 F 223 1 469 3 18
B 325 0 278 3 12

IEEE16_6 F 217 1 462 3 18
B 331 0 277 3 12

IEEE16_7 F 216 1 457 3 18
B 341 0 278 3 12

posit16_1 F 115 0 84 0 3
B 703 0 318 0 5

posit16_2 F 112 0 83 0 3
B 723 0 316 0 5

posit16_3 F 118 0 84 0 3
B 596 0 314 0 5

Table 3: Conversion in Hardware. ‘F’ is the conversion from the format to
IEEE32, and ‘B’ is conversion from IEEE32 to the format. BRAM and DRAM
are 0, and Initial Interval is 1, for all formats.

identified based on the values of the weights close to the peaks and calculating
the distance from it to the accuracy peak. Other posit studies for training have
suggested user layer-wise scaling, a technique also used with floats, to improve
accuracy for low-precision training [15]. This can be costly because the scale
needs to be calculated throughout the training for each type of parameter in
each layer. Instead, our results indicate that for 16-bit posit training, looking at
the weight distribution to calculate a bias and other posit parameters can suffice
thus creating minimum overhead.

9 Discussion and Conclusion

Traditional FP16 formats studied so far for CNN training all have uniform ac-
curacy distributions and differ mostly on their bit configuration. There is no
consensus in the community as to which bit configuration is optimal. This has
led to various silo works studying the effectiveness of each format and devel-
oping techniques to mitigate their individual shortcomings. However, there is
no clear evidence for why those formats are the best for training versus other
formats. While it is difficult to generalize numerical behavior for all neural net-
works, we believe our work provides useful insights through uniform (controlled)
experiments. In summary:

– The IEEE 754 standard 16-bit format is inferior for out-of-the-box training
of neural networks compared to the other float types.
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– Non-uniform accuracy formats such as posits provide broader versatility for
neural network training.

– We showed that analyzing the dynamic range and precision as they relate
to the distribution of the weights is a useful indicator for selecting the FP16
format to use.

– We showed that the shifting the accuracy peak of posits leads to better
results.

Although newer FP16 formats should still work in tandem with other im-
provements such as efficient training techniques and hyper parameter optimiza-
tion, our goal in this work was to isolate the contribution of each format. Thus,
we provided an unbiased evaluation of all existing 16-bit formats for training
CNNs on a set of benchmarks of varying size in terms of accuracy and hardware
performance. With our analysis we deduced that the superior accuracy of posits
was due to the non-uniform error distribution which allows larger weights to have
more accuracy. With this insight, we proposed an accuracy saving technique that
shifts the peak posit accuracy into the desirable range. Best of all, it has no ad-
ditional overhead. In this work we advocate for the design of 16-bit formats
based on understanding the accuracy requirements of neural network training.
We hope that it will guide the exploration of innovative non-traditional 16-bit,
or even shorter, formats.
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