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Abstract—FPGAs have become emerging computing infrastructures for
accelerating applications in datacenters. Meanwhile, high-level synthesis
(HLS) tools have been proposed to ease the programming of FPGAs.
Even with HLS, irregular data-intensive applications require explicit
optimizations, among which multiple processing elements (PEs) with each
owning a private BRAM-based buffer are usually adopted to process
multiple data per cycle. Data routing, which dynamically dispatches
multiple data to designated PEs, avoids data replication in buffers
compared to statically assigning data to PEs, hence saving BRAM
usage. However, the workload imbalance among PEs vastly diminishes
performance when processing skew datasets. In this paper, we propose a
skew-oblivious data routing architecture that allocates secondary PEs and
schedules them to share the workload of the overloaded PEs at run-time.
In addition, we integrate the proposed architecture into a framework
called Ditto to minimize the development efforts for applications that
require skew handling. We evaluate Ditto on five commonly used ap-
plications: histogram building, data partitioning, pagerank, heavy hitter
detection and hyperloglog. The results demonstrate that the generated
implementations are robust to skew datasets and outperform the state-
of-the-art designs in both throughput and BRAM usage efficiency.

I. INTRODUCTION

Benefiting from high performance, energy efficiency and recon-
figurability, field-programmable gate arrays (FPGAs) have attracted
increased attention for accelerating datacenter applications. Mean-
while, in order to provide better programmability for FPGA-based
application acceleration, both industry and academia are actively
developing high-level synthesis (HLS) tools, which can transform
kernels written in high-level description languages to efficient FPGA
accelerators without involving tedious and error-prone hardware
description language (HDL) based programming [1].

Still, for irregular data-intensive applications (e.g., database, graph
processing, and in-network processing applications [2]), HLS requires
a number of explicit optimizations [3]–[6], which include two im-
portant ones: 1) on-chip data buffering with BRAMs to alleviate the
poor locality caused by irregular memory access patterns; 2) multiple
processing elements (PEs) with each owing a private buffer to process
multiple data per cycle. Subsequently, multiple unordered data needs
to be dispatched to multiple PEs in one cycle for a balanced pipeline.
A static dispatching scheme (e.g., assigning the i-th data to the i-th
PE) is simple for implementation but requires each PE to keep a
replica of the buffered data [7]. In contrast, dynamically dispatching
data to their designated PEs (termed as data routing) enables PE
to buffer only a partial range of data, hence saving BRAM usage.
Given that HLS-based data routing has shown superior efficiency on
graph processing [8], [9] and database [10] problems, we believe it
is applicable for a class of irregular data-intensive applications.

Despite the effectiveness of data routing, a largely overlooked
problem is the workload imbalance among PEs introduced by data
skew. Since PEs process distinctive ranges of data, skew datasets
may cause some PEs overloaded or underutilized, which essentially
diminishes performance. The challenge of skew handling for data-
intensive applications is that the lightweight computation (e.g., the
calculation with integers finished within one cycle) cannot tolerate

any heavy workload rebalancing operations such as atomic-based
work-stealing [11]. Besides, skew handling needs to adapt to very
different data distributions in a robust manner and requires sizable
hardware expertise in general; therefore, the other challenge is to
minimize the manual development efforts for developers. In order to
address the challenges mentioned above, we propose a skew-oblivious
data routing solution with the following key contributions:
• We propose an adaptive skew-oblivious data routing architecture,

which allocates secondary PEs that own private buffers and dy-
namically schedules them to help overloaded PEs at run-time.

• We integrate the proposed architecture into a framework called
Ditto1, which takes the high-level specification of data-intensive
applications as input and outputs the most efficient implementation
for the given dataset.

• We evaluate Ditto on five commonly used data-intensive applica-
tions. Ditto delivers up to 2.4× performance speedup and 32×
BRAM usage reduction over state-of-the-art designs on uniform
datasets, and outperforms baseline by 12× on skew datasets.

II. MOTIVATION

This section illustrates our motivation of skew handling for data
routing with an example – histogram building (HISTO).

Listing 1 shows the algorithm of HISTO. For each tuple, the desti-
nation bin is calculated through a hash function, and the count of the
current bin is correspondingly increased by one. When implementing
HISTO on FPGAs, bins are buffered in on-chip buffers constructed
by BRAMs to hide the long latency of bin indexing by the hash value,
and multiple PEs are adopted to fully utilize the memory bandwidth.
In order to provide concurrent read/write accesses [3], instead of
providing a shared buffer pool for all PEs, buffers are partitioned to
make every PE own a private buffer. Assuming the memory interface
reads eight tuples per cycle and a PE processes one tuple every two
cycles (one cycle for reading the value from and one cycle for writing
the result to the buffer), the design requires 16 PEs with 16 buffers.

1 for(i = 0; i < num_tuples; i ++){
2 struct {int key, value;} tuple = relation[i];
3 int idx = hash(tuple.key);
4 Bin[idx] += 1;
5 }

Listing 1: The code snippet of histogram building.

A. Benefits of Data Routing

There are two bandwidth-optimal schemes for dispatching multiple
unordered tuples to multiple PEs. Fig. 1a shows the HISTO with
32 bins from existing HLS-based works [3], [12], where tuples are
statically assigned to PEs and bins are replicated in buffers. Fig. 1b
depicts the data routing based HISTO with 32 bins, where buffers
keep distinctive bins and tuples are routed to designated PEs.

The benefit of data routing is twofold. Firstly, by omitting bin
replication, data routing based HISTO saves BRAM usage compared
to existing HISTO [12], which is proportional to the number of PEs.
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Fig. 1: Designs of HLS-based HISTO with 16 PEs and 32 bins.

Secondly, existing HISTO requires the intervention of CPU side to
aggregate bins for final results; whereas, data routing based HISTO
resolves the coordination of PEs and outputs final bins directly
without further orchestration.

B. Workload Imbalance of Data Routing on Skew Datasets

As data routing is data-dependent, skew datasets potentially cause
workload imbalance among PEs. To conduct quantitative analysis, we
implement HISTO with 16 PEs on our hardware platform (shown in
Section VI-A1) and profile the execution with 26 million tuples (8-
byte) under the Zipf distribution [13]. Fig. 2a shows the heatmap
of the workload (number of tuples) distribution of 16 PEs, which
is normalized to that of the uniformly distributed dataset (α = 0).
Fig. 2b shows the throughput of HISTO with varying the Zipf factor.

As shown in Fig. 2a, there is a clear workload imbalance among
PEs (red ones are overloaded while green ones are underutilized).
Significant Zipf factor results in severe workload imbalance. Besides,
overloaded PEs vary across datasets with different Zipf factors. As a
result, as shown in Fig. 2b, the throughput of HISTO downgrades
significantly with increased Zipf factors. The performance of the
extreme skew dataset (α = 3) has slowed down to one-sixteenth
of that of the uniform dataset since almost all tuples go to the same
PE. As skew datasets are usual inputs for data-intensive applications
in the real world, the workload imbalance problem needs to be well
addressed to achieve high performance.
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(a) Workload distribution of 16 PEs.
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Fig. 2: Experimental results of HISTO on Zipf datasets.

III. CHALLENGES AND SOLUTIONS

While the load-balancing problem has been studied extensively, the
data skew introduces unique challenges on data intensive-applications
with HLS. In this section, we discuss the challenges and our solutions.
Challenge 1: How to handle skew with lightweight computation?
Data-intensive applications usually have lightweight computation, and
the throughput of PEs is bounded by reading data from and writing
results to the corresponding buffers [3]. As a result, underutilized
PEs stealing the workload from the overloaded PEs and writing the
results back to their buffers after the calculation will not payoff [14].
In addition, heavy operations (e.g., atomic operation) will stall the
processing pipeline, resulting in new system bottlenecks [11].
Challenge 2: How to minimize manual efforts for skew handling?
Skew handling is a complex operation that needs careful hardware
optimization. On the other hand, different levels of data skew
require architectures with different skew handling capacities. To not

overshadow the productivity of HLS-based development, data skew
should be handled with good programmability.
Solution to challenge 1: A skew-oblivious data routing architecture.
As the bottleneck of a PE’s throughput relies on the number of ports
of the buffer, the principle of skew-oblivious data routing is equivalent
to “increasing the number of buffer ports for overloaded PEs”. Instead
of having a fixed number of PEs, our solution allocates secondary
PEs that own private buffers and dynamically schedules them to
share the workload of the overloaded PEs. While more secondary
PEs provide more buffer ports, they cost more BRAM resources;
hence, the solution introduces a trade-off between the BRAM usage
and the skew handling capacity.
Solution to challenge 2: A skew-oblivious framework – Ditto.
We propose Ditto, a framework integrated with the proposed skew-
oblivious data routing architecture to ease skew handling for data-
intensive applications. With Ditto, developers only need to write
high-level specifications without touching hardware design details,
and Ditto generates the most suitable hardware implementation that
handles data skew in a given dataset and optimizes the BRAM usage.

IV. SKEW-OBLIVIOUS DATA ROUTING ARCHITECTURE

This section describes the proposed skew-oblivious data routing
architecture, which resolves the workload imbalance problem caused
by skew datasets of the previous HLS-based data routing logic [8].

A. Architecture Overview

Fig. 3 shows the high-level architectural overview of our proposed
skew-oblivious data routing architecture. It is composed of three types
of PEs, which are the preprocessing PEs (PrePE), the primary PEs
(PriPE) and the secondary PEs (SecPE). The logic of three kinds
of PEs performs application-specific computations. The N PrePEs
prepare the tuples with the format of 〈dst, value〉, where the dst is
the index of the buffered data and the value is to calculate with the
buffered data. The M PriPEs and the X SecPEs are all accompanied
with buffers and have the same logic for tuple processing. They have
been assigned unique identifies (IDs): 0 to M − 1 for PriPEs and
M to M + X − 1 for SecPEs. A PriPE processes a partial range
of the input tuples, while a SecPE processes the same range of the
tuples with the PriPE it is scheduled to. Both the PriPEs and SecPEs
become the designated PEs, and the data routing is responsible for
dispatching the tuples to their designated PEs.

Memory Interface

M
e
m

o
ry

 A
c
c
e
s
s
 E

n
g
in

e

PrePE

#0

PrePE

#1

PrePE

#N-1

…

C
o
m

b
in

e
r

…

PriPE#0

Buffer

PriPE

#M-1
Buffer

M
e
m

o
ry

 A
c
c
e
s
s
 E

n
g
in

e

Runtime Profiler

Mapper

#0

Mapper

#1

Mapper

#N-1

SecPE

#M
Buffer

SecPE

#M+X-1
Buffer

…

M
e
rg

e
r

…

Filter

#0

Decoder

#0

Filter

#M-1

Decoder

#M-1

Filter

#M

Decoder

#M

Filter

#M+X-1

Decoder

#M+X-1

…
…

Data Routing

Fig. 3: The skew-oblivious data routing architecture. Modules in solid
grey color are enqueued and dequeued dynamically.

B. Secondary PE scheduling

In order to schedule the X SecPEs to help the overloaded PriPEs,
the runtime profiler analyzes the workload distribution of PriPEs
during the runtime to ascertain the overloaded PriPEs and then



generates the SecPE scheduling plan for the mappers. According to
the scheduling plan, the mappers redirect the tuples of the overloaded
PriPEs to available SecPEs. By the end of the processing, the results
of PriPEs and SecPEs are merged by the merger module according to
the SecPE scheduling plan. For non-decomposable applications such
as data partitioning, PrePEs and SecPEs output results to their own
memory space of the global memory.

A static SecPE scheduling plan cannot handle evolving data skew
since the workload distribution varies during the runtime, as shown in
Fig. 2a. In order to accommodate evolving datasets, the architecture
reschedules SecPEs without interrupting the execution of PriPEs.
Once the runtime profiler ascertains workload distribution changed,
it informs SecPEs and mappers and exits itself. The mappers will
prevent the tuples from being routed to SecPEs. The SecPEs exit the
execution after all the tuples in the channels whose upstream is the
data routing logic are consumed. The merger merges the intermediate
results in the global memory with the results of SecPEs according
to the SecPE scheduling plan. After that, the CPU side enqueues
the runtime profiler and SecPEs again; therefore, the SecPEs will be
scheduled again according to the changed workload distribution.

C. Design Details

1) Data Routing Logic: The data routing dispatches N tuples
generated by the PrePEs to destination PEs per cycle. We adopt
the design from [8] and simplify it into three modules for resource
efficiency: the combiner, the decoder and the filter. Since a tuple
can be processed by any destination PE, the combiner gathers N
tuples together with their destination PE IDs and duplicates them for
M +X datapaths each owned by a destination PE. The decoder and
the filter extract tuples to be processed by the current destination PE.
By comparing tuples’ destination PE IDs with the current PE ID, the
decoder generates an N bits mask code, which marks the tuples to
be processed. It then outputs the positions and the number of tuples
to be processed according to a preset table with the mask code as
input. The filter fetches the tuples to be processed according to the
decoded information. Multiple concurrent kernels are used for the
asynchronous execution of filters. This method resolves the run-time
data dependency and enables high throughput [8].

2) Mapper: The mappers execute the SecPE scheduling plan by
mapping the PriPE IDs to the designated SecPE IDs to redirect
the workload of overloaded PriPEs to SecPEs. The map scheme
is the scheduling plan of SecPEs. Each mapper maintains a two-
dimensional mapping table with M rows (for M PriPEs) and X +1
columns and a one-dimensional counter array with M entries. The
X+1 entries could accommodate a PriPE ID and all the schedulable
SecPEs IDs (X). The counter indicates the number of available PEs
from the left side of the row and is initialized as one. The mapping
table is initially filled with the PriPE ID and updated after the mapper
receives the SecPE scheduling plan. Fig. 4a shows an initial mapping
table and the counter array with four PriPEs and three SecPEs.
Mapping table updating. The scheduling plan from the runtime
profiler contains the array with “SecPE ID → PriPE ID” pairs. The
mappers update only one pair to the mapping table per cycle for better
timing. For a pair, the mappers write SecPE ID to the next position
of the last available PE ID of the row by using the counter value
as the write index and increase the counter by one. Fig. 4b depicts
the updated mapping table with the example SecPE scheduling plan.
The SecPE 4 and SecPE 5 are written to the indices one and two of
row 2 which is for PriPE 2 in two cycles, and the final counter is
increased to three. The SecPE 6 is written to the second entry of row
0 which is for PriPE 0, with the counter increased by one.
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Fig. 4: The mapping table updating and the mapping sequence for
PriPEs, with four PriPEs and three SecPEs.

Workload redirecting. The mappers redirect the destination PE ID
by looking up the mapping table in a round-robin manner with
the counter indicating the boundary. Fig. 4c shows the mapping
sequences. For example, the tuples with PE ID of 0 will go to SecPE
6 in odd cycles, and the tuples with PE ID of 2 will go to PriPE 2,
SecPE 4, and SecPE 5 in a round-robin manner.

3) Runtime Profiler: The runtime profiler performs two operations:
1) generating the SecPE scheduling plan by monitoring the workload
distribution among PriPEs; 2) informing the system to reschedule
SecPEs if the workload distribution has changed.
SecPE Scheduling plan generation. The runtime profiler receives
N PriPE IDs from the mappers in one cycle with N independent
hist instances which count the number of tuples processed by each
PriPE. After a certain number of profiling cycles, it terminates the
workload counting and merges the N partial results into a global
histogram which indicates the workload distribution among PriPEs.
Fig. 5 shows an example with the profiling cycles of 256. The runtime
profiler assigns a SecPE to the PriPE whose workload is maximal
and recalculates the workload distribution with assuming the original
workload is evenly shared with the attached SecPEs. This process
is repeated until all SecPEs are scheduled. In the example shown
in Fig. 5, the PriPE 2 has the maximal workload for the first two
iterations, and hence its workload is divided to one-third because of
the involvement of 2 SecPEs. The final scheduling plan of X SecPEs
is recorded through an array with X entries and transferred to the
mappers and the merger. Since scheduling plan generation is not on
the critical path of the overall execution pipeline, we make it serially
executed to reduce the resource consumption.
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Fig. 5: The generation process of SecPE scheduling plan, with four
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Workload distribution monitoring. The runtime profiler also mon-
itors the system throughput to determine SecPEs rescheduling. On
the one hand, it keeps receiving the number of tuples processed from
the mappers. On the other hand, it maintains a local counter as a
clock tick, which increases one per cycle. The system throughput is
calculated by the incremental number of processed tuples in a certain
number of clock ticks. Once the system throughput downgrades to
the predefined threshold, which means the workload distribution has
changed, it informs the mappers and SecPEs and exits itself. The
predefined threshold can be set to zero to stop the SecPE rescheduling
if the time interval of workload distribution changing is smaller than
kernel dequeueing and enqueueing overhead.

4) Other Optimizations: The architecture also adopts other HLS
optimizations [3]. Firstly, the memory access engine coalesces mem-
ory requests and accesses the global memory in a burst manner for
high memory bandwidth utilization. Secondly, the modules of the
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design are connected with channels and pipelined for high efficiency.

V. THE DITTO FRAMEWORK

In this section, we introduce our Ditto framework, which is
integrated with the skew-oblivious data routing architecture to reduce
manual efforts of skew handling for data-intensive applications.

A. Overview of Ditto

As shown in Fig. 6, the workflow with Ditto is composed of
two phases: implementation generation and implementation selection.
First, the developers describe the high-level application specification
with the provided programming interface and set the parameters,
including the data type of the tuples and data width of the mem-
ory interface. Then, together with the skew-oblivious data routing
architecture template, the system automatically generates a set of
synthesizable codes which have different numbers of SecPEs. Note
that the system is currently built with Intel’s OpenCL tool-chain [15]
to generate the bitstreams, but it can be migrated to the Xilinx
OpenCL tool-chain as well. Next, given the dataset by the developer,
the system evaluates the data skew in the dataset to select the most
suitable implementation that could save the BRAM usage without
significantly compromising the performance.

B. Programming Interface

We implement the proposed skew-oblivious data routing architec-
ture as a hardware architecture template in the form of an HLS library.
The template provides inline functions to specify the processing
logic of PEs. Listing 2 demonstrates the high-level specification
of histogram building (in the red rectangles). The PrePEs read the
tuples from the global memory by the provided channel (line 4). The
developers then assign the rule of data routing that the destination PE
ID of the tuple is formed by the four least significant bits of the key
(line 5). Tuples, together with their destination PE IDs, are written to
the downstream channel for data routing (line 6). PriPEs and SecPEs
receive the tuples from the data routing (line 13) and build the partial
histograms in the local buffer (lines 14 to 15).

1 __attribute__(task)
2 __kernel void PrePE (cl_channel channel){
3 while (true){
4 tuple = channel.read();
5 dst = tuple.key & 0xf;
6 channel.write(tuple, dst);
7 }
8 //Other logic provided by the template
9 }

10 __attribute__(task)
11 __kernel void PriPEandSecPE (cl_channel channel){
12 while (true){
13 tuple = channel.read();
14 idx = HASH (tuple.key);
15 hist[idx] ++;
16 }
17 //Other logic provided by the template
18 }

Listing 2: High-level specification of histogram building.

C. System Generation

With the high-level specification of the application from devel-
opers, the system firstly tunes the numbers of PriPEs and PrePEs
of the template to balance the pipeline and then generates a set of
synthesizable codes with varying the number of SecPEs.

The numbers of PriPEs and PrePEs are tuned to form a balanced
pipeline and satiate the memory bandwidth of the platform. The
logic programmed by developers will be synthesized by the HLS
tool to get the estimated initiation interval (II) [15] of PrePEs and
PriPEs: IIPrePE and IIPriPE, respectively. Suppose the data width of the
memory interface is Wmem, and the data width of the tuple is Wtuple.
The numbers of PrePEs (NPrePE) and PriPEs (NPriPE) are calculated by
Equation 1. Subsequently, the system tunes data routing by invoking
different sets of codes that have different routing entries.

NPrePE

IIPrePE
=
NPriPE

IIPriPE
=
Wmem

Wtuple
(1)

The system then generates M sets of codes with the number of
SecPEs ranging from 0 to M − 1, which trades off the capacity
of skew handling against the BRAM usage. Assuming the available
BRAM size for buffering data is C, the maximal size of buffered
distinctive data is M

(M+X)
× C with X SecPEs. When there is no

SecPEs (X = 0), the implementation could use all the capacity, C,
to buffer distinctive data. The upper bound of X is M − 1 since
the implementation with M − 1 SecPEs could handle the worst case
where all data go to the same PriPE. In other words, the system could
buffer C

2
distinctive data at least.

D. Skew Analyzer

Given the generated hardware implementations, the skew analyzer
chooses the implementation with a suitable number of SecPEs
according to the skew level of the dataset.

For offline processing, the skew analyzer randomly samples a
certain number of data of the dataset to analyze the workload
distribution among PriPEs. The suitable number of SecPEs, X , is
calculated by Equation 2. The workloadPriPEi indicates the sampled
workload of the PriPE i. M is the total number of PriPEs, and T is the
tolerance factor indicating the performance compromise in terms of
percentages. This equation guarantees that the workload of a PriPE
after evenly shared with SecPEs is less than that of the uniformly
distributed dataset where every PriPE has the same workload; hence,
the processing is not bottlenecked by any PriPE. In addition, the
maximal X is M−1. The developer could also choose the number of
SecPEs manually to set a required buffer size for distinctive data, but
this will override the build-in implementation selection mechanism.

X =

M∑
i=1


∣∣∣∣∣M × workloadPriPEi∑M

i=1 workloadPriPEi

− T

∣∣∣∣∣
−M (2)

For online processing, as the dataset is a prior information,
the skew analyzer currently chooses the implementation with the
maximal number of SecPEs, M − 1, to accommodate any level of
data skew. There are a number of works on predicting the future input
of stream processing [16], which can be explored for choosing an
implementation that saves more BRAM usage for online processing.



TABLE I: Application details.
App. Description Algorithm details

HISTO Represents the distribution of numerical data with equi-width histograms
DP Separates a big dataset into many chunks with radix hash function
PR Scores the importance of websites by links with fixed-point data type
HLL Estimates the cardinality of the big datasets with murmur3 hash function
HHD Detects heavy hitters in the data streams with the count-min sketch

VI. EVALUATION

We evaluate Ditto on five commonly used applications. Specif-
ically, we compare Ditto with the state-of-the-art designs in Sec-
tion VI-B. As those implementations are designed mostly for uniform
datasets, we use inputs with uniform distributions for a fair compari-
son. In Section VI-C, we evaluate Ditto with inputs with varying data
skew while studying the effectiveness of our proposed technique. In
Section VI-D, we use a case of evolving dataset to demonstrate the
capability of Ditto in adapting to dynamic data skew.

A. Experimental Setup

1) Hardware Platform: Experiments are conducted on Intel’s PCIe
Programmable Acceleration Card (PAC) which is featured with an
Arria 10 GX FPGA and 2×4GB DDR4 memory. The FPGA device
has 1,150K logic elements, 65.7 Mb of on-chip memory and 3,036
digital signal processing (DSP) blocks. The development tool is the
Intel FPGA SDK for OpenCL, version 17.1.1.

2) Applications: Five representative datacenter applications from
database field, graph processing and in network processing are
evaluated, which are histogram building (HISTO), data partition-
ing (DP), pagerank (PR), hyperloglog (HLL), and heavy hitter
detection (HHD), detailed descriptions shown in Table I.

B. Comparison with State-of-the-art Designs on Uniform Datasets

Table II shows the comparison between system-generated imple-
mentations with state-of-the-art designs. We reproduce the results
from the open-source implementations (marked as Reproduced) while
collecting the results from original papers for those not opensourced
(marked as Original). It is noteworthy that PR from Chen et al. [8]
and HISTO from Jiang et al. [12] have around 800 and 200 lines of
kernel code, respectively, while Ditto requires only 22 and 6 lines,
respectively. We use the datasets described in corresponding papers,
which are mostly uniformly distributed except the dataset of HHD
has half of the tuples with the same key. The bandwidth is normalized
for a fair comparison except for Kara et al. [17] as their platform has
different random memory access performance.

The results show that the implementations with Ditto outperform
most of the existing implementations. Compared with HLS-based
ones, data routing resolves the run-time data dependency of DP [18]
and omits the CPU intervention of HISTO [12]. Performance of PR
is the same as Chen et al. [8] since both implementations adopt data
routing and directed graphs have near balanced workload distribution.
Compared with the RTL-based ones, our HHD outperforms work [19]
which only has one PE. Our HLL has similar performance with
work [20] as both designs fully utilize the available bandwidth. The
BRAM usage per PE of our implementation is significantly reduced
because of the avoidance of the data replication in buffers and the
reduction can reach up to 32×. This improvement delivers critical
benefits for the above data-intensive applications. Specifically, HISTO
achieves a finer-grained distribution, HLL obtains more accurate
estimation, and DP reaches a higher fan-out.

C. Evaluation on Static Data Skew

1) On Zipf dataset: We evaluate the robustness of implementations
with different numbers of SecPEs under the Zipf distribution [13] as

TABLE II: Ditto compared to the state-of-the-art designs in terms of
programming language (P.L.), throughput (Thro.), and BRAM usage
saving per PE (B.U.Saving).

App. Existing Works Source P.L. Thro. B.U.Saving

HISTO Jiang et al. [12] Reproduced HLS 1.2 × 32 ×

DP Wang et al. [18] Original HLS 2.4 × 16 ×
Kara et al. [17] Original RTL 1.2 × 8 ×

PR Chen et al. [8] Reproduced HLS 1.0 × 1 ×
Zhou et al. [21] Original RTL 1.8 × 1 ×

HLL Kulkami et al. [20] Original RTL 0.9 × 10 ×
HHD Tong et al. [19] Original RTL 1.6 × 1 ×

well as the implementation selection of Ditto. Besides, we compare
with the solution that simply increases the number of PriPEs. With
8-byte tuples, the system sets the number of PriPEs to 16 on our
platform. We let Ditto sample only 0.1% of the total dataset (256 *
100 data points sampled), which takes 0.047ms with a single thread
of Xeon Platinum 8180 CPU. As the trends observed are similar for
the five applications, we take the throughput of HLL as an instance,
as shown in Fig. 7. The ticks indicate the implementations chosen by
the system with T of 0.01 and the red line stands for its speedup over
the baseline which only has 16 PriPEs (16P). The resource utilization,
together with frequency, is shown in Table III. It is noteworthy the
runtime profiler module only costs 6% logic and 8% DSPs.

Based on the results, we have the following observations. Firstly,
implementations with more SecPEs are more robust to heavier data
skew and deliver larger speedup (up to 12× speedup on extreme data
skew). The “16P+15S” implementation is oblivious to any skew and
indicates that the upper bound of X is M − 1. Secondly, increasing
the number of PriPEs (32P) could not help the performance as the
PE overloading is not solved. Thirdly, Ditto could select a suitable
implementation that minimizes the BRAM usage without compro-
mising performance. Lastly, the resource consumption is growing up
with more SecPEs but not proportional due to the static resource
consumption of the built-in shell [15].
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Fig. 7: The throughput of HLL implementations with different
number of SecPEs over Zipf distributions.

2) On irregular graph structure: We then evaluate the generated
PR implementation of Ditto on undirected graphs. Fig. 8 shows the
performance comparison with the state-of-the-art design [8] on public
graphs [22] and synthetic graphs [8], where the graphs shown in the
x-axis are in ascending order by their degrees. The million traversed
edges per second (MTEPS) is used as the throughput metric. The
results show that the throughput of Ditto is significantly improved
and can be up to 7× of the existing solution. In addition, the speedup
grows up with a larger graph degree since more edges updating the
same vertex causes more severe data skew.
TABLE III: The resource utilization and frequency of HLL imple-
mentations with different number of SecPEs.

Implem. Frequency RAM Logic DSP
16P 246 MHz 597 (22%) 163,934 (38%) 403 (27%)
32P 191 MHz 1,868 (69%) 230,838 (60%) 729 (48%)
16P+1S 202 MHz 908 (33%) 184,826 (43%) 409 (27%)
16P+2S 180 MHz 1,021 (38%) 203,083 (48%) 575 (38%)
16P+4S 192 MHz 1,309 (48%) 212,856 (50%) 587 (39%)
16P+8S 196 MHz 1,374 (51%) 281,667 (66%) 616 (41%)
16P+15S 188 MHz 2,129 (78%) 230,095 (54%) 658 (43%)
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Fig. 8: The throughput comparison of PR on undirected graphs.
D. Evaluation on Evolving Data Skew

We evaluate the robustness of Ditto on evolving data skew by
emulating an online processing scenario with HISTO with 16P+15S
and 8-byte tuples. We set the Zipf factor to three and vary the seeds of
the dataset generator for generating different workload distributions.
The memory interface is used to simulate the 100 Gbps network
interface. Fig. 9 shows the throughput of HISTO with varying the
time interval of changing workload distribution.

The results show the following highlights. First of all, Ditto
consistently achieves better performance than the baseline which
does not have skew handling. Secondly, the throughput is able to
satiate the network bandwidth when the time interval is larger than
16 ms; whereas, it drops significantly for intervals between 16 ms
and 64 ns because the overhead of SecPE rescheduling leads SecPEs
underutilized. Lastly, the throughput increases to meet the bandwidth
again since the internal channels could accommodate short-term skew
distribution variances; meanwhile, the system stops rescheduling
SecPEs as the interval is smaller than the rescheduling overhead.

0

20

40

60

80

100

0

20

40

60

80

100

512
ms

256
ms

128
ms

64
ms

32
ms

16
ms

8
ms

4
ms

2
ms

1
ms

512
us

256
us

128
us

64
us

32
us

16
us

8
us

4
us

2
us

1
us

512
ns

256
ns

128
ns

64
ns

32
ns

16
ns

#
h

u
n

d
re

d
 t
im

e
s

T
h

ro
u

g
h

p
u

t 
(G

b
p
s
)

Time interval of workload distribution changing

w.o. skew handling peak network B.W. Ditto (with skew handling) rescheduling times

Fig. 9: The throughput comparison of HISTO with varying the time
interval of changing workload distribution.

VII. RELATED WORK

Load-balancing problem of FPGA-based designs has been studied
extensively. Ramanathan et al. [11] studied HLS-based work-stealing
with K-means algorithm as a case study, and the OpenCL atomic op-
eration is used for synchronization among PEs. Later, Yan et al. [23]
improved their performance by replacing the work-stealing with a
round-robin work distributor. Geng et al. [14] proposed an HDL-
based runtime workload balancing method for graph convolutional
networks. Those studies mainly focus on the problems where the
computation is the key performance bottleneck. In contrast, data-
intensive applications involve only lightweight computation and re-
quire multiple workloads dispatched in one cycle. Likewise, software-
based flexible skew handling methods for stream processing [24] are
too heavy to fit into cycle-level requirements.

There are quite some studies improving the performance of HLS-
based designs with static workload dispatching to PEs. Cong et al.
proposed [3] a composable microarchitecture to reduce the design
space and further integrated it into a framework to automate the entire
accelerator generation process. Thomas et al. introduced Fleet [4],
which duplicates the user’s processing logic to feed the units with
separate streams and drain their outputs. Wang et al. proposed
Melisa [25] to extend the MapReduce framework to OpenCL-based
FPGAs; nevertheless, the optimizations of underlying architecture are
largely overlooked. Cong et al. also presented buffer restructuring

approaches [5] to optimize the bandwidth utilization with HLS. In
this work, we have combined them into the memory access engine.

VIII. CONCLUSION

In this paper, we propose an HLS-based skew-oblivious data
routing architecture that solves the workload imbalance problem
caused by skew datasets of the original data routing. In order to
ease the skew handling for a class of data-intensive applications,
we further propose a framework, Ditto, which only requires high-
level application specification and generates an implementation that
saves BRAM usage and handles data skew. The five representative
applications implemented with our framework demonstrate robust
performance on skew datasets and outperform existing works in terms
of both throughput and BRAM usage. Our study also sheds light
that HLS could accomplish intricate hardware designs with careful
optimizations and deliver HDL-comparable performance.
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