
Observational Wear Leveling:
An Efficient Algorithm for Flash Memory Management

Chundong Wang and Weng-Fai Wong
School of Computing

National University of Singapore
Email: {wangc, wongwf}@comp.nus.edu.sg

ABSTRACT
In NAND flash memory, wear leveling is employed to evenly dis-
tribute program/erase bit flips so as to prevent overall chip failure
caused by excessive writes to certain hot spots of the chip. In this
paper, we analyze latest wear leveling algorithms, and propose Ob-
servational Wear Leveling (OWL). OWL considers the temporal
locality of write activities at runtime when blocks are allocated. It
also transfers data between blocks of different ages. From our ex-
periments, with minimal additional space and time overhead, OWL
can improve wear evenness by as much as 29.9% and 43.2% com-
pared to two state-of-the-art wear leveling algorithms, respectively.

Categories and Subject Descriptors
D.4.2 [Storage Management]: Secondary Storage

General Terms
Endurance, Measurement

Keywords
Flash Management, Wear Leveling

1. INTRODUCTION
The ferromagnetic hard disk drive (HDD) has been the defacto

storage device in last several decades. In recent years, flash-based
storage is becoming a viable alternative in embedded systems and
enterprise servers. Comparatively, flash memory has lower access
latency, is more shock-resistant, and consumes less power. How-
ever, the issue of write endurance continues to be a concern in the
large scale deployment of flash memory.

By its very nature, flash cells can only withstand a limited num-
ber of program/erasure flips, i.e., “writes”. There are two types of
flash memory, namely NOR and NAND flash. This paper focuses
on the latter one that is more prevalent. The unit of programming in
NAND flash is a page, whose size is 2KB or more [7]. By default,
a flash cell stores a logic ‘1’. To program a page is to write data
by selectively setting its cells to ‘0’. An erase operation can reset

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

a cell to be ‘1’. The unit of erasure in NAND flash is a block that
comprises many pages. Moreover, a page cannot be reprogrammed
unless the block it is in has been erased. Thus data can be only
updated out-of-place. Instead of overwriting the old data, the new
data are written to another page with the old one invalidated. The
number of flips between the programmed and erased states of a cell
is physically limited. It is typically 100,000 for single-level cell
(SLC) flash that has one bit in a cell, and 10,000 for multi-level cell
(MLC) flash whose cell can store two or more bits [7]. If a cell
is excessively flipped, it is likely to be permanently damaged. The
block it is in will be considered to be worn out. Worn-out blocks
together with another type of bad blocks that are caused in manu-
facturing process will be kept away from regular use [4]. Too many
bad blocks would make the entire chip defective.

Wear Leveling is a technique that is employed to distribute era-
sures as evenly as possible to avoid excessive flips. Data are usually
classified to be hot or cold according to their update frequencies.
Also, a physical block is considered to be old or young depend-
ing on its erase counts. Typically wear leveling will transfer cold
data to old blocks at the expense of some performance overhead. A
wear leveling scheme can be proactive or passive, or has both man-
ners. Proactive wear leveling aims to put data in suitable blocks,
and passive wear leveling will swap data when the distribution of
erase counts over all blocks is skewed beyond a certain limit.

Currently wear leveling is performed by an embedded software
called the flash translation layer (FTL). The FTL also conducts ad-
dress mapping, garbage collection and other functions. Address
mapping translates logical addresses of file system to physical ad-
dresses in the flash chips. The state-of-the-art mapping schemes
are hybrid mapping ones that use log space.

In this paper, we shall reconsider the problem of write endurance,
and propose a novel wear leveling algorithm called observational
wear leveling (OWL). OWL exploits hybrid mapping, using proac-
tive methods to avoid the unevenness of erasures through monitor-
ing temporal locality and block utilization. Our experiments show
that OWL can outperform the latest passive algorithms by 29.9%
and 43.2% respectively on wear evenness with a performance over-
head of at most 1.1%. The main ideas of OWL are as follows:

• A locality-based block allocation (LBA) scheme is employed
within hybrid mapping that leverages on the temporal local-
ity of accesses observed using a block access table (BAT).

• A scan and transfer (ST) scheme is periodically triggered to
transfer cold or very hot data to elder blocks. ST can prevent
young blocks from being occupied for long periods of time.

The rest of this paper is organized as follows. Section 2 shows
hybrid address mapping. Section 3 describes state-of-the-art wear
leveling schemes, and motivates the need for an efficient one. Sec-

tion 4 shows our OWL. Section 5 presents experimental results and
analysis. Section 6 will conclude this paper.

2. ADDRESS MAPPING IN FTL
Address mapping is a basic function of flash management. Hy-

brid mapping [9] is a popular mapping strategy. It combines page
mapping and block mapping whose units of mapping are pages and
blocks, respectively. In hybrid mapping, all physical blocks are
partitioned into a data space, a log space and free blocks. Blocks
in the data space (which we shall call “data blocks”) are managed
in block mapping. However, block mapping is not flexible because
data are written and read in units of pages. If data in a page are to be
modified, a free block has to be allocated for out-of-place updates,
and data in other pages of the same block have to be moved. Ob-
viously frequent updates will result in continual data movements.
Hybrid mapping maintains the log space using page mapping to
solve this problem. Upon an update, instead of writing to another
block, a page will be allocated from a log block to accept the data.
Consecutive updates will be handled by more log page allocations.

FAST [9] is a popular hybrid mapping scheme. In FAST, the log
space is “fully associative”, which means a log page is not bound
to some data block but can accept data from anyone.

Because the log space is managed in page mapping, its capacity
cannot be too big since page-level mapping has a significant space
overhead. When the log space runs out of pages, a merge procedure
is called. Merging makes new space by evicting some data in the
log space to the data space. In FAST, a victim log block is picked
in a round-robin manner, and each page will be checked. If its
data are valid, the FTL will merge the page with its corresponding
data block to a newly allocated block in the data space. Otherwise,
it will be skipped. Thus, during a merge there may be frequent
allocation requests for free blocks. After all log pages are merged,
the victim log block and original data blocks will be erased for
future use. The log space will then be replenished with a free block.

3. PROBLEM FORMULATION

3.1 Passive and Proactive Wear Leveling
Wear leveling attempts to even out erasures across all blocks. It

can be either dynamic or static [2]. Dynamic algorithms consider
free blocks and blocks with frequently updated data, i.e., hot data.
Static ones make use of all blocks, including blocks of cold data.
Table 1 shows four of the latest wear leveling algorithms. They all
fall into the static category, although how they perform wear level-
ing varies significantly. Among them, the dual-pool [1], BET [3]
and lazy wear leveling [2] take actions only when the level of un-
evenness reaches some thresholds. So they are passive schemes.

In dual-pool algorithm, hot and cold data stay in the respective
hot and cold pool. When the difference on erase count between
the head of hot pool and the rear of cold pool exceeds a predefined
threshold, the two blocks will swap places.

The BET is a key structure of the algorithm in [3]. We shall use
this acronym to refer to this algorithm. Blocks are divided into sets.
Each set is associated to a bit in the BET. When a preset interval
begins, all bits in the BET are ‘0’. If a member of a set is erased
within the interval, its associated bit will be set to ‘1’. The total
number of erasures in the interval is recorded. If the ratio of the
number of erasures over the number of 1’s in the BET reaches a
predefined threshold, a set whose associated bit is still ‘0’ will be
randomly selected. All valid data in this set are moved to a free
block set, after which the former set will be erased for future use.

Lazy wear leveling [2] is a recently proposed strategy. It is per-

formed in the merge procedure of hybrid mapping. Before lazy
wear leveling, a data block that is involved in merge, say D, will
be immediately erased. In lazy wear leveling, if D’s erase count is
higher than the average by a threshold ∆ which is tuned online, be-
sides erasing D, the FTL will find a data block with cold data, say
C, transfer C’s data to D, erase C, and return C as a free block.

In summary, the dual-pool scheme responds to the widening gap
between two blocks’ erasure counts, the BET scheme is activated
when the erasures are unevenly distributed beyond an extent, and
lazy wear leveling works when the block to be reclaimed is much
older than the average.

Rejuvenator [6] has both proactive and passive mechanisms. It
allocates hot or cold data to young or old blocks respectively in a
proactive way. It records recent access frequencies of logical pages,
and identifies the temperature of pages accordingly. It also groups
blocks that have the same erase count in a list. A list is in the lower
numbered lists if its erase count is smaller than a dynamic thresh-
old; or it is in higher numbered lists. When new write requests
arrive, based on the recorded access information, cold data are put
into younger blocks of the lower numbered lists using page map-
ping, and hot data are placed in elder blocks of the higher numbered
lists in hybrid mapping. Between the smallest and biggest erase
counts is a window. If the number of free blocks in either partition
drops below two thresholds (TL and TH) respectively, data will be
moved out from the lowest list to upper lists, and the window is then
adjusted. This is how Rejuvenator performs passive wear leveling.

Table 2: Block Allocation Ratios in FAST
Trace New Allocation Merge Allocation
SPC1 3.90% 96.10%
TPC-C 33.76% 67.24%
MSR-hm_0 4.87% 95.13%
MSR-mds_0 13.02% 86.98%
MSR-prn_0 16.07% 83.93%
MSR-prxy_0 7.07% 92.93%
MSR-rsrch_0 18.42% 81.58%
MSR-stg_0 7.30% 92.70%
MSR-ts_0 8.29% 91.71%
MSR-web_0 6.75% 93.25%

3.2 Motivation
In this paper, we shall propose an efficient proactive algorithm to

do wear leveling. The key idea of our approach lies in the manage-
ment of blocks within address mapping. Block allocation is essen-
tial in flash management. In general there are two ways to allocate
blocks: first-in-first-out (FIFO) and youngest block first [1].

In hybrid mapping, besides supplying log blocks, there are two
scenarios in which block allocation needs to be performed, either
when a location is being written to for the first time, or in the
merge procedure. Table 2 shows the relative frequency of these two
scenarios in FAST without wear leveling. Traces from [10], [11]
and [5] were used. It is apparent that most of the allocation re-
quests are made in the merge procedure. Note that log space is used
to hold the updated copies of data. Some of them may have to be
evicted by merging to free up space. However, in terms of tempo-
ral locality, some of evicted data may be accessed soon while others
may be cold. If at this time we can predict which data are likely to
go cold, and allocate elder blocks to them, then future cold data
movements can be avoided. Moreover, allocating young blocks to
data that are still hot improves wear evenness. Furthermore, blocks
with valid data can be organized in an effective way that the utiliza-
tion of young blocks are more exploited. These are the essence of
Observational Wear Leveling (OWL) that we are proposing.

Table 1: A summary of the latest wear leveling algorithms
Algorithm Type Block Organization Address Mapping

Dual-pool [1] Passive
Hot pool and cold pool: a block with valid data is in either

Not constrained
pool, where blocks are prioritized upon their erase counts.

BET [3] Passive
Block sets and BET: A set has one block or several consecutive

Not constrained
blocks to correspond a bit in the block erasing table (BET).

Rejuvenator [6]
Proactive Multiple block lists: blocks that have the same erase count Page mapping +
+ Passive are grouped in a list. Hybrid mapping

Lazy wear leveling [2] Passive Common way: free block pool, valid block pool, etc. Hybrid mapping

OWL (this paper) Proactive
Free block pool is ordered on erase count to be a min-heap,

Hybrid mapping
and valid block pool is sorted on arrival time.

4. OBSERVATIONAL WEAR LEVELING

4.1 Overview
Observational wear leveling (OWL) attempts to reduce and evenly

distribute erasures under hybrid mapping with log blocks in a proac-
tive way. The key idea is to observe the temporal locality of write
behaviors, and allocate blocks proactively. To do so, OWL main-
tains a block access table (BAT) that records the footprints of recent
logical block accesses. The BAT is then used to perform locality-
based block allocation (LBA) in the merge process. OWL also
detects blocks with valid data and transfers data if necessary to pre-
vent young blocks from being occupied for too long time. These
two schemes are made effective by OWL’s organization of blocks.

4.2 Block Organization
The organization of blocks is important not just for wear leveling

but for all aspects of flash management. For example, DFTL main-
tains a free block pool of clean blocks for address mapping [8].
From Table 1 we see that wear leveling algorithms usually have
special ways to organize blocks for better effectiveness.

In this paper, all blocks, excluding log blocks, are grouped in
two pools, the free block pool and the valid block pool. This is
a common organization in FTL designs [8]. In OWL we modify
it slightly. The free block pool is sorted according to the erase
count of each block. Its data structure can be a min-heap in our
implementation, or other complicated ones that may consume less
space [1]. Using a min-heap, if the number of blocks is n, it will
take O(log(n)) to enqueue an erased block into the pool. Blocks
in the valid block pool are ordered by their arrival time. It is almost
like an ordinary FIFO queue, except that a valid block in the middle
of the pool may, at the appropriate time, be moved to the head. The
valid block pool can be managed in a linear structure, where the
cost of insertion and removal is O(1) and O(n), respectively.

4.3 Locality-based Block Allocation
As pointed out earlier, block allocation requests may be issued

for new log blocks, arrivals of new data, or in the merge procedure.
Traditional wear leveling algorithms usually employ one policy, ei-
ther FIFO or youngest block first [1, 4]. In OWL, they are handled
differently. In particular, allocations for log block and new data are
done using the youngest block first policy. This is easy to imple-
ment using OWL’s free block pool organization as it is just a matter
of fetching the top of the min-heap. Requests from merge, however,
are serviced by the allocation of a suitable block that is selected in
a predictive way according to the data’s recent write history.

Data Structure and Overheads
The recent history of writes to logical blocks is recorded in the
BAT in the form of write frequencies. Hence, the BAT is a runtime
record of the temporal locality of writes. The BAT comprises two
components: a hashed table for rapid looking-up, and a linked list
to hold blocks’ access frequencies. A sketch of BAT is shown in

Lo
gi

ca
l B

lo
ck

 N
O

.

Access Frequency
Linked List

L0 1

Block Access Table (BAT)

Allocation Request for L1

Free Block Pool

Valid Block Pool

L0 L2 L1 L3

Inquire the BAT

Ranking

pos = (1-3/4)*4 = 1

(3)
F0

F1

F2

F3

V0 V1

….

Vm F1

Block F1 Allocated for L1

Block Moved

3

cntpoolfree
SIZEBAT

rankbatpospoolfree __*)
_
_1(__ −=

(4)

(7)

(9)

(3) (3) (6) (4)
Entry Address

Hash Table

5

3

30

L1

L2

L3

Figure 1: Locality-based Block Allocation with BAT
Figure 1. The hash table maps a logical block number to a linked
list entry. In the linked list, an entry can be quickly appended or
moved to the end of the list (being the most recently used). On the
arrival of a write request with a logical address, the hash table will
be checked. If the logical block number does not exist, an entry will
be created and appended to the end of the linked list, and the hash
table mapping is set up accordingly. Otherwise, the relevant entry
will be updated and moved to the end. If space in the linked list
is exhausted, the least-recently-used (LRU) entry, i.e., the one in
the front, will be deleted to make space for the new arrival. Hence,
the BAT keeps the latest information of the temporal locality of
recent writes. It will be used by the FTL for the servicing of block
allocation requests.

The temporal and spatial overheads of the BAT are fairly small.
It is maintained in the RAM with the block and log page mapping
tables. The access latency is much smaller than that of flash. It
is not necessary to store the BAT in flash because temporal local-
ity is always changing. The spatial overhead is also low. For each
entry, an entry address mapped to each logical block number takes
4 bytes, and another 4 bytes are needed for its frequency. Thus, a
2KB table can hold the records of 256 logical blocks. From our ex-
periments, a 2KB BAT is sufficient to support OWL’s LBA scheme.

Locality-based Block Allocation
Here we will present the LBA algorithm used in the merge pro-
cedure. As mentioned, during a merge, free blocks are needed to
accept data from the log page selected as the eviction victim, and
its related data blocks. These data were not recently used. How-
ever, the situation may change in the near future. LBA aims to
put the data to be merged into blocks of suitable ages in a predic-
tive way. In particular, LBA tries to make younger blocks hold hot
data, while using elder ones for the cold.

Algorithm 1 presents the skeleton of LBA. It is called in the
merge procedure with the logical block number as a parameter and
returns the block number of a free physical block. At line 2, the
FTL first calculates the “rank” of the logical block in the BAT. In
brief, the rank of a logical block is the count of blocks in the BAT

that have lower access frequencies than it. At line 3, the FTL com-
putes a position in the free block pool using a heuristic formula.
From line 4 to line 11, LBA will find the block at that position in
the free block pool, and return it to the merge procedure.

The idea behind Algorithm 1 is as follows. First, the rank of
the given logical block is calculated using the recent write history
recorded in the BAT. If the logical block is highly accessed, its
access frequency will be higher than many others. Then its rank in
the BAT will be high too. The LBA puts this rank in the formula
at line 3 to get the position in the free block pool, and looks for a
free block accordingly. The free block pool is a min-heap sorted
with the blocks’ erase counts. Hence, LBA can easily locate the
one with the suitable age in O(log(n)) time.

Computing the rank of a logical block is not straightforward.
Since the BAT stores the frequencies of recently referenced blocks,
an intuitive way to rank a logical block L is BAT [L].freq∑

l∈BAT BAT [l].freq
.

However, this is incorrect. In the most recent interval, some blocks
may be highly accessed. These hot blocks will have very high fre-
quencies, and they can dominate the total sum. The above fraction
will show a bias towards these blocks, and the ranks of other blocks
will be inaccurate. Worse, physical blocks cannot be fairly utilized
because hot data are unlikely to be merged soon but always occupy
younger blocks. In OWL, we first sort the blocks according to their
frequencies. The rank is obtained after sorting. Our experiments
show that this is a better measure.

Algorithm 1: Locality-based Block Allocation
Input : logical_blk_no, logical block number in request
Output: free_blk_no, allocated free block number

1 begin
2 bat_rank := CalcBATRank (logical_blk_no);
3 free_pool_pos := (1 − bat_rank

BAT _SIZE
) ∗ free_pool_cnt;

4 blk_pt := GetFreePoolHead (void);
5 cnt := 0;
6 while (cnt < free_pool_pos) do
7 cnt+ +;
8 blk_pt := GetNextFreeBlk (blk_pt);
9 end

10 free_blk_no := blk_pt;
11 return free_blk_no;
12 end

Figure 1 gives an example of LBA scheme. There are 4 entries
in the BAT, and 4 blocks in the free block pool. The number in
the brackets of each block is its erase count. When a request is
raised for logical block L1, the FTL will examine the BAT, and
perform sorting. The rank of L1 is 3, and according to the formula,
its position in the free block pool is calculated to be 1. With this
number, the FTL finds physical block F1, and moves it to the valid
block pool. Finally, the FTL will return the block number F1.

OWL differs from Rejuvenator in three important ways. Firstly,
Rejuvenator focuses on the block allocation upon the arrival of
new write requests; OWL works in the merge procedure that issues
much more allocation requests (as shown in Table 2). Secondly,
Rejuvenator uses page mapping for hot data and hybrid mapping
for cold data. This is quite complicated and interferes too much
with the other flash management modules. OWL utilizes hybrid
mapping only, and is hence simpler. Thirdly, while they both uti-
lize a structure to record reference counts of logical addresses at
runtime, Rejuvenator maintains access information at the granular-
ity of pages. OWL’s BAT works at the block-level. With the same
amount of RAM space, OWL can store longer historical accesses.

0 1 2 53 4 6 7 8 9

0 1 2 a4 57 8 96 3

0 1 2 a4 5 7 89 3 b c

(A) Valid pool at runtime in two λ’s without ST

0 1 2 53 4 6 7 8 9

1 4 9

(B) Valid pool at runtime in two λ’s with ST

012 53 4 6 7 8 9

012 4 6 7 8 9 a 5 3

01 26 7 8 9 a 5 3

0 2a 5 3 7 8 b c

6

6

14 9 0 2a 5 3 7 8 b c6

λ

2λ
λ，δ = 0.3, k = 2, Γ = 2

2λ，δ = 0.3, k = 2, Γ = 2

0 1 2 0 2 0 12

transfer datainsert

(C) Adjustment of block positions

pt

pt

4
pt

pt

1
pt

Figure 2: An example of ST scheme

4.4 Scan and Transfer Scheme
LBA works in the merge process, and it may miss two types of

data. One is data that are seldom, or possibly never updated after
being stored. They have no up-to-date copies in log space. In other
words, their data blocks are not related to any log page. Another is
ones that are very hot. If data are highly updated, their old copies
in log pages will be quickly invalidated. So they can avoid being
merged. Evidently blocks occupied by these data are unlikely to be
erased. Thus, we use a proactive scheme named scan and transfer
(ST) to find these data, and efficiently place them in elder blocks.

Many methods have been proposed for hot/cold data identifica-
tion [6, 4]. Note that here valid blocks are chronologically ap-
pended to the valid block pool, and blocks at the head have been
there for the longest time. ST exploits the organization of the valid
block pool, and periodically scans a small portion through the pool
to find a block containing one of the above two types of data. To do
so, ST employs two variables, λ and δ. Briefly, ST scans (δ ·100%)
of the valid block pool after every λ write requests.

In its scanning, ST identities a young block with cold data using
the block’s erase count and mapping status. In our implementation,
we deem a block to be “young” if its erase count is smaller than
half of the average erase count of all blocks, which is more strict
than lazy wear leveling that sets such standard to be the average
erase count [2]. If a young block is not associated to any log pages,
it will be picked. After the scanning, more than one candidate may
be found. To minimize the performance overhead, ST will transfer
one block’s data each time. Let functions T (b) and Q(b) represent
block b’s residence time in the pool and the quantity of valid pages
to be transferred, respectively. The victim should be the one that
has stayed for the longest time, and has the least data. Let

v(b) =
T(b)

Q(b)
. (1)

The block that has the largest v(b) can be selected as the victim.
Given the valid pool’s organization, T (b) can be replaced by 1

P (b)

where P (b) is block b’s position number in the pool. For example,
the head of the pool has a position number 1. Then Eq. (1) will be

v(b) =
1

P(b) · Q(b)
. (2)

There are several issues to use Eq. (2), however. Firstly, P (b) can
be easily obtained, but to maintain Q(b) for each block requires a
large amount of RAM space. Secondly, in Eq. (2), Q(b) has the
same weight as P (b). Since ST transfers one block after every λ
requests, a larger Q(b) is acceptable, but a block with a big P (b)
might be mistakenly identified as cold. Thirdly, computing v(b) for
all the candidates may consume too much time.

Based on Eq. (2), ST can be done in a simplified yet efficient
way. Besides λ and δ, ST employs a pointer pt and a counter k.
Initially, pt points at the first block that is associated to log pages,
and k is set to zero. ST will check each block’s erase count and

0.9

0.92

0.94

0.96

0.98

1

1.02

BET
lazy
OWL-nc
OWL

Normalized Average
Erase Count

Trace

Figure 3: Average Erase Counts of Each Trace
mapping status through scanning δ blocks of the pool. If a block
satisfies the condition mentioned above, i.e. is young and not asso-
ciated to any log page, it will be selected, and inserted before pt.
After scanning, data of the first selected block will be transferred
and k will count by one. Before next scan, if the block that pt
points at is to be merged, pt will be replaced at the next block that
is associated to some log pages, and k will be reset to zero. In the
next scan, if blocks found in previous scans exist, ST cancels scan-
ning and just performs data transfer on the first one of these blocks.
If after scanning no candidate is found, ST will check k. If k is big-
ger than a threshold Γ, the block that pt points to has been there
for at least (Γ · λ) requests, and avoided being merged. The data
that block holds could be very hot. So ST will select and transfer
it; pt and k will be reset accordingly. If k < Γ, ST just returns.

Obviously ST prefers blocks of cold data to blocks of hot data
because the latter still might be merged. It uses pt and k heuris-
tically to identify a block with very hot data. Figure 2 shows an
example of ST at runtime. Figure 2(A) is the pool’s being in two
λ requests without ST. Squares are blocks that are not associated
to any log page, and circles are ones that are. The number inside
is the logical block number mapped to each block. In Figure 2(B),
ST transfers data in logical block 0, 2 and 1 to elder blocks. Fig-
ure 2(C) shows a case that a selected block is inserted before pt.

5. EXPERIMENTS
We shall evaluate the effectiveness of the OWL in this section.

All the experiments were conducted using the FlashSim [8] simu-
lator in a Linux 64-bit system with GCC 4.6. The address mapping
used was FAST [9] that has been modified with our block organi-
zations. We implemented BET, lazy wear leveling and Rejuvenator
as comparisons to OWL. In the following texts, baseline refers
to a configuration that has no wear leveling, lazy is the one with
lazy wear leveling, OWL refers to our proposed OWL algorithm,
and OWL-nc has all of OWL except the ST module.

The traces we used came from three sources. They are shown in
Table 2. SPC1 and SPC2 were downloaded from [10]. TPC-C is a
typical online transaction processing (OLTP) workload from [11].
All others were from Microsoft’s data centers [5]. They represent
various environments, and the numbers of write requests vary from
1 to 12 million. Note that each write request in the trace may con-
sist of multiple write operations. Caveat lector: these traces were
recorded at different machines whose configurations were never
clearly documented. In our simulations, in order to assess wear
evenness, we used a different configuration for each trace so that
all physical blocks can be involved. Similarly experiments in [6]
were confined to a small area of an SSD disk for the same reason.

We studied three metrics. The average erase count, and its stan-
dard deviation are used to measure the effectiveness of the wear
leveling algorithms. The overhead is measured by the elapsed time
needed to finish processing the trace. All three metrics have to be
assessed together in order to obtain a qualitative judgement about
the efficacy of the algorithms.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

BET

lazy

OWL-nc

OWL

Normalized
Standard Deviation

Trace

Figure 4: Standard Deviation of Erase Counts

0.9

0.92

0.94

0.96

0.98

1

1.02

BET
lazy
OWL-nc
OWL

Trace

Normalized
Elapsed Time

Figure 5: Elapsed Time with Four Algorithms

For BET, we configured each block set to be a single block. This
is the best case for BET in terms of wear leveling. The threshold ∆
of lazy wear leveling was initialized to be 2. It is adaptively tuned
online according to [2]. For OWL, the default values of λ, δ and
Γ are 1000 requests, 0.4% and 50. All flash parameters, like the
latencies of write and erase operations, were obtained from [7].

5.1 Effectiveness of OWL
Figure 3-5 are results on average erase count, standard deviation,

and elapsed time for each trace, normalized against baseline.
Figure 3 shows OWL can reduce the number of erasures in many
cases, while Figure 4 shows that the standard deviation decreases,
by as much as 29.9% and 43.2% compared to BET and lazy with
MSR-prxy_0 respectively. These lead us to conclude that OWL per-
forms better than BET and lazy in evening out erasures. Figure 5
shows the elapsed time on processing each trace. OWL is at most
1.1% slower than the baseline in the case of MSR-prn_0.

As mentioned earlier, the three metrics should be considered to-
gether. Take for example TPC-C. It has 7.7 millions requests in the
workload. From Figure 3, we can see OWL has a similar number
of erasures as BET and lazy. However, as shown in Figure 4 the
difference in standard deviation is significant. This implies OWL
achieves better wear evenness with roughly the same erasures.

There are traces in which OWL did not do too well also. Fig-
ure 3 shows that OWL has slightly more erasures than lazy for
MSR-prxy_0. We analyzed MSR-prxy_0, and found it quite differ-
ent from other traces. Normally, one would expect a write request
to access a number of pages. MSR-prxy_0, however, has a large
number of very small write requests, with 77.8% of the requests
accessing only one page. Since the BAT works at block-level, such
a situation is difficult for the BAT to record access information ac-
curately. This in turn affected LBA’s allocations. Even so, OWL
was still able to use the ST module to perform wear leveling. This
is why OWL has a little more erasures, but the best evenness.

We have also implemented Rejuvenator. However, there were
several stumbling blocks. Specifically, two thresholds (TL and TH)
were not given in their paper. Also, it was said initially all blocks
will have a zero erase count, and all will be in the lower numbered
lists. However, when and how to migrate from such initial state to
the two partitions of the lower and higher numbered lists were not
described in [6]. These parameters and process are important for

0.8

0.9

1

1.1

1.2

1.3

4KB 8KB

Normalized
Standard Deviation

Trace

Figure 6: The Effects of Different BAT Size

0

0.4

0.8

1.2

1.6

2

0.20% 0.10% OWL-nC

Normalized
Standard Deviation

Trace

Figure 7: The Effects of ST
Rejuvenator. Nonetheless, we tried to simulated it but the results
are not comparable to those for BET, lazy and OWL. Take TPC-C
trace for example. It should be easy to identify hot and cold data
based on the access information of TPC-C workload. Our simula-
tion of Rejuvenator has a similar erase count as OWL but its standard
deviation over all blocks is 44.3% more than OWL. It is worse for
other traces. (See the appendix for more comparisons.)

5.2 Effects of BAT Size
The BAT is used to support LBA in the merge procedure. The de-

fault size in our experiments is 2KB, allowing for 256 records. We
also tried varying the size to 4KB and 8KB. The standard deviations
of these normalized against the 2KB configuration are presented in
Figure 6. From it we can see in general a larger BAT results in more
unevenness. The BAT records the latest write frequencies, and one
with a larger capacity is more likely to store outdated information.
This will mislead LBA. In terms of overhead, besides saving space,
a smaller BAT can also have a lower access time.

5.3 Effectiveness of ST
δ, λ and Γ are three parameters of ST module. We experimented

with different values of them to study ST’s functions. The results
of various δ are shown in Figure 7.

In our default setting, OWL will go through 0.4% of the valid
block pool. We also experimented with δ being 0.2% and 0.1%,
and normalized their results against those for 0.4%. Figure 7 shows
that in general the wear evenness will worsen when a lower propor-
tion of blocks is checked (TPC-C and MSR-rsrch_0). The worst
case occurs in OWL-nc that does not have ST. From Figure 7, pro-
cessing the MSR-prxy_0 will suffer the most from the removal of
ST module. Processing less blocks means that ST is less aggres-
sive on moving cold data. This will result in cold or very hot data
occupying their blocks longer, preventing these blocks from being
utilized. On the other hand, a less aggressive movement would also
mean less performance overhead.

We also did experiments to measure the effects of different λ. ST
will be activated every λ interval. The default value of λ is 1000
requests. Figure 8 shows the standard deviations in wear evenness

2

2.5

3

3.5

4

4.5

5

5.5

6

1k 2k 3k 4k 5k

MSR-hm_0

MSR-prn_0

MSR-prxy_0

MSR-web_0

SPC1

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

1k 2k 3k 4k 5k

TPC-C
MSR-mds_0
MSR-rsrch_0
MSR-stg_0
MSR-ts_0

(A)

(B)

λ

λ

Standard
deviation

Standard
deviation

Figure 8: The Effects of λ length
with λ being set at 2000(2k), 3000(3k), 4000(4k) and 5000(5k) re-
quests. From the results we can conclude the effect of λ depends
on specific workload. For MSR-prn_0 or MSR-stg_0, the inter-
val length has no significant impact on wear evenness. For others,
however, a longer λ will worsen the evenness. This is because ST
will be less aggressive on a longer λ. With the same δ, ST will miss
blocks that ought to be transferred. Still, for MSR-prxy_0, a more
frequently executed ST module can greatly enhance wear evenness.

From our observation, Γ marginally affects OWL’s efficacy. The
discussion on Γ and more results of δ are attached in the appendix.

6. CONCLUSION
In this paper, we have proposed a novel algorithm for wear lev-

eling of NAND flash called observational wear leveling (OWL).
OWL records the temporal locality of write activities at runtime,
and allocates blocks judiciously in the merge procedure of hybrid
mapping. To further even out erasures, OWL also employs a scan-
ning and transfer module to identify and move cold or very hot
data. Experimental results show that OWL can improve the even-
ness of erasures by as much as 43.2% with about 1.1% performance
degradation, and a space overhead of 2KB.

7. REFERENCES
[1] L.-P. Chang. On efficient wear leveling for large-scale flash-memory storage

systems. In SAC ’07, pages 1126–1130. ACM, 2007.
[2] L.-P. Chang et al. A low-cost wear-leveling algorithm for block-mapping

solid-state disks. In LCTES ’11, 2011.
[3] Y.-H. Chang et al. Improving flash wear-leveling by proactively moving static

data. IEEE Trans. Comput., 59:53–65, January 2010.
[4] C. Wang et al. Extending the lifetime of NAND flash memory by salvaging bad

blocks. In DATE ’12, 2012.
[5] D. Narayanan et al. Write off-loading: Practical power management for

enterprise storage. Trans. Storage, 4:10:1–10:23, November 2008.
[6] M. Murugan et al. Rejuvenator: A static wear leveling algorithm for NAND

flash memory with minimized overhead. MSST 2011, 0:1–12, 2011.
[7] Y. Hu et al. MLC vs. SLC NAND flash in embedded systems. Technical report,

September 2009.
[8] A. Gupta et al. DFTL: a flash translation layer employing demand-based

selective caching of page-level address mappings. In ASPLOS ’09, 2009.
[9] S.-W. Lee et al. A log buffer-based flash translation layer using fully-

associative sector translation. ACM Trans. Embed. Comput. Syst., 6(3):18, 2007.
[10] Storage Performance Council. SPC traces. http://traces.cs.umass.edu/,

December 2009.
[11] BYU trace distribution center. TPC-C database benchmark traces.

http://tds.cs.byu.edu/tds/, 2001.

APPENDIX
A. EXPERIMENTAL METHODOLOGY

There are three ways to do experiments in order to measure the
effectiveness of wear leveling algorithms. They all aim to ensure
that all blocks are covered in assessing wear evenness. The first
way is what lazy wear leveling did [2]. They configured a 20.5GB
SSD (0.5GB was over-provisioned for log space of hybrid map-
ping) in their simulator, and “replayed the input workload one hun-
dred times”. The second was used in the Rejuvenator paper [6].
Their SSD in simulation had 32GB, but they “restrict the active
region” for write requests and “the remaining blocks did not partic-
ipate in the I/O operations”. The third way is what we did. For each
workload, we assigned a reasonable capacity so that all blocks have
the chance to be involved in wear leveling. The capacities for work-
loads we used are shown in Table 3. Note that the over-provisioning
rate for log space is 3% which is the same as other works [8].

Table 3: Capacities for Traces
Trace Capacity
SPC1 2.06GB
TPC-C 3.09GB
MSR-hm_0 4.12GB
MSR-mds_0 2.06GB
MSR-prn_0 6.18GB
MSR-prxy_0 4.12GB
MSR-rsrch_0 2.06GB
MSR-stg_0 4.12GB
MSR-ts_0 2.06GB
MSR-web_0 2.06GB

All trace in Table 3 are in the public domain, and can be down-
loaded. The simulator we used, FlashSim [8], is also open-source.

B. RESULTS OF REJUVENATOR
Here we will show the detailed experimental results of Rejuve-

nator. As previously mentioned, their paper did not show how the
values ofW (the size of the structure to record access frequencies),
TL and TH are to be set. In our simulation,W was set to hold 1024
entries, the same as the authors claimed in a presentation1. TL and
TH were set according to our communication with one of the au-
thors. The paper also did not describe how the entire system moves
from the initial state where all blocks are in lower numbered lists
to the state of two partitions that one block is in either lower num-
bered lists or higher numbered lists based on its erase count. We
approximated this as follows. Initially, blocks are allocated from
lower numbered lists as described in their paper because no higher
numbered list exists. Then blocks will be erased in the merge pro-
cedure. As lists with bigger erase counts start to be populated, we
begin to partition lists so that the number of lower and higher num-
bered lists are adaptively adjusted based on the sliding window.

The results are presented in Table 4. Note that the capacities and
Flash parameters of Rejuvenator are the same as that for OWL.

From Table 4 we can see OWL evidently outperforms Rejuve-
nator. However, since TL and TH are workload dependent, it is
difficult to draw an absolute conclusion. This is especially so for
the case for MSR-hm_0 and MSR-prxy_0 where the results of two
algorithms differ significantly.

There are several reasons why OWL can achieve better wear
evenness than Rejuvenator. First, with the same RAM space, Reju-
venator has a less complete estimation on access patterns because
1http://storageconference.org/2011/Presentations/Research
/14.Murugan.pdf

Table 4: Comparison between OWL and Rejuvenator

Trace Average Erase Count Standard Deviation
OWL Rejuvenator OWL Rejuvenator

SPC1 14.057838 15.264644 2.430129 5.526887
TPC-C 14.09825 14.124719 1.716122 2.476510
MSR-hm_0 9.840271 27.1584 2.554806 10.965194
MSR-mds_0 5.525630 6.778785 1.566230 1.843398
MSR-prn_0 12.085569 13.746652 5.467150 7.568265
MSR-prxy_0 19.043258 25.913277 2.738008 16.781061
MSR-rsrch_0 9.738963 8.495363 2.378286 3.874533
MSR-stg_0 5.729223 13.648533 1.364073 4.930392
MSR-ts_0 10.140859 12.721007 2.250717 3.988268
MSR-web_0 12.527585 13.648533 2.796568 4.930392

0.98

0.985

0.99

0.995

1

1.005
0.30% 0.50% 0.60%

Trace

Normalized
Elapsed Time

Figure 9: Normalized Elapsed Time with Various δ

it does that at the page-level. Second, Rejuvenator responds to the
number of available free blocks by TL and TH , and there will be
a delay. OWL works in a proactive way, and takes actions more
promptly.

Rejuvenator also has a shortcoming in managing mapping ta-
bles. Rejuvenator maintains page mapping for both hot data and
updates of cold data which are in log blocks. Rejuvenator at any
time only has one log block, instead of the usual 3% of all blocks,
and it “picks a free block with the least possible erase count in the
higher numbered lists”. It seems that the entries for this page map-
ping are very small – about the same as the number of pages in the
block. However, Rejuvenator does not immediately merge the log
block with data blocks like a standard hybrid mapping strategy [9].
It performs garbage collection in the higher numbered lists only
when the number of free blocks in the higher numbered lists drops
below TH . This implies that, as long as there are at least TH free
blocks, a log block can be picked from the higher numbered lists
for log space, and more mapping information has to be added to
the mapping table. In other words, Rejuvenator can take up a sig-
nificant amount of RAM space for hybrid mapping. If Rejuvenator
merges log space with data blocks like the standard hybrid map-
ping, the single log block is seriously insufficient and trashing will
frequently occur. In the paper of Rejuvenator, it was claimed that
the proportion of hot logical pages is very small (< 10%). So more
than 90% data would be handled with hybrid mapping. This would
aggravate the hybrid mapping of Rejuvenator if it has a traditional
merge procedure.

C. MORE RESULTS ON OWL
In the experiment section, we reported on the impacts of λ and

δ. For the latter, we also experimented with δ being 0.3%, 0.5%
and 0.6%. We normalized their results to those of 0.4%, as shown
in Figure 9, 10 and 11.

Note that a larger δ value will cause ST to scan more blocks in

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

0.30% 0.50% 0.60%

Trace

Normalized Average
Erase Count

Figure 10: Normalized Average Erase Count with Various δ

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

0.30% 0.50% 0.60%

Trace

Normalized
Standard Deviation

Figure 11: Normalized Standard Deviation with Various δ

the valid block pool. However, the effect is also dependent on the
workload. From the three figures, we can see with most traces the
impact of various δ is not significant. This is due to the access pat-
terns of these workloads being quite uniform. But for MSR-prxy_0
again, it is obvious in Figure 11 that results of δ = 0.4% can be
viewed as optimal. That is to say, scanning more blocks will incor-
rectly classify the data, and transfers based on such erroneous iden-
tification will only worsen the wear evenness. On the other hand,
scanning less blocks may miss blocks that should be transferred.

Figure 12, 13 and 14 show the results upon various values of Γ.
It is obvious that Γ only has a marginal impact on wear evenness
in most cases. Note that Γ is the threshold for identifying very hot
data. If a block stays in the valid block pool for more than (Γ · λ)
requests, its data are most likely to be very hot. The default value
of Γ in previous experiments was 50. We conducted more experi-
ments with Γ being 30, 40, 60 and 70 (λ = 1000 and δ = 0.4%).
Figure 12 shows that the elapsed time did not change much with
various Γ (results of Γ = 30 are used to normalize other settings).
Neither did average erase count in Figure 13 (results of Γ = 30 are
used to normalize other settings). In most cases, the standard devi-
ation of erase counts was not affected as shown in Figure 14. How-

0.98

0.985

0.99

0.995

1

1.005
40 50 60 70

Trace

Normalized
Elapsed Time

Figure 12: Normalized Elapsed Time with Various Γ

0.98

0.985

0.99

0.995

1

1.005
40 50 60 70

Trace

Normalized Average
Erase Count

Figure 13: Normalized Average Erase Count with Various Γ

2.5
3

3.5
4

4.5
5

5.5
6

30 40 50 60 70

MSR-prn_0

MSR-prxy_0

MSR-web_0

Г

2.2

2.3

2.4

2.5

2.6

30 40 50 60 70

MSR-ts_0

MSR-rsrch_0

MSR-hm_0

SPC1

Г

(A)

1.2
1.3
1.4
1.5
1.6
1.7
1.8

30 40 50 60 70

TPC-C
MSR-mds_0
MSR-stg_0

(B)

(C)
Г

St
an

da
rd

 D
ev

ia
tio

n
St

an
da

rd
 D

ev
ia

tio
n

St
an

da
rd

 D
ev

ia
tio

n

Figure 14: Standard Deviation with Various Γ

ever, with a longer interval, MSR-prxy_0 would result in slightly
more erasures for better evenness, while MSR-mds_0 suffered from
wear unevenness with slightly less erasures. For the former trace,
a bigger Γ could result in more data blocks being identified as very
hot. The characteristics of MSR-prxy_0 have been described be-
fore. Because small requests were frequently issued, a longer in-
terval (in more requests) would be more suitable and could help
to accurately filter out very hot data. Thus ST modules had lower
standard deviation with the increase of Γ. This also confirms our
argument in Section 5.1 and 5.3 that ST has played an important
role in processing MSR-prxy_0. For MSR-mds_0, which is taken
from a media server with a majority of big requests, a longer in-
terval may miss blocks of very hot data with the same δ depth to
scan, and less erasures would be performed by the ST module in
transferring the data. This explains why as the interval was length-
ened, the erase counts decreased and the wear evenness worsened
for MSR-mds_0, as shown respectively in Figure 13 and 14(C).

