
SAW: System-Assisted Wear Leveling on the Write
Endurance of NAND Flash Devices

Chundong Wang and Weng-Fai Wong
School of Computing

National University of Singapore
Email: {wangc.nus@gmail.com, wongwf@comp.nus.edu.sg}

ABSTRACT
The write endurance of NAND flash memory adversely im-
pacts the lifetime of flash devices. A flash cell is likely to
wear out after undergoing excessive program/erase (P/E)
flips. Wear leveling is hence employed to spread erase oper-
ations as evenly as possible. It is traditionally conducted by
the flash translation layer (FTL), a management firmware
residing in flash devices. In this paper, we shall propose a
novel wear leveling algorithm involving the operating sys-
tem (OS). We will show that our operating System-Assisted
Wear leveling (SAW) algorithm can significantly improve
the wear evenness. SAW takes advantage of OS’s knowledge
about files at a higher level of abstraction, and provides use-
ful hints to the lower-level FTL to accommodate data. A
prototype based on a file system and an FTL has been devel-
oped to verify the effectiveness of SAW. Experiments show
that wear evenness can be improved by as much as 85.0%
compared to the state-of-the-art FTL wear leveling schemes.

1. INTRODUCTION
Today it is economically feasible to utilize NAND flash de-

vices for secondary storage in both embedded systems and
general-purpose computing systems. The issue of write en-
durance, however, hinders the further use of NAND flash as
the lifespan of a flash device is inherently limited.
Write endurance refers to the limited cycles of program/erase

(P/E) flips on a flash page. A page is the unit for write and
read operations in NAND flash. It consists of thousands of
cells. A page cannot be directly reprogrammed with up-
dates due to the physical characteristics of flash cells. It
has to be erased first. Programming a page is to selectively
set some bits to ‘0’. All bits are reset to ‘1’ by an erase
operation. Erase operations must be performed in the unit
of a block that consists of multiple pages. Excessive P/E
flips will wear out a page, and damage its ability to retain
data. The limitation of P/E flips for single-level cell (SLC)
NAND flash which stores one bit in a cell, is 100,000 cy-
cles. For the denser multi-level cell (MLC) flash, it is about

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’13, May 29 - June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

10,000. A flash block that has a worn-out pages, i.e., a worn-
out block, cannot be used any further. Too many worn-out
blocks will lead to the complete failure of a flash device [19].
Wear leveling [20, 10, 2, 14, 19] has been devised to target

the write endurance of NAND flash. Generally, wear leveling
attempts to intelligently put data in suitable blocks to avoid
the skewness of erase operations. To do so, it first needs to
classify data and blocks, respectively. Hot data are ones that
are frequently updated, while data that are never or seldom
rewritten are deemed to be cold. On the other side, the
erase count of each flash block is maintained in a block aging
table [14]. A block that has a smaller erase count is younger
than one that has a larger erase count. Wear leveling tries
to put hot data into younger blocks, and cold data into elder
blocks. It is expected that updates of hot data can result in
many erasures, while blocks occupied by cold data can avoid
being frequently erased. However, the correct identification
of hot or cold data, and how to site them in a block of a
suitable age are two challenging issues.
Wear leveling, and other modules of flash management,

are included in a firmware of flash devices called the flash
translation layer (FTL) [8, 12, 20, 10, 7]. The FTL is de-
signed to be self-contained. The host operating system (OS)
communicates with the flash device through interfaces like
USB or SATA, and is generally oblivious to the management
of flash memory. The OS sends requests to the FTL, and
waits for replies in a client-server way, treating the flash de-
vice as a black box. File system-aware FTLs [9, 8, 12] have
been proposed, but they focus only on deleted data, meta-
data or critical data. Our paper, however, will exploit OS’s
knowledge of files for wear leveling in a collaborative way.
Data from the OS have to be assessed for the purpose

of wear leveling. Traditionally, the FTL estimates data by
itself, and allocates pages and blocks accordingly [20, 1].
The estimation is achieved either through recording data’s
update frequencies [5, 17], or with the aid of address transla-
tion scheme in use [20]. Nonetheless, the FTL’s classification
of data within a flash device is arduous and costly on time
and space. Worse, at that level, the FTL has no idea of the
intended use of data. On the other hand, the OS is aware of
the file type data belong to, and what applications are using
them. The scheme proposed in this paper, namely operating
System-Assisted Wear leveling (SAW), will leverage on the
OS knowledge of the files being accessed so that the FTL
can do a better job in wear leveling. The key ideas of SAW,
also the main contributions of this paper, are as follows:

• Data of files are quantitatively analyzed and classified
using a measure of the temperature. The temperatures

of files of various types are periodically updated by
the OS, which is based on a succinct and reasonable
mathematical model. The computed temperature is
sent along with data to the FTL.

• Flash blocks that are available for use, i.e., free blocks,
are organized into groups using an exponential divi-
sion. The FTL interprets the temperature of data, and
performs allocation from a relevant group accordingly.

• A prototype based on the Linux virtual file system
(VFS), an open-source file system and its special FTL,
i.e., UBIFS and UBI [13], has been developed to verify
the effectiveness of SAW.

UBIFS and UBI are specifically designed for raw flash that
is found in embedded systems like smartphones. With the
above prototype, experiments show that the wear evenness
can be significantly improved by as much as 85.0% compared
to the state-of-the-art FTL-based wear leveling schemes.
The rest of this paper is organized as follows. Section 2

shows background and related works. Section 3 presents
the details of SAW. Section 4 describes the experimental
evaluation. Section 5 is our acknowledgement and Section 6
will conclude the paper.

2. BACKGROUND AND RELATED WORKS
The FTL is a firmware that autonomously manages flash

device. It processes access requests from upper-level file sys-
tem by translating logical address to physical address into
the form of flash block and page. It also conducts wear
leveling, as well as garbage collection for resource reclama-
tion. The latter is used to reclaim pages and blocks that are
occupied by obsolete data owing to out-of-place updating.
Wear leveling is an important module of the FTL. It may

either be static or dynamic [10, 14]. Dynamic wear leveling
generally selects the youngest free block for new data, while
static wear leveling may vacate the block currently occupied
by cold data for use. The latest FTL wear leveling schemes
include dual-pool algorithm [1], BET [10], lazy wear level-
ing [2] and OWL [20]. We shall focus on BET and OWL
as they represent two different strategies. BET takes the
perspective of the flash block. It has a Block Erasing Table
(BET) to maintain the erase status of each flash block in ev-
ery fixed interval. If the count of erasures over the number
of erased blocks exceeds a predefined threshold, BET will
repeatedly pick un-erased blocks of the last interval, and
perform data transfers, after which it will erase them until
the skewness is smoothed out. OWL, however, emphasizes
on data. OWL also has a table, namely the Block Access
Table (BAT), in which a block is a logical block instead of
a flash block. The BAT stores access frequencies of logical
blocks that have been recently rewritten. OWL ranks data
of logical blocks with the BAT, and allocates flash blocks
accordingly. The ranking is used to predict a logical block’s
access frequency compared to other logical blocks in the near
future. Doing so OWL attempts to put data into suitable
blocks in a proactive way to avoid wear unevenness.
Note that both BET and BAT are data structures main-

tained by the FTL inside flash device. There are non-trivial
spatial and temporal overheads in doing so.
There are FTLs that were devised to take file system into

account. MFTL [8] interposes a filter between file system
and the FTL to separate metadata and real data of files.

It specifically manages metadata that are small and fre-
quently updated. MFTL was implemented for ext2 and ext3
file systems, and performance improvement was reported.
FSAF [9] focuses only on deleted data in FAT32. It is simi-
lar to the TRIM command of modern OS [3]. FSAF detects
the deletion by utilizing its knowledge about the format of
FAT32 in flash devices. Meta-Cure [12] is similar to MFTL.
It adds a filter between file system and FTL to enhance the
reliability of “critical data” to avoid being damaged. Meta-
Cure does not change the file system; it is transparent to the
FTL. In all these works, either the OS is unaware of FTL’s
workings, or vice-versa.

3. SAW
In this section we will present details of how the OS col-

laborates with the FTL for wear leveling in SAW. The OS
manages files for applications. It segments or assembles data
of files to satisfy applications’ access requests. Thus, the OS
knows which file a data segment belongs to, and which ap-
plication is requesting it. Such information is invisible to the
lower-level FTL. Traditionally, data are either coarsely iden-
tified to be hot or cold, or arduously classified by the FTL
within the limited computation resource of a flash device.
It is where SAW is to make a difference. In SAW, the OS
is responsible for quantitatively classifying files based on a
mathematical model. For a file type, the OS detects its files’
updates, and generates a temperature that is sent along with
each data segment to the FTL. When a data segment arrives
in the flash device, the FTL extracts the temperature infor-
mation, and processes the allocation request accordingly.

3.1 File Type Temperatures
Files have attributes, such as filename, extension, access

mode, and last modified time. Mesnier et al. [6] revealed
that files’ properties, like access pattern, can be predicted
based on their attributes. Take a text file for example. It is
likely to be rewritten more often than a video file. Mesnier
et. al. [6] did an offline mining over collected files. Online
exploration of the files’ attributes, however, is not straight-
forward. We need a succinct and reasonable mathematical
model for doing so.
For simplification, SAW only considers two attributes of a

file, namely its filename extension and access mode. Read-
only files are hardly rewritten, and will be specially dealt
with. A rewritable file will be assigned a temperature degree
according to it type. Here a file’s type refers to its filename
extension, although it is conceivable that other attributes
can be used too. Files without any extension will be treated
separately. Previous qualitative ways to identify data to be
hot or cold are somewhat lacking. With the assistance of the
OS, we will perform the classification in a quantitative way.
The temperature of a file type, as will be derived below,
depends on files’ update frequency and recency.

3.1.1 Update Frequency of A File Type
Measuring the update frequency of a file type is the key

issue of SAW. FTLs can record the number of writes to a
logical block or a logical page [20]. For files, however, it
is not so simple. The OS manages a large number of files
of the same type. It is neither reasonable nor scalable to
keep access information for each file. Moreover, two files
with the same type may have completely different update
frequencies. Hence, we need an approximation to represent

the access frequency for a type of files. Since not all files are
accessed at runtime, we will not consider dormant files but
focus only on active ones. This simplifies the online analysis,
and also reduces the overhead of resuming SAW at boot-up.
SAW maintains several variables for a file type. Given

a file type t, S(t) records the total number of active files
of type t. ς(t) is the number of accessed files of type t.
This includes the files of type t that have been opened (and
possibly then closed) after the current system boot, as well
as newly created files. δ(t) is the number of files of type t
that have been deleted (since the last boot). ω(t) counts
the rewrites to all t files. ς(t), δ(t) and ω(t) are used to
compute the update frequencies of file type t. Note that we
are interested in rewrites detected in the kernel module of file
system, not writes, because the latter is not a good estimate
for update frequency. For example, a video file triggers a
vast number of writes during its creation. Afterwards its
contents are hardly rewritten again. So a video file’s update
frequency is low. When a text file is reopened, however, it
may be inserted, appended or replaced with new data. Thus,
its update frequency is much higher due to many rewrites.
Let ϕ(t), the update frequency of type t, be defined as

ϕ(t) =
ω(t)

S(t)

. (1)

At the first sight, ϕ(t) seems to be the average rewrite of
active files of type t. Nonetheless, as is mentioned, files of
the same type may differ significantly in update behavior.
Moreover, files are being created and deleted at runtime.
So Equation (1) is imprecise. But it is infeasible to keep
too much information for each file. We shall place more
constraints to enhance the accuracy of Equation (1).
First, the OS will collect the values of ς, δ and ω peri-

odically. The interval is defined as I. The total number of
active files of type t after the nth I is to be Sn

(t). The base

case, i.e., at boot-up, is defined as S0
(t), and initialized to be

zero. In the nth I interval, ςn(t) files were newly accessed or
created, and δn(t) files were removed. So the number of type

t files before the start of the (n+ 1)th I is

Sn+1
(t)

= Sn
(t) + (ςn(t) − δn(t)). (2)

Hence, the absolute increment of type t files is

Sn+1
(t)

− Sn
(t) = ςn(t) − δn(t). (3)

The rate of increase of type t files, sn(t), of the nth I, is

sn(t) =
ςn
(t)

− δn
(t)

Sn
(t)

, (4)

where n ≥ 1 because at boot-up S0
(t) = 0, and it is in the

first I that files are accessed or created.
sn(t) could be positive or negative, as the number of type

t files may increase or decrease. β is a bound such that

-β ≤ sn(t) ≤ β, (5)

or put in another way,

Sn+1
(t)

= Sn
(t) · (1± β), (6)

and Equation (1) is hence valid for the calculation of tem-
perature. In this paper, β is set to be 10%. We do not
expect the number of active files of type t changes sharply.
If |sn+1

(t) | > β, we will identify t to be an outlier. An outlier

deserves special attention since many t files are likely to be
created or removed in a short period of time.

3.1.2 Update Recency
After the nth I, Equation (1) can be rewritten as

ϕn
(t) =

ωn
(t)

Sn
(t)

. (7)

Equation (7) gives the rewrite frequency on a file type t,
and it estimates the update behavior of type t files in the
(n + 1)th interval. However, Sn

(t) accumulates the number
of active files during past n intervals. As time goes by, the
updates of type t may change a lot due to the context switch
of applications. Hence a value from a long time ago may
mislead the estimation. Generally, the most recent intervals
are more relevant to the coming interval, and this recency
should be factored into Equation (7).
We introduce another variable to improve Equation (7),

fn
(t), which is defined to be the predicted value for ϕn

(t) of
the nth interval. Next, we define an exponentially average
value of fn+1

(t) for the (n+ 1)th I as

fn+1
(t)

= α · ϕn
(t) + (1− α) · fn

(t), (8)

in which 0 ≤ α ≤ 1. When α = 0, the recent interval will
have no effect. With α = 1, the past history is assumed to
have no influence. Given an α that 0 < α < 1, we have

fn+1
(t)

= α · ϕn
(t) + (1− α) · fn

(t)

= α · ϕn
(t) + (1− α) ·

[
α · ϕn−1

(t)
+ (1− α) · fn−1

(t)

]

= ...

= α · ϕn
(t) + (1− α) · α · ϕn−1

(t)
+ ...+ (1− α)i · α · ϕn−i

(t)

+(1− α)(i+1) · α · ϕn−(i+1)
(t)

+ ...+ (1− α)n+1 · f0
(t).

Because

α > (1− α) · α > ... > (1− α)i · α > ... > (1− α)n · α, (9)

we can conclude for fn+1
(t) , the farther an interval is, the less

the effect it has (f0
(t) = 0 and ϕn

(t) = 0, so the last (1−α)n+1

is ignorant). In other words, fn+1
(t) depends the most on

ϕn
(t), and also takes the past history into consideration when

0 < α < 1. Now we can use fn+1
(t) to predict the future

update behavior to files of type t in the (n+ 1)th interval.

3.1.3 Temperature of File Types
Now that we have fn for all file types, we can compute

their temperature before each interval. The temperature
used in this paper is from 0 to T . T is a predefined constant.
A file with the zero degree is very cold, effectively like a
read-only file. If a file’s temperature is near to T , it is very
hot. Given a set of file types, each one with an fn+1 for
the (n+ 1)th interval, we sort them by their f values in an
ascending order. The type t then has a position number in
the sequence, Pn+1

(t) , where 0 ≤ Pn+1
(t) ≤ Θ − 1. Θ is the

number of active file types. For example, there are five file
types (i.e., Θ = 5), and the sorting sequence is

fn+1
(t0)

≤ fn+1
(t1)

≤ fn+1
(t2)

≤ fn+1
(t3)

≤ fn+1
(t4)

.

So Pn+1
(t0)

= 0 and Pn+1
(t3)

= 3. Then we can calculate the

temperature for type t, Cn+1
(t) , using

Cn+1
(t)

=
Pn+1
(t)

Θ
· T. (10)

If T is set to be 5, Cn+1
(t3)

= 3 for type t3. Note that Equa-

tion (10) is valid when n ≥ 1. The temperature of each type
t for the first interval, i.e., C1

(t), is initialized to be zero.
It may seem tedious to have to perform a sort over Θ

file types after each interval. However, since the access be-
haviors of the majority of file types are stable, a complete
re-sorting is not yet necessary. Instead, SAW scans the pre-
vious sequence with updated f values, performing the nec-
essary reordering. This is fairly inexpensive.
According to Equation (10), it is not possible for a file to

have a temperature of T , as T is reserved for outlier files.

VFS

SA
W

 A
na

ly
ze

r
(P

ar
t 1

)

UBIFS

SA
W

Pa

ck
ag

er

UBI

SAW
Interpreter

txt 2
exe 0
doc 1

File type e Degree

2 0 2 2

2 3

2 1

test.txt

Segmented

D
eg

re
e

N
od

e
H

ea
de

r

data

Header & Degree
Attached

Block
Allocator

2

2 3

Fu
nc

tio
n

Ca
ll

Te
m

pe
ra

tu
re

H

as
h

Ta
bl

e

Write Requests

Block
Allocating

Data Writing

Degree Interpreting

20 222

test.txt

Segmented

D
eg

re
e

1

N
d

N
od

e
H

ea
de

rr
H

ea
de

rr

data

Header & Degree e
Attached

2
Packaging of UBIFS

2

23
23Data Writing

Degree Interpreting

Interpreting of UBI

SAW Analyzer
(Part 2)

Figure 1: A Sketch of SAW Prototype

3.2 Wear Leveling with Temperature

3.2.1 Exponential Division of Flash Blocks
We use the temperature of a file to allocate blocks and

pages to its data. First, we need a hash table to maintain
the temperatures for file types. The hash key is a file type t
that is hashed to its fn

(t) for the nth interval. This table is
managed by the OS in main memory, not in flash devices.
The basic idea of wear leveling is to allocate young blocks

to hot data, and old blocks to cold data. To make use of
the temperature, free blocks in flash device should be well
organized. SAW sorts them in an ascending order by their
erase counts. As we have T degrees, all free blocks are di-
vided into T groups. The division is not equal but in an
exponential way. Assuming there are Γ sorted free blocks,
the first group has Γ/2 blocks that have the smallest erase
counts. The second group has Γ/22 blocks. By analogy, the
gth group has Γ/2g (0 ≤ g ≤ T −1) blocks. The T th group,

however, is an exceptional one that keeps Γ/2(T−1) blocks
that are the most worn at that time. This is because

Γ = (
Γ

21
+

Γ

22
+

Γ

23
+ ...+

Γ

2g
+ ...+

Γ

2(T−1)
) +

Γ

2(T−1)
. (11)

In SAW, an allocation request with a temperature of d is
satisfied by the (T−d)th block group. Whether to allocate a
page or a block depends on the FTL’s allocation policy. As is
mentioned, SAW specially treats read-only and outlier files.
The former corresponds to the T th group, and the latter
will be handled with pages and blocks from the first group.
There are usually not that many read-only files, so Γ/2T−1

blocks should be sufficient. Outlier files are quite active.
They are accommodated into the youngest Γ/2 blocks.
The exponential division is due to our intention to make

the best use of young blocks that are the least worn. SAW
maintains more blocks to the higher temperatures. Ones
with the smallest erase counts are given more chance to be
utilized, while elder block can avoid being frequently picked.

3.2.2 Temperature Adjustment
The temperature is re-calculated in every interval. Hence,

cold data would lag behind with outdated temperature since
they are infrequently updated. Their temperatures should
be adjusted. To look for such cold data is not easy. SAW will
not do it by itself. As is mentioned, there is a module called
garbage collection in flash management to clean up obsolete
data that are generated due to out-of-place updating. Cold
data are left with them. SAW works alongside when garbage
collection are being conducted. At this time, SAW checks
data to be moved and changes their temperature. They are
written back by garbage collection with updated tempera-
ture then. In this way, the overhead is minimized.

3.3 A Prototype of SAW
We have developed a prototype of SAW based on UBIFS

and UBI [13]. Generally, there are two types of flash device.
One is found in solid-state drives (SSDs), SD cards and USB
thumb drives. On equipment such as smartphones, raw flash
may be used. UBIFS is designed for the latter, and UBI can
be viewed as its special FTL. We chose UBIFS and UBI to
implement SAW because they are open-source.
UBIFS is a log-structure file system. UBI serves UBIFS

to access data and performs functionalities of flash manage-
ment. Several features of UBI and UBIFS facilitate the im-
plementation of SAW. First, UBIFS roughly classifies data
to be LONGTERM, SHORTTERM and UNKNOWN. For
example, all files’ data are hot, i.e., SHORTTERM. Second,
data are encapsulated by UBIFS in a node with informa-
tion like the inode number that they belong to [13]. Note
that the coarse identification of data is not embedded into
nodes. Though, the node structure makes it possible to add
our temperature degree into each node. Third, their origi-
nal wear leveling and garbage collection are not complicated
and can be easily replaced or enhanced.
The prototype of SAW has three components, as is shown

in Figure 1. The SAW analyzer is implemented in the Linux
VFS and UBIFS. It maintains the hash table and performs
SAW calculations. The SAW packager is in UBIFS. It pack-
ages data along with relevant temperature into a node. The
SAW interpreter of UBI supports block allocations using
the temperature. Figure 1 also gives a sample on text file
“test.txt”. The temperature degree of “txt” is 2. The file
is segmented into four parts, each packed with the temper-
ature. When a node arrives in UBI, SAW interpreter will
suggest to the allocator what would be a suitable age for the
block to be allocated. The temperate would be written to
flash along with data. Note that in real implementation the
temperate is in the header. Here we separate it out for ease
of discussion. For the same reason, the writing sequence of
the nodes does not adhere strictly to their header numbers.

4. EXPERIMENTAL EVALUATION
The evaluation of SAW was done in two ways. The first is

within the above prototype. We compiled the Linux kernel
3.1.6 in Ubuntu 12.04.1. A flash device of 1GB was sim-
ulated using the nandsim simulator of Linux kernel. BET
was implemented for comparison. The second way we eval-
uated SAW was with the FlashSim simulator [11], in which
we implemented OWL, BET, lazy wear leveling and SAW.
The simulated flash was also 1GB. We went on further to
enhance BET and lazy wear leveling with the basic idea of
SAW on block allocation.

The reason why we did experiments in two ways is that
OWL and lazy wear leveling work within hybrid address
mapping [20, 2], so they cannot be implemented in UBI.
BET does not have such a limitation [10, 20]. The NAND
flash in the simulation was configured according to a recent
datasheet [15]. The wear evenness is measured using the
average erase count and its standard deviation over all flash
blocks [20, 19]. For similar average erase counts, the smaller
the standard deviation is, the better the wear evenness is.
We did not find any file system benchmarks that target the

write endurance of flash memory. What we want are ones
that operate on a large number of files and generate suffi-
cient write requests. We examined the analysis of Traeger
et al. [4] on various benchmarks, and selected two macro-
benchmarks: postmark [16] and filebench [18]. Postmark

is single-thread, while filebench can be multi-thread. How-
ever, they both name file in sequential numbers without any
extension. We modified them in order to append a suffix to
each file in the form of “.ε”. ε is a lower-case English letter
from ‘a’ to ‘z’ randomly picked for a file.
The parameters of SAW are set as follows. T = 10 and

α = 0.5. I is relatively measured in terms of write requests.
Its default length is 10,000 write requests.

0
10
20
30
40
50
60
70

baseline BET SAW

Av
er

ag
e

Er
as

e
C

ou
nt

Figure 2: Average Erase Count with Prototype

0
1
2
3
4
5
6
7
8
9 baseline BET SAW

St
an

da
rd

 D
ev

ia
tio

n
of

 E
ra

se
 C

ou
nt

s

Figure 3: Standard Deviation of Erase Counts with
Prototype

4.1 The Effectiveness of SAW
Figure 2 and 3 show the average erase count and stan-

dard deviation of baseline, BET and SAW with the prototype.
baseline has the original wear leveling of UBIFS and UBI.
BET and SAW refer to implementations of BET and SAW,
respectively. We ran postmark with ten settings, from 1
million to 10 million transactions. The number of simul-
taneous files was 50,000. Because of space limitation, we
present the results of 2, 4, 6, 8, 9 and 10 million transac-
tions, and they are referred to as PM-2m, PM-4m and so on.
We ran filebench with two public workloads: fileserver

and varmail. For each workload we ran for an hour and two
hours, respectively. They are referred to as FS-1h, FS-2h,
VM-1h and VM-2h. The number of files was also set to be
50,000. As both postmark and filebench have random be-
haviors at runtime [16, 4], we ran our experiments with each

setting thrice, and the results shown in Figure 2 and 3 are
the mean values. Full results are presented in the Appendix.
The effectiveness of SAW is evident. From Figure 2 we

can see that in each case SAW performed a similar number of
erasures compared to baseline and BET. However, in Fig-
ure 3, SAW’s standard deviation of erase counts significantly
decreases compared to BET, as much as 85.0% with PM-10m.
Even with FS-1h and FS-2h that are read-dominant work-
loads, the reductions can reach 17.3% and 22.8% compared
to BET, respectively. Hence we conclude that SAW effectively
avoids wear skewness with the cooperation of the OS.
Measuring the performance overheads is not straightfor-

ward with the involvement of the OS. Moreover, the chang-
ing behaviors of postmark and filebench during each run
make direct comparison difficult. We have recorded counts
of write, read and erase operations for each case as indicators
of the performance. They can be found in the Appendix.

0

20

40

60

80

100

120

PM-2m PM-4m PM-6m PM-8m PM-9m PM-10m FS-2h

lazy lazy-S BET BET-S OWL O-SAW

Av
er

ag
e

Er
as

e
Co

un
t

Trace
Figure 4: Average Erase Count with FlashSim

TraceSt
an

da
rd

 D
ev

ia
tio

n
of

 E
ra

se
 C

ou
nt

s

0

2

4

6

8

10

12

PM-2m PM-4m PM-6m PM-8m PM-9m PM-10m FS-2h

lazy lazy-S BET BET-S OWL O-SAW

Figure 5: Standard Deviation of Erase Counts with
FlashSim

0

5000

10000

15000

20000

PM-2m PM-4m PM-6m PM-8m PM-9m PM-10m FS-2h

lazy lazy-S BET BET-S OWL O-SAW

Se
rv

ic
e

Ti
m

e
(s

ec
on

d)

Trace

Figure 6: Service time with FlashSim

OWL, lazy wear leveling, and BET were implemented in
FlashSim. The latter two were enhanced with SAW’s idea in
their block allocation. Their implementation are referred to
as OWL, lazy, BET, lazy-S and BET-S, respectively. OWL has
already considered block allocation. We did not enhance it.
Instead, we replaced OWL’s block allocation with SAW’s.
This implementation is referred to as O-SAW.
Note that FlashSim is a trace-driven simulator. Previous

experiments on FlashSim utilized traces collected from vari-
ous machines. However, since write requests of those traces
have no temperature information, they are not suitable. In-
stead, we recorded access request in UBI. There, each re-
quest does have a temperature. These traces were then fed

to FlashSim. Experimental results are partially shown in
Figure 4, 5 and 6 due to the space limitation.
Figure 4 and 5 show that the average erase counts on a

trace for each scheme is similar, but the standard deviation
has decreased significantly for lazy-S and BET-S, by as much
as 55.9% and 82.6%, respectively. Thus, wear evenness was
highly improved in the presence of SAW. On the other side,
O-SAW has comparable wear evenness to OWL, and the stan-
dard deviation of the former is at most 7.0% more. But OWL
allocates blocks according to its own calculation utilizing the
lower computation capability of a flash device, while O-SAW

just needs to use the temperature of each incoming request.
Hence, O-SAW has a much lower computation and resource
overhead, while achieving a similar level of wear evenness.

��

����

��

����

�� ���� ���� ���� �	�� ����

��
�

����������������

�����

��

����

��

����

�� ���� ���� ���� ���� �����

�
��
�	

��������	����

�����

��

����

��

����

�� ���� ���� ���� ���� ����� �����

�
��
�	

��������	����

�����

��

����

��

����

�� ��� ���� ���� ���� ���� ���� ����

�
��
��

���	
��������	

�����

Figure 7: Fluctuation of f/ϕ (Clockwise: PM-5m,
PM-10m, FS-2h, VM-2h)

The performance overhead can be measured using trace
driven simulation because it is entirely deterministic. The
time needed to service all requests of a trace is a good in-
dicator of the performance overhead incurred by wear lev-
eling [20, 19]. The more the service time, the greater the
performance degradation. Figure 6 shows the service time
for traces with each scheme. It is obvious that the addition
of SAW has little performance impact.

4.2 The Accuracy of f for ϕ

f is used to predict ϕ for the next interval using Equa-
tion (8), which is the basis of the temperature calculation.
We ran experiments to verify the accuracy of f for ϕ. With-
out loss of generality, we selected the file type whose filename
extension is “.c”. We collected f and ϕ in every interval with
PM-5m, PM-10m, FS-2h and VM-2h, and calculated f/ϕ,
as is shown in Figure 7. We can see after system boot-up,
f/ϕ fluctuates within tight bounds around 1.0. Hence, we
conclude that the prediction of f for ϕ is accurate.

4.3 Impact of Interval Length
I is an important parameter of SAW. Its default length is

10,000 write requests. We also experimented with lengths
of 5,000, 15,000, 20,000 and 25,000. They are referred to as
5k, 10k, 15k, 20k and 25k, respectively. Because of space
limitation, we could only show their standard deviation in
each case in Table 1. There are the mean values over five
intervals, as well as the absolute mean differences between
the value of each I and the mean. From Table 1 we can see
the fluctuation caused by changes of I is insignificant.

5. ACKNOWLEDGEMENT
This paper is supported by the Ministry of Education of

Singapore under the grant MOE2010-T2-1-075. We also
thank Sudipta Chattopadhyay of NUS for his valuable help.

6. CONCLUSION
In this paper, we revisit the write endurance issue of

flash device, and propose a novel scheme named operating
System-Assisted Wear leveling (SAW). In SAW, the OS par-
ticipates in the process of wear leveling by exploiting its
higher level view of files. Using our proposed model, the OS
quantitatively estimates the temperature of files, and sends
this information to the lower-level FTL that in turn uses it
for block allocation. We have developed a prototype based
on an open-source flash file system and FTL. Experiments
show that the collaboration between the OS and the FTL
improves the wear evenness by as much as 85.0% compared
to the latest FTL-based wear leveling algorithms.

Table 1: Mean Difference of Standard Deviation
with Five Intervals (I)

Benchmark Mean
Absolute Mean Difference

5k 10k 15k 20k 25k

PM 2m 0.865 0.009 0.001 0.001 0.002 0.013
PM 4m 0.960 0.018 0.004 0.014 0.007 0.007
PM 6m 0.981 0.019 0.002 0.004 0.017 0.004
PM 8m 0.986 0.007 0.025 0.002 0.002 0.018
PM 9m 0.982 0.015 0.012 0.002 0.003 0.022
PM 10m 0.985 0.007 0.011 0.023 0.014 0.009
FS-1h 0.692 0.017 0.001 0.024 0.004 0.007
FS-2h 0.861 0.047 0.009 0.016 0.029 0.007
VM-1h 0.789 0.012 0.004 0.011 0.002 0.003
VM-2h 1.036 0.004 0.021 0.017 0.026 0.026

7. REFERENCES
[1] L.-P. Chang. On efficient wear leveling for large-scale

flash-memory storage systems. In SAC ’07.

[2] L.-P. Chang and L.-C. Huang. A low-cost wear-leveling
algorithm for block-mapping solid-state disks. In LCTES ’11.

[3] Intel Corporation. What are the advantages of TRIM and how
can I use it with my SSD? http://www.intel.com/
support/ssdc/hpssd/sb/CS-031846.htm.

[4] A. Traeger et al. A nine year study of file system and storage
benchmarking. Trans. Storage, 4(2):5:1–5:56, May 2008.

[5] J.-W. Hsieh et al. Efficient identification of hot data for flash
memory storage systems. Trans. Storage, 2(1):22–40, Feb. 2006.

[6] M. Mesnier et al. File classification in self-* storage systems. In
ICAC ’04.

[7] P.-C. Huang et al. Joint management of RAM and flash
memory with access pattern considerations. In DAC ’12.

[8] P.-L. Wu et al. A file-system-aware FTL design for
flash-memory storage systems. In DATE ’09.

[9] S. K. Mylavarapu et al. FSAF: file system aware flash
translation layer for NAND flash memories. In DATE ’09.

[10] Y.-H. Chang et al. Endurance enhancement of flash-memory
storage systems: an efficient static wear leveling design. In
DAC ’07.

[11] Y. Kim et al. FlashSim: A simulator for NAND flash-based
solid-state drives. In SIMUL ’09.

[12] Y. Wang et al. Meta-Cure: a reliability enhancement strategy
for metadata in NAND flash memory storage systems. In DAC
’12.

[13] A. Hunter. A brief introduction to the design of UBIFS, 2008.

[14] Micron Technology Inc. TN-26-61: Wear-leveling in MicronR©

NAND flash memory. Technical report, Oct 2011.

[15] Micron Technology, Inc. NAND flash memory datasheet
(MT29F16G08AJADAWP), Feburary 2012.

[16] J. Katcher. Postmark: A new file system benchmark. Technical
Report TR3022, Oct. 1997.

[17] D. Park and D. H.-C. Du. Hot data identification for
flash-based storage systems using multiple bloom filters. In
MSST ’11.

[18] File system and Storage Lab. Filebench benchmark, 2011.
http://sourceforge.net/projects/filebench/.

[19] C. Wang and W.-F. Wong. Extending the lifetime of NAND
flash memory by salvaging bad blocks. In DATE ’12.

[20] C. Wang and W.-F. Wong. Observational wear leveling: an
efficient algorithm for flash memory management. In DAC ’12.

APPENDIX
A. MORE EXPERIMENTAL RESULTS

A.1 The Impact of β

It was mentioned in Section 3.1 that we use β as a bound
for identifying whether a file type is an outlier or not. With-
out loss of generality, we collected the s value in every inter-
val for the file type“.c”using the experimental configurations
PM-5m, PM-10m, FS-2h and VM-2h. The results are pre-
sented in Figure A-1. At boot-up, many files are accessed,
so s is somewhat large. After the system has warmed up,
s fluctuates marginally around 0. Note that β was set to
be 10% by default. In summary, experiments show that s is
typically much less than the selected threshold.

����

����

��

����

����

�� ���� ���� ���� �	�� ����

�
��
��

�	�
�������	�
�

�

����

����

��

����

����

�� ���� ���� ���� ���� �����

�
��
��

�	�
�������	�
�

�

����

����

��

����

����

�� ���� ���� ���� ���� ����� �����

�
��
��

�	�
�������	�
�

�

����

����

��

����

����

�� ��� ���� ���� ���� ���� ���� ����

��
�

����������������

�

Figure A-1: s and β at runtime (Clockwise: PM-5m,
PM-10m, FS-2h, VM-2h)

A.2 Experimental Results with the Prototype
As mentioned in the paper, due to the essentially non-

deterministic nature of the operating system, there can be
differences between each run of the experiments. Here, we
present the full experimental results of baseline, BET and
SAW in terms of the average erase count, standard deviation,
the counts of write and read operations in Table A-1, A-2
and A-3. Table A-1, A-2 and A-3 show results recorded
at each time, respectively. The count of erase operations is
not separately listed because it can be computed using the
average erase count in each table.
The detailed experimental results of five settings on the

interval I are presented in Table A-4, including the average
erase count and standard deviation.

A.3 Experimental Results with FlashSim
The average erase count, standard deviation and service

time of lazy, lazy-S, BET and BET-S, OWL and O-SAW are
shown in three tables for readability. They are Table A-
5, A-6 and A-7. The traces of VM-1h and VM-2h were not
fed to FlashSim because they are too short. Note that the
computation time of OWL’s sorts is not included in service
time due to FlashSim’s limitation. Instead, we recorded the
count of sorting for each trace. It is also shown in Table A-7.

The result of the prototype and that of the trace-driven
simulation under the same setting may be different, or even
vary significantly. Take the average erase count for example.
The value of PM-5m using BET in Table A-1 is 28.855, but
in Table A-6 the average erase count is 46.355. We ascribe
this to the different simulators (nandsim vs Flashsim) used.
nandsim is within a full-system simulator while Flashsim
performs standalone trace-driven simulation.

T
a
b
le

A
-1
:
A
v
e
ra

g
e
E
ra

se
C
o
u
n
t,

S
ta

n
d
a
rd

D
e
v
ia
ti
o
n
,
th

e
C
o
u
n
ts

o
f
W

ri
te

a
n
d

R
e
a
d

O
p
e
ra

ti
o
n
s
o
f
b
a
s
e
l
i
n
e
,
B
E
T
a
n
d

S
A
W
(1

st
T
im

e
)

B
en

ch
m
a
rk

A
v
er
a
g
e
E
ra
se

C
o
u
n
t

S
ta
n
d
a
rd

D
ev
ia
ti
o
n

W
ri
te

O
p
er
a
ti
o
n
s

R
ea
d
O
p
er
a
ti
o
n
s

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

P
o
st
m
a
rk

P
M
-1
m

6
.5
7
2

6
.6
2
4

6
.8
4
2

1
.4
7
1

1
.3
5
0

0
.7
9
1

2
,9
7
2
,9
0
4

3
,0
0
0
,9
1
7

3
,1
1
9
,3
0
5

5
,9
4
9
,1
6
2

5
,6
3
4
,3
5
6

5
,0
4
9
,1
3
7

P
M
-2
m

1
2
.0
4
3

1
2
.1
9
6

1
2
.6
4
3

2
.3
8
7

2
.1
1
5

0
.8
6
0

5
,8
7
7
,7
2
2

5
,9
5
0
,7
0
3

6
,1
9
6
,3
9
9

8
,4
4
3
,4
7
7

9
,6
1
5
,8
3
9

9
,5
1
6
,1
9
8

P
M
-3
m

1
7
.5
1
2

1
7
.7
7
1

1
8
.4
6
4

3
.1
6
7

2
.7
3
1

0
.9
1
2

8
,7
7
9
,1
1
7

8
,8
9
6
,5
1
3

9
,2
8
1
,5
4
1

1
2
,8
1
0
,7
0
9

1
3
,3
6
6
,7
5
0

1
4
,2
3
6
,2
5
4

P
M
-4
m

2
2
.9
8
5

2
3
.4
3
0

2
4
.2
7
6

3
.8
6
4

3
.2
7
1

0
.9
5
7

1
1
,6
8
1
,9
2
1

1
1
,8
3
6
,1
4
6

1
2
,3
6
3
,1
0
3

1
6
,8
9
7
,7
9
0

1
7
,3
9
7
,3
8
6

2
0
,5
4
8
,7
7
0

P
M
-5
m

2
8
.4
4
6

2
8
.8
5
5

3
0
.0
7
5

4
.4
9
7

3
.7
9
8

0
.9
5
2

1
4
,5
7
8
,3
1
7

1
4
,7
6
7
,4
2
7

1
5
,4
3
7
,9
3
9

2
1
,1
1
9
,6
4
2

2
2
,7
0
6
,3
3
0

2
3
,9
3
9
,0
1
1

P
M
-6
m

3
3
.9
5
6

3
4
.4
6
1

3
5
.9
2
9

5
.1
8
6

4
.3
1
9

0
.9
9
2

1
7
,5
0
0
,7
8
8

1
7
,7
3
7
,8
4
3

1
8
,5
4
4
,0
5
9

2
6
,1
3
3
,7
9
7

2
5
,4
0
3
,3
9
5

3
2
,9
9
6
,6
7
8

P
M
-7
m

3
9
.5
9
0

4
0
.1
3
5

4
1
.8
6
8

5
.8
2
8

4
.8
9
4

0
.9
7
6

2
0
,4
8
5
,8
1
4

2
0
,7
4
6
,0
9
9

2
1
,6
9
2
,5
2
0

3
0
,6
2
4
,0
2
2

2
9
,9
2
0
,7
6
0

4
9
,3
9
7
,3
8
6

P
M
-8
m

4
5
.2
4
9

4
5
.9
1
6

4
7
.8
8
1

6
.6
0
6

5
.5
0
9

0
.9
7
5

2
3
,4
8
4
,6
2
3

2
3
,7
9
6
,5
8
7

2
4
,8
8
1
,3
9
1

3
5
,7
4
1
,1
9
6

3
4
,4
3
6
,7
7
2

5
5
,9
4
0
,0
4
8

P
M
-9
m

5
0
.7
9
8

5
1
.6
2
7

5
3
.8
4
7

7
.2
0
7

6
.0
9
8

0
.9
7
9

2
6
,4
2
9
,9
0
6

2
6
,8
1
2
,8
2
5

2
8
,0
4
2
,5
8
2

4
0
,3
7
0
,5
2
6

4
0
,1
1
1
,4
6
8

4
7
,7
9
8
,7
4
3

P
M
-1
0
m

5
6
.3
7
7

5
7
.4
1
2

5
9
.7
5
0

7
.8
1
7

6
.5
2
5

0
.9
9
1

2
9
,3
8
4
,1
4
5

2
9
,8
2
9
,5
2
5

3
1
,1
7
0
,5
6
6

4
5
,7
2
9
,5
2
3

4
7
,2
5
3
,4
2
6

4
8
,5
4
0
,6
9
4

F
il
eb

en
ch

F
S
-1
h

7
.6
2
8

7
.2
2
4

6
.6
5
5

0
.9
1
5

0
.8
2
5

0
.6
7
8

4
,0
3
5
,3
2
5

3
,7
8
8
,6
8
5

3
,5
1
8
,1
7
3

2
5
3
,7
8
7
,0
2
8

2
3
3
,5
1
1
,1
1
8

2
1
3
,6
5
0
,2
6
7

F
S
-2
h

1
5
.4
6
3

1
4
.1
9
5

1
2
.7
6
7

1
.2
8
5

1
.0
6
8

0
.8
1
7

8
,1
9
2
,4
6
0

7
,4
4
0
,7
8
8

6
,7
6
1
,9
4
4

5
2
0
,3
3
5
,1
6
5

4
6
5
,2
6
9
,2
9
6

4
1
7
,4
1
2
,1
9
5

V
M
-1
h

3
4
.6
1
9

3
4
.5
7
4

2
7
.9
8
5

3
.2
1
9

2
.8
9
2

0
.7
3
8

1
8
,3
5
4
,3
2
5

1
8
,1
8
0
,7
4
8

1
4
,8
2
9
,5
2
7

1
6
1
,1
9
3
,4
0
0

1
6
4
,6
1
6
,3
1
5

1
3
5
,8
7
1
,7
9
5

V
M
-2
h

6
5
.2
8
1

6
8
.5
8
1

5
5
.8
6
2

4
.7
4
7

4
.3
4
6

0
.9
7
6

3
4
,6
1
9
,9
5
3

3
6
,2
2
5
,5
0
6

2
9
,6
1
1
,4
0
0

3
6
4
,1
0
2
,3
6
8

3
2
6
,4
4
8
,8
9
4

2
7
0
,8
0
3
,9
0
9

T
a
b
le

A
-2
:
A
v
e
ra

g
e
E
ra

se
C
o
u
n
t,

S
ta

n
d
a
rd

D
e
v
ia
ti
o
n
,
th

e
C
o
u
n
ts

o
f
W

ri
te

a
n
d

R
e
a
d

O
p
e
ra

ti
o
n
s
o
f
b
a
s
e
l
i
n
e
,
B
E
T
a
n
d

S
A
W
(2

n
d

T
im

e
)

B
en

ch
m
a
rk

A
v
er
a
g
e
E
ra
se

C
o
u
n
t

S
ta
n
d
a
rd

D
ev
ia
ti
o
n

W
ri
te

O
p
er
a
ti
o
n
s

R
ea
d
O
p
er
a
ti
o
n
s

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

P
o
st
m
a
rk

P
M
-1
m

6
.5
7
2

6
.6
2
1

6
.8
3
9

1
.4
7
2

1
.3
2
8

0
.7
7
7

2
,9
7
7
,4
5
7

2
,9
9
6
,2
2
9

3
,1
1
7
,2
8
9

5
,6
0
3
,1
2
9

4
,3
4
6
,5
6
3

5
,7
9
0
,0
8
4

P
M
-2
m

1
2
.0
6
0

1
2
.1
7
3

1
2
.6
6
7

2
.3
9
8

2
.0
9
4

0
.8
6
4

5
,8
8
6
,8
7
9

5
,9
3
5
,5
7
6

6
,2
0
8
,2
0
0

8
,7
0
0
,5
3
9

8
,5
7
0
,9
6
8

9
,5
2
0
,8
7
7

P
M
-3
m

1
7
.4
7
6

1
7
.7
4
3

1
8
.4
6
9

3
.1
2
6

2
.6
9
3

0
.9
1
7

8
,7
9
1
,2
1
8

8
,8
8
0
,3
3
5

9
,2
8
4
,8
5
8

1
2
,8
1
7
,3
7
6

1
3
,0
5
7
,3
1
4

1
4
,6
4
6
,8
2
3

P
M
-4
m

2
3
.0
3
5

2
3
.3
7
9

2
4
.2
7
0

3
.8
7
7

3
.2
5
5

0
.9
4
2

1
1
,7
0
8
,4
5
9

1
1
,8
3
4
,9
5
4

1
2
,3
6
1
,0
8
7

1
7
,2
4
4
,8
2
6

1
9
,8
9
5
,4
5
2

1
9
,7
8
8
,9
9
8

P
M
-5
m

2
8
.5
0
9

2
8
.8
5
3

3
0
.0
8
5

4
.5
6
1

3
.7
5
2

0
.9
5
8

1
4
,6
1
0
,0
5
7

1
4
,7
6
6
,0
1
6

1
5
,4
4
2
,7
7
1

2
1
,4
7
8
,8
3
3

2
6
,0
9
0
,4
8
2

2
3
,7
8
2
,0
7
2

P
M
-6
m

3
4
.0
1
4

3
4
.4
3
1

3
5
.8
9
5

5
.0
9
7

4
.2
4
2

1
.0
0
4

1
7
,5
2
8
,2
0
1

1
7
,7
2
1
,0
3
5

1
8
,5
2
5
,8
0
6

2
5
,6
5
9
,2
5
1

2
8
,2
3
8
,3
9
3

3
3
,9
4
7
,2
3
7

P
M
-7
m

3
9
.6
2
6

4
0
.1
5
5

4
1
.8
6
1

5
.8
1
8

4
.8
1
1

0
.9
6
1

2
0
,5
0
3
,4
3
2

2
0
,7
5
2
,1
7
4

2
1
,6
8
8
,1
4
7

3
0
,1
9
1
,4
1
3

3
2
,7
7
8
,0
2
8

4
5
,0
9
8
,9
7
7

P
M
-8
m

4
5
.2
7
0

4
5
.9
0
7

4
7
.8
6
5

6
.6
0
2

5
.4
7
0

0
.9
8
7

2
3
,4
9
8
,7
8
2

2
3
,8
0
1
,5
1
0

2
4
,8
6
9
,8
2
2

3
4
,6
9
2
,8
9
5

3
6
,8
1
7
,1
0
8

5
9
,2
0
3
,6
4
7

P
M
-9
m

5
0
.9
0
0

5
1
.6
1
3

5
3
.7
9
9

7
.2
7
2

6
.0
9
8

0
.9
6
6

2
6
,4
7
8
,3
3
2

2
6
,8
0
2
,8
0
7

2
8
,0
1
4
,7
5
4

3
9
,7
8
0
,7
9
8

4
1
,2
7
0
,4
3
0

7
1
,7
0
0
,9
0
8

P
M
-1
0
m

5
6
.4
5
7

5
7
.1
7
2

5
9
.7
2
4

7
.8
6
1

6
.5
6
6

0
.9
8
9

2
9
,4
2
7
,2
1
8

2
9
,7
7
0
,7
7
3

3
1
,1
5
5
,6
5
9

4
4
,1
4
8
,9
4
5

4
8
,9
4
2
,2
4
4

4
7
,5
6
4
,4
9
0

F
il
eb

en
ch

F
S
-1
h

7
.7
3
1

6
.7
5
4

6
.6
9
5

0
.9
4
1

0
.8
1
6

0
.6
8
4

4
,0
9
1
,1
6
4

3
,5
5
3
,7
5
8

3
,5
3
8
,6
8
5

2
5
6
,1
8
7
,2
4
6

2
1
8
,8
8
6
,4
8
3

2
1
5
,5
2
7
,0
1
4

F
S
-2
h

1
5
.2
8
4

1
4
.5
5
3

1
4
.1
3
5

1
.2
9
6

1
.0
8
6

0
.8
3
7

8
,0
9
7
,9
6
3

7
,6
7
3
,3
4
9

7
,4
8
6
,0
3
6

5
0
8
,5
2
2
,7
8
7

4
8
1
,9
8
1
,8
8
0

4
6
2
,8
8
0
,6
3
6

V
M
-1
h

3
3
.2
7
6

3
4
.1
2
3

2
9
.7
5
8

3
.1
3
0

2
.8
3
3

0
.7
6
1

1
7
,6
4
2
,4
9
4

1
8
,0
0
3
,3
5
1

1
5
,7
6
9
,7
4
7

1
5
6
,9
0
1
,3
3
3

1
6
0
,3
0
9
,6
0
5

1
4
7
,3
6
3
,8
8
1

V
M
-2
h

6
6
.4
2
6

6
3
.8
7
0

6
1
.7
4
0

4
.8
7
3

4
.2
2
2

1
.0
0
3

3
5
,2
2
7
,3
5
9

3
3
,7
4
6
,9
0
3

3
2
,7
2
9
,1
5
0

3
1
6
,8
6
7
,9
9
5

3
8
5
,0
5
8
,1
8
2

2
7
7
,6
7
8
,5
2
2

T
a
b
le

A
-3
:
A
v
e
ra

g
e
E
ra

se
C
o
u
n
t,

S
ta

n
d
a
rd

D
e
v
ia
ti
o
n
,
th

e
C
o
u
n
ts

o
f
W

ri
te

a
n
d

R
e
a
d

O
p
e
ra

ti
o
n
s
o
f
b
a
s
e
l
i
n
e
,
B
E
T
a
n
d

S
A
W
(3

rd
T
im

e
)

B
en

ch
m
a
rk

A
v
er
a
g
e
E
ra
se

C
o
u
n
t

S
ta
n
d
a
rd

D
ev
ia
ti
o
n

W
ri
te

O
p
er
a
ti
o
n
s

R
ea
d
O
p
er
a
ti
o
n
s

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

b
a
s
e
l
i
n
e

B
E
T

S
A
W

P
o
st
m
a
rk

P
M
-1
m

6
.5
6
8

6
.6
3
5

6
.8
2
8

1
.4
6
6

1
.3
4
2

0
.7
8
2

2
,9
7
5
,5
4
4

3
,0
0
5
,3
4
7

3
,1
1
2
,3
4
7

5
,2
6
9
,3
2
2

5
,4
2
3
,5
7
0

7
,0
8
2
,4
8
0

P
M
-2
m

1
2
.0
3
1

1
2
.2
0
1

1
2
.6
4
4

2
.3
8
2

2
.1
1
5

0
.8
6
6

5
,8
7
1
,6
5
5

5
,9
5
1
,3
4
9

6
,1
9
4
,7
1
3

8
,8
0
4
,9
5
4

1
0
,1
8
4
,4
7
1

9
,9
1
1
,9
5
0

P
M
-3
m

1
7
.5
0
4

1
7
.7
6
9

1
8
.4
4
5

3
.1
6
5

2
.7
1
8

0
.9
1
8

8
,7
7
3
,9
3
2

8
,8
9
0
,0
5
1

9
,2
7
2
,1
5
0

1
3
,1
8
0
,2
0
3

1
6
,2
6
2
,3
9
1

1
4
,9
8
2
,8
2
9

P
M
-4
m

2
3
.0
1
2

2
3
.4
0
7

2
4
.2
7
8

3
.8
3
7

3
.2
4
5

0
.9
6
4

1
1
,6
9
2
,8
8
2

1
1
,8
2
6
,1
5
7

1
2
,3
6
3
,7
3
2

1
7
,2
0
5
,7
0
3

1
7
,7
8
2
,5
0
0

1
9
,0
3
2
,6
4
8

P
M
-5
m

2
8
.4
4
6

2
8
.8
4
5

3
0
.0
6
7

4
.4
7
5

3
.7
7
6

0
.9
6
1

1
4
,5
7
7
,7
8
8

1
4
,7
6
0
,8
0
4

1
5
,4
3
3
,9
6
1

2
1
,4
6
0
,5
8
4

2
1
,6
5
2
,6
6
6

2
3
,5
2
5
,0
5
0

P
M
-6
m

3
3
.9
7
6

3
4
.4
4
9

3
5
.9
0
2

5
.1
6
3

4
.2
5
9

0
.9
7
9

1
7
,5
0
9
,9
4
2

1
7
,7
2
9
,3
8
3

1
8
,5
2
8
,6
4
9

2
6
,1
7
9
,4
7
2

2
7
,6
8
5
,9
0
2

3
7
,3
4
2
,5
6
6

P
M
-7
m

3
9
.5
6
9

4
0
.1
5
9

4
1
.8
7
2

5
.8
0
6

4
.8
3
1

0
.9
7
5

2
0
,4
7
1
,1
4
2

2
0
,7
5
8
,4
6
0

2
1
,6
9
2
,7
5
0

3
0
,7
1
6
,8
5
2

3
2
,4
8
3
,5
4
3

5
0
,4
6
5
,2
8
6

P
M
-8
m

4
5
.2
3
3

4
5
.9
4
6

4
7
.8
9
1

6
.5
8
1

5
.4
8
4

1
.0
1
2

2
3
,4
7
6
,2
7
9

2
3
,8
0
6
,5
4
5

2
4
,8
7
8
,5
9
5

3
6
,0
0
4
,2
3
3

4
0
,9
5
4
,8
5
3

6
1
,7
4
4
,0
9
9

P
M
-9
m

5
0
.8
2
0

5
1
.6
9
3

5
3
.8
0
8

7
.1
5
2

6
.1
7
6

0
.9
6
9

2
6
,4
3
7
,7
9
3

2
6
,8
2
8
,3
7
2

2
8
,0
1
4
,4
6
0

3
9
,5
2
4
,9
0
0

4
8
,3
0
8
,2
5
3

6
8
,4
8
0
,6
7
2

P
M
-1
0
m

5
6
.3
6
6

5
7
.3
9
2

5
9
.6
8
6

7
.8
4
9

6
.6
3
3

0
.9
7
4

2
9
,3
8
0
,8
3
6

2
9
,8
1
1
,4
8
5

3
1
,1
3
7
,1
8
0

4
4
,7
0
3
,2
3
7

4
4
,8
3
5
,6
6
3

4
7
,3
6
1
,6
3
2

F
il
eb

en
ch

F
S
-1
h

7
.9
3
5

7
.2
5
1

6
.8
9
3

0
.9
4
2

0
.8
4
2

0
.6
9
1

4
,2
0
0
,8
4
1

3
,8
2
5
,1
1
1

3
,6
4
5
,0
1
3

2
6
1
,1
5
2
,6
2
5

2
3
8
,4
1
3
,1
3
4

2
2
1
,0
2
3
,2
7
8

F
S
-2
h

1
5
.5
7
9

1
4
.2
9
5

1
4
.8
5
9

1
.3
3
4

1
.0
9
3

0
.8
5
2

8
,2
5
3
,1
3
5

7
,5
4
4
,6
9
9

7
,8
7
0
,9
2
4

5
2
6
,4
0
0
,7
1
0

4
7
5
,7
0
5
,3
9
3

4
8
4
,4
0
0
,9
7
2

V
M
-1
h

3
3
.5
9
2

3
4
.0
7
7

3
2
.6
3
8

3
.1
5
4

2
.9
2
0

0
.7
9
3

1
7
,8
1
0
,2
4
7

1
7
,9
8
4
,7
5
7

1
7
,2
9
6
,9
1
3

1
5
9
,5
7
4
,5
3
7

1
6
0
,9
2
4
,5
0
0

1
4
1
,3
0
5
,5
6
7

V
M
-2
h

6
6
.4
7
8

6
6
.0
2
9

6
3
.8
8
5

4
.7
9
4

4
.2
9
5

1
.0
5
7

3
5
,2
5
4
,7
9
9

3
4
,8
5
9
,1
5
4

3
3
,8
6
6
,4
8
2

3
2
7
,0
8
6
,8
4
8

3
2
2
,9
8
0
,0
5
2

2
9
6
,8
6
7
,3
2
0

Table A-4: Average Erase Count and Standard Deviation of 5k, 10k, 15k, 20k and 25k

Benchmark
Average Erase Count Standard Deviation

5k 10k 15k 20k 25k 5k 10k 15k 20k 25k

Postmark

PM-1m 6.822 6.828 6.831 6.828 6.832 0.782 0.782 0.772 0.792 0.786
PM-2m 12.642 12.644 12.644 12.656 12.631 0.873 0.866 0.866 0.867 0.852
PM-3m 18.448 18.445 18.433 18.442 18.452 0.913 0.918 0.913 0.900 0.921
PM-4m 24.249 24.278 24.239 24.260 24.237 0.942 0.964 0.973 0.967 0.952
PM-5m 30.037 30.067 30.058 30.046 30.041 0.989 0.961 0.966 0.963 0.953
PM-6m 35.877 35.902 35.888 35.891 35.884 1.000 0.979 0.992 0.964 0.978
PM-7m 41.848 41.872 41.843 41.865 41.823 0.966 0.975 0.992 0.959 0.970
PM-8m 47.877 47.891 47.884 47.896 47.858 0.980 1.011 0.985 0.988 0.968
PM-9m 53.797 53.808 53.832 53.825 53.806 0.966 0.969 0.984 0.985 1.004
PM-10m 59.722 59.686 59.702 59.635 59.687 0.978 0.974 1.009 0.971 0.995

Filebench

FS-1h 7.664 6.893 7.016 7.152 7.378 0.708 0.691 0.668 0.692 0.698
FS-2h 15.172 14.859 14.173 14.234 14.749 0.908 0.852 0.845 0.832 0.868
VM-1h 33.422 32.638 32.741 31.086 32.857 0.800 0.793 0.778 0.786 0.785
VM-2h 63.635 63.885 62.587 63.971 63.940 1.032 1.057 1.019 1.010 1.062

Table A-5: Average Erase Count, Standard Deviation and Service Time of lazy and lazy-S

Trace
Average Erase Count Standard Deviation Service Time (second)
lazy lazy-S lazy lazy-S lazy lazy-S

PM-1m 7.887 7.876 2.952 2.184 1,556.628 1,554.672
PM-2m 17.670 17.622 4.352 2.888 3,294.608 3,286.003
PM-3m 27.436 27.395 4.481 3.364 5,029.318 5,022.122
PM-4m 37.263 37.067 6.310 3.627 6,775.204 6,740.659
PM-5m 47.056 46.739 7.159 3.484 8,513.718 8,457.832
PM-6m 56.904 56.667 7.833 4.027 10,263.168 10,221.351
PM-7m 66.756 66.518 8.458 4.127 12,014.693 11,972.629
PM-8m 76.791 76.521 9.103 4.126 13,795.465 13,747.889
PM-9m 86.744 86.437 9.586 4.229 15,564.870 15,510.796
PM-10m 96.480 96.183 10.089 4.329 17,295.008 17,242.518
FS-1h 8.25 8.236 3.256 2.431 1,619.643 1,616.433
FS-2h 17.415 17.312 4.833 3.258 3,246.716 3,228.453

Table A-6: Average Erase Count, Standard Deviation and Service Time of BET and BET-S

Trace
Average Erase Count Standard Deviation Service Time (second)
BET BET-S BET BET-S BET BET-S

PM-1m 7.759 7.759 2.932 1.519 1,534.515 1,534.153
PM-2m 17.400 17.400 4.379 1.785 3,246.938 3,246.937
PM-3m 27.048 27.048 5.488 13833 4,960.660 4,960.621
PM-4m 36.732 34.732 6.360 1.875 6,679.744 6,679.732
PM-5m 46.355 46.355 7.255 1.873 8,389.552 8,389.545
PM-6m 56.096 56.096 7.901 1.867 10,119.220 10,119.206
PM-7m 65.948 65.948 8.436 1.839 11,870.850 11,870.873
PM-8m 75.953 75.953 9.256 1.825 13,646.346 13,646.327
PM-9m 85.873 85.873 9.672 1.815 15,409.453 15,458.531
PM-10m 95.618 95.618 10.201 1.772 17,141.411 17,141.443
FS-1h 8.139 8.139 3.214 1.908 1,597.788 1,597.665
FS-2h 17.190 17.190 4.687 2.484 3,202.400 3,202.490

Table A-7: Average Erase Count, Standard Deviation and Service Time of OWL and O-SAW

Trace
Average Erase Count Standard Deviation Service Time (second) The Count of
OWL O-SAW OWL O-SAW OWL O-SAW OWL’s Sorts

PM-1m 7.926 7.929 1.017 0.977 1,584.611 1,585.733 34,547
PM-2m 17.569 17.569 0.987 1.026 3,297.739 3,297.769 76,558
PM-3m 27.211 27.217 1.000 1.054 5,010.163 5,012.342 118,522
PM-4m 36.883 36.888 1.014 1.045 6,730.632 6,732.437 160,669
PM-5m 46.511 46.513 1.002 1.053 8,438.900 8,439.666 202,563
PM-6m 56.248 56.252 0.972 1.011 10,168.723 10,169.981 244,955
PM-7m 66.098 66.102 0.942 0.987 11,919.311 11,920.698 287,988
PM-8m 76.103 16.104 0.934 0.980 13,696.460 13,697.167 331,575
PM-9m 86.021 86.022 0.944 0.970 15,458.531 15,458.991 374,842
PM-10m 95.763 95.762 0.993 1.028 17,189.121 17,188.892 417,425
FS-1h 8.331 8.338 1.049 1.148 1,665.058 1,667.493 38,522
FS-2h 17.381 17.390 1.440 1.541 3,276.431 3,279.699 80,686

