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Abstract—Precision tuning post-training is often needed for
efficient implementation of deep neural networks especially when
the inference implementation platform is resource constrained.
While previous works have proposed many ad hoc strategies for
this task, this paper describes a general method for allocating
precision to trained deep neural networks data based on a
property relating errors in a network. We demonstrate that the
precision results of previous works for hardware accelerator or
understanding cross layer precision requirement is subsumed
by the proposed general method. It has achieved a 29% and
46% energy saving over the state-of-the-art search-based method
for GoogleNet and VGG-19 respectively. Proposed precision
allocation method can be used to optimize for different criteria
based on hardware design constraints, allocating precision at the
granularity of layers for very deep networks such as Resnet-152,
which hitherto was not achievable.

I. INTRODUCTION

There are many obvious value propositions and use cases
for the implementation of deep neural networks on resource
constrained platforms. Many works have considered the use of
low precision, fixed-point arithmetic, or quantization methods
to achieve better inference speeds and/or low energy con-
sumption. This is the central problem of this paper: how to
deploy a trained deep neural network in the most efficient
manner based on precision tuning subject to user’s constrains
on chosen hardware. Recent works on this problem [1]–
[3], focused on hardware design and relied on empirically
searching that repeatedly assigns a combination of bitwidths
to different layers followed by testing to try to ensure a certain
quality (e.g. less than 1% dropping in classification accuracy),
failing which the assignment is tweaked and retried. This
approach will likely over-fit the precision result to the testing
data set. Furthermore, because it is very time-consuming, this
approach can only assign precision at a coarse granularity. The
method presented in this paper subsumes these. [4] presented
a theoretical method that finds the relationship of bitwidth
allocation between the different layers of a given neural
network. Unfortunately, it only works for convolutional layers
in a shallow network. Other works on providing a theoretical
bound on classification error of quantized network [5], [6]
improved the fidelity of the bitwidth result, but assign all layer
to have the same data type, which is not suitable for developing
hardware accelerators or only works for weights. In short,
dynamic search will give much better result with reasonable
granularity but suffers a heavy computation load since it relies
on running the actual network repeatedly. Theoretical bounds,
on the other hand, are usually too conservative, and impractical

at finer granularities. In this work, we will introduce a method
that strikes a middle path that efficiently allocates bitwidth at
the level of layers, and take into consideration constraints on
resources. This paper makes the following contributions to the
problem of precision tuning for hardware design:

• We found an important relationship between fixed point
rounding errors of the different layers in deep neural
networks.

• We operationalized this insight in an open source pre-
cision optimization framework that subsumes previous
works, and demonstrated it effectiveness on some of the
largest deep neural networks.

• Our method can be used to optimize for different criteria.

II. A MOTIVATING EXAMPLE

Suppose we have a simple dot product operation y =
w1x1 + w2x2 where y is the output, w1, w2 are the constant
weights, and x1, x2, are the inputs. Let δy, δxi and δwi be the
numerical errors of y, xi, and wi, respectively.

y + δy = (w1 + δw1
)(x1 + δx1

) + (w2 + δw2
)(x2 + δx2

)

⇒ δy = x1δw1
+ w1δx1

+ x2δw2
+ w2δx2

+ δw1
δx1

+ δw2
δx2

(1)

If we assume wi � δwi
and xi � δxi

, we have:

δy ≈ x1δw1 + w1δx1 + x2δw2 + w2δx2 (2)

Variants of Eq. 2 were used in neural network quantization [4]
and simple programs [7]. It also suggests that if we are given
an output error δy (i.e., an output quality threshold), we can
‘distribute’ it to the numerical error of the data (δxi ) and the
weights (δwi ). In the above example, to get one solution for
δxi

and δwi
we can simply divide δy into four equal portions,

calculating δxi
and δwi

accordingly: δwi
= δy/(4xi), δxi

=
δy/(4wi), i = 1, 2.

After computing all the numerical errors of wi and xi, we
can select a limited precision number format that will ensure
the output error of our new reduced precision will be less than
or equal the given δy . The details for doing so are as follow:

A. Fixed point format and uniform quantization

Let’s assume a fixed point format ‘I.F’ where I and F is
the number of bits in integer part and the fraction part of the
fixed point format, respectively. The worst case rounding error
when using the format I.F with correct rounding is ±2−(F+1),
it is also called the quantization error because the fixed point
format is a special case of uniform quantization when the step
size is a power-of-two. After computing δxi , we can assign



TABLE I
NOTATION AND ABBREVIATION

s.d. standard deviation
Within a specific layer, each input location has index i

δy , σy the error at output node y and its s.d.
wi the constant learned weight at index i at a specific layer

δxi , σxi the rounding errors of input at index i and its s.d.
Within a network, consider each layer as a whole

Ł the index of the last layer in the network (before softmax)
σXK

s.d. of the rounding errors of all inputs X of layer K
σYK

s.d. of the output error at layer K
∆XK

the boundary of uniform distribution with s.d. equals σXK

We use capital character X , Y with index K to denote the collective input
and output, respectively, of layer K in the network, and non-capital character
x, y with index i, for indexing a specific element within the respective tensor.

d− log2(2δxi
)e as the F for xi. For the integer part, we need

to measure the range of the value of xi to ensure xi’s integer
part will not cause arithmetic overflow. In other words, I=
dlog2(|xi|)e+1 for a signed format. Furthermore, if we apply
the same format I.F to represent each value in a set of large
enough values X , after we obtained X̂ in limited precision, the
quantization error (X̂−X) will form an approximate uniform
distribution in range [−∆; ∆] with ∆ = 2−(F+1). According
to [8], in general, when the quantization step is much smaller
than the actual value, the quantization error can be modelled as
an additive white noise that is not correlated with the actual
value. The white noise is a symmetric uniform distribution
with mean 0, and variance : σ2 = (2∆)2/12.

Recent hardware implementation for fixed point arithmetic
for neural network [1], [2] explored dropping some of the less
significant bits from integer part when the value is high error-
tolerant beyond integer arithmetic. In this paper, we will also
consider saving the integer bitwidth when ∆ is greater than
1 as it renders the fraction part and ‘F’ less significant bits
in ‘I’ are useless. By using the appropriate scaling factor (for
example, a mandatory implicit shift), it is possible to use a
fixed point arithmetic with a bitwidth of I + F where F < 0.

B. Fixed point convolutional neural network

Any convolutional neural network (CNN) in inference mode
is simply a chain of dot product operations between large
tensors of inputs and weights where the output of one layer
becomes the input of the next layer, with some simpler
computation components in between. At the last layer, there
is usually a Softmax function that classifies an image into
one of the possible classes [9]. Figure 1 shows the typical
structure of a neural network comprises 1, . . . ,Ł layers of
computation, other components (pooling, ReLU) are omitted
for simplicity. The error behavior is simple when weights are
kept exact (floating point): the rounding error of the inputs
to layer K is uniformly distributed with a mean ≈ 0 and is
symmetric. The error at its output will be approximately Gaus-
sian ∼ N (0, σ2

YK
). This error will propagate through the dot

product, intermediate layers ending at the output layer which
will also approximately a normal distribution ∼ N (0, σ2

YŁ
).

This insight led us to focus on the relationships between the
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Fig. 1. The typical error propagation behavior of fixed point neural network
when using fixed point format on input at layer K and keeping other
components exact. Zero values at XK are always accurately represented in
fixed point and hence not included. Error histograms were drawn with smooth
lines for simplicity.

standard deviations (s.d.) of these error distributions, and use
these to allocate bitwidth for each layer of a neural network.

III. STATISTICAL PROPERTIES OF ROUNDING ERRORS IN
NEURAL NETWORKS

In this section, we describe a simple model for rounding
error propagation in real neural networks that have a mix
of convolution, fully connected, pooling and ReLU layers,
running in its inference mode. Convolution and fully connected
layers use the same dot product operation, the only difference
is the way inputs or weights are shared.

A. Single layer error model

Let’s start with a single layer. The model described in
Section II is applicable for simple fixed inputs. Let’s assume
that the weights are perfect, i.e., δwi

= 0 in Eq. 3. We can
derive the quantization error model from Eq. 2 for S different
input images with N pixels each as follows:

δy ≈
N∑
i=1

wiδxi (3)

Since we are dealing with inference, wi in Eq. 3 are constant as
they are learned weights. For a single input image, we can get a
discrete value for each δxi

. To generalize over all input images,
we will consider each δxi to be a random variable drawn from
a distribution of rounding error on xi with a sample size S,
the number of input images. Specifically, as described in II-A,
it will be a a uniform distribution with a mean of 0 and s.d.
equals σxi

. From Eq. 3, if we assume that the δxi
’s are mutual

independent, and have the same s.d. of σXK
(this assumes that

we will use the same fixed point format for all xi in layer K),
the relationship between the variances is:

σ2
y ≈

N∑
i=1

w2
i σ

2
XK
⇒ σXK

≈ λσy (4)

B. Correlated input errors and grouping error at output

The relationship in Eq. 4 could be sufficient to model the
propagation of error in a single dot product operation that
produces one output element. Because the output of each layer
is an array with M elements, there will be a small variation in



the s.d. of each σyj
, j ∈ [1,M ] as they will be computed on

different set of weights. Thus, if we measure the s.d. of errors
over the whole tensor output at layer K as σYK

, it will be a
mixture of many normal distributions [10]. Furthermore, as the
output of one layer is the input of the next layer with some
degree of input sharing in the computation, the correlation
between rounding errors on different input locations needs to
be included when we consider a dot product performed on
an intermediate layer. After considering possible correlations
when grouping all the outputs of the same layer into a single
error distribution, we found that the relationship needs to be
adjusted by one more (additive) constant θ giving us σXK

≈
λσYK

+ θ. This will be justified in Section IV.

C. Nonlinear activation and Pooling layers

In the previous sections, we modeled the change in s.d.
of input passing through the dot product at a single layer.
Likewise, we can model the change in the s.d. of rounding
error passing through other types of layer as well. The popular
nonlinear activation function ReLU(x) = max{0, x} does not
break the linear relationship between s.d. of value passing
through it. Consider the output y = ReLU(x). Since the
rounding error of exact 0 values when using fixed-point is
0, regardless of the precision we choose, having more zero
values after ReLU will scale down the s.d. while keeping the
mean at 0. Thus, σy = α · σx, with some constant α.

For pooling layers, max pooling does not affect the output
rounding error, i.e. if y = max pool(x) then σy = σx, since
the error of y is a sub-sample of the error in x. For average
pooling with filter size N , we can consider it as a dot product
operation in Eq. 3 with constant weights of 1/N .

IV. CROSS-LAYER LINEAR RELATIONSHIP BETWEEN
STANDARD DEVIATIONS

From the single layer model above, we shall now extend
the model to the entire network. In particular, if we round all
the inputs of layer K with some fixed point format that has
s.d. of rounding error equals σXK

and do a forward pass to
the last layer Ł, σYŁ will still be linearly related to σXK

. As
layer K is the origin of this error, we use the symbols δYK→Ł

and σYK→Ł to denote the error at layer Ł caused by layer K
and its s.d., respectively. From Section II-A, we see that the
boundary of the uniform distribution ∆XK

= σXK

√
12/2. We

postulate that there is a linear relationship between ∆XK
of

layer K, and σYK→Ł of the last layer that is as follows:

∆XK
≈ λKσYK→Ł + θK (5)

with λK and θK are measurable constants of layer K.
We validated Eq 5 by conducting measurements for all

deep networks that we have access to. For each layer K in
each neural network, we inject a random uniform error of
[−∆XK

,∆XK
] to XK . Then we measured σYK→Ł at the last

layer after the inference. Figure 2 shows the linear relationship
in Eq. 5 measured on different CNNs.

In all the CNNs we checked, including some that have
complex modern structures and other types of computation
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Fig. 2. Relationship between ∆XK
(y-axis) and σYK→Ł (x-axis) in two

CNNs. Each line is a linear regression model connects all measurements of
∆XK

and σYK→Ł for layer K. Half of the layers of VGG-19 were removed
to avoid overlapping. Both were measured on 500 images.

beyond what we have modelled in Section III, Eq 5 was
confirmed. In particular, it was able to predict the ∆XK

’s
mostly with a < 5% error by using the measured σYK→Ł . In
the worst case, it was about 10% of the actual value. As will
be shown in our experiments, this linear regression derives
safe fixed point bitwidth for a variety of CNNs.

V. ANALYZING THE WHOLE NEURAL NETWORK

There are three more pieces needed to complete our frame-
work. To use Eq. 5, we first need to find the coefficients of the
relationship. Next, we consider the effect when propagating all
the rounding error of each layer towards the final layer, Ł’s,
numerical error. Finally, we need to find the numerical error
at layer Ł that will satisfy the user’s accuracy requirement.

A. Error injection and measurement

This section presents a linear regression based method to
measure the two constants λK and θK in Eq. 5 for each layer,
K in a CNN. Given a neural network with 1, . . . ,Ł layers
to be analyzed (convolutional and fully connected layers), we
need to run the forward pass of the CNN over a “large enough”
dataset Ł times, each time doing the following:

1) Record down the exact value of layer Ł’s output (YŁ).
2) Guess an initial value of ∆XK

.
3) Inject an error from the uniform distribution

[−∆XK
,∆XK

] into input of layer K, and do a
forward pass to layer output Ł to obtain ŶŁ.

4) Measure the s.d. of (ŶŁ − YŁ) as σYK→Ł .
5) Change the value of ∆XK

and loop over (3-5) for a
small number of times (we found 20 to be sufficient) to
get enough points for a linear regression.

We found in our experiment that measurements from 50-200
images will produce stable regression results.

B. Analyzing the errors in the final layer

To see how errors propagate to the final layer, let’s consider
a CNN with Ł layers again. For each layer K ∈ [1 . . .Ł],
we use a fixed point format that has uniformly distributed
errors in the range [−∆XK

,∆XK
] on input XK . That error

will propagate through the computation in neural network and
result in a change in the output of layer Ł. We shall have
the propagated error at the final layer that originates in layer
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Fig. 3. The left shows the relationship between σYŁ and accuracy under two
different error injection modes for AlexNet. Each point is the average of 3
measurements, the variation is insignificant compared to the black error bars.
In all the tests for equal scheme, we also check the approximation of Eq. 7,
the error is less than 5% of the target σYŁ values. The green histogram on
the right shows the actual error at layer Ł (green) against a perfect N (0, 1)
(black). This histogram has a s.d. = 0.99, mean = 7 × 10−5 measured on
5× 105 output values.

K as δYK→Ł with s.d. σYK→Ł as in Eq. 5. The output error
at layer Ł, i.e., δYŁ which has s.d. σYŁ , consists of Ł error
sources: δYŁ =

∑Ł
K=1 δYK→Ł . According to [11], these noise

sources can be assumed to be mutually independent when
quantizing CNNs. Therefore we have this relationship between
the variances from mutual independent sources δYK→Ł :

σ2
YŁ

=

Ł∑
K=1

ξK · σ2
YŁ
≈

Ł∑
K=1

σ2
YK→Ł

where
Ł∑

K=1

ξK = 1 (6)

From Eq. 6, we have σ2
YK→Ł

= ξK · σ2
YŁ

. Putting σYK→Ł

into Eq. 5, we can find a value of ∆XK
that reflects the

decomposition in Eq. 6. Hence for each layer, we have:

∆XK
≈ λKσYK→Ł + θK = λK(σYŁ

√
ξK) + θK (7)

This is the main result of our paper: given a target σYŁ , and
having found λk and θK , Eq. 7 gives us a way to distribute
the error ‘backward’ to any layer K via ξK to yield ∆XK

, the
boundary of uniform distribution used to model the error of
XK . This is in turn used to select a bitwidth for that layer’s
input (XK). We can then use different criteria to decide on
ξK . This will be discussed further in Section V-D.

C. Relating classification accuracy to numerical error

The final piece to our framework is to relate the numerical
error at the last layer, σYŁ , to the final classification accuracy.
The error at layer Ł has s.d.’s around σYŁ when using different
values for each ξK according to Eq. 7. However, we observed
that different ways of assigning ξK may affect classifica-
tion accuracy. Fortunately, for all our experiments, we found
that the differences were within the user accuracy criteria
when using our optimization scheme. To further validate this,
we estimated the worst possible variation to accuracy when
changing the value of each ξK in range [0.1/Ł, 0.8] which
covers most of the possible results for bitwidth optimization.
One can also impose this as a constraint for optimization.
We define a baseline equal scheme of error distribution as
∀ξK ∈ ξ, ξK = 1/Ł. The results of the study on AlexNet
is shown in Figure 3. The maximum change in accuracy

compared to the equal scheme (in green series) is plotted
as the black error bar at each point. Because the number
of combinations is large, we tested the corner cases, which
happens when ξK = 0.8 with the rest sharing the remaining
0.2 portion of the final error equally. For example, the first
case for 3 layers would be ξ = (0.8, 0.1, 0.1). As can be seen
from Figure 3, the variation is tolerable when the accuracy loss
is below 5%. We support the equal scheme as ‘Scheme 1’ to
estimate the accuracy degradation in our framework. We also
tested a fast approximation that injects N (0, σ2

YŁ
) to only layer

Ł, labeled as the gaussian approx series in Figure 3. This is
possible because the typical error on output layer Ł almost
normally distributed as shown in the histogram on the right of
Figure 3. This is supported as ‘Scheme 2’ in searching.

In summary, distributing the errors, for a given σYŁ , dif-
ferently amongst the layers may affect the final classification
accuracy. However, as long as the user given constraint for
relative accuracy loss is not too large (say less than 5%), any
(realistic) error distribution will be able to satisfy it.

Because σYŁ monotonically increases when accuracy de-
creases, we use a binary search on real numbers similar to
[12] to search for the σYŁ that will satisfy a certain accuracy
level. We start by simply guessing an upper bound for σYŁ (say,
1.0). If it violates the given constraint then we start the binary
search procedure. Otherwise, we double the upper bound’s
value, and try until we find an upper bound that violates the
accuracy constraints. The actual search is a standard binary
search on real number, we stop when the distance between
the two bounds is less than 0.01. The test for whether a value
of σYŁ is satisfied differs between the two aforementioned
schemes 1 and 2. In Scheme 1, we use Eq. 7 to get all the
values of ∆XK

using σYŁ and ξK = 1/Ł. We then inject
uniform noise [−∆XK

,∆XK
] to each layer K and measure

the accuracy after doing a forward pass. For Scheme 2, we
inject error only to YŁ with Gaussian noise N (0, σ2

YŁ
) and

measure the accuracy. Each test runs on at least half of the
test dataset used in the target CNN. After this step, we will
get the amount of σYŁ that ensures the classification accuracy
will not worse than the user supplied threshold.

D. Multi-objective bitwidth optimization

Having found the value of σYŁ for the entire CNN as well
as λK and θK for each layer, we can now use Eq. 7 to
quickly get the bitwidth for each layer. The robustness of
Eq. 7 allows us to optimize bitwidth for different objectives,
resulting in different ξ’s. To demonstrate the multi-objective
optimization problem, we use AlexNet as an example, using
the same model and pretrained weights as in the baseline [1],
[3] with a targeted 1% relative accuracy drop. The integer
bitwidth are measured by doing a forward pass through all
the layers, recording down the maximum absolute value of
the input values. The signed integer bitwidth is derived using
row max |XK | of Table II, and they are (9, 9, 9, 10, 10).

Let’s first consider the objective is to minimize the total
bandwidth used for reading the input data. From the baseline
result in Baseline row of Table II, we can calculate the total



TABLE II
ALEXNET EXAMPLE FOR OPTIMIZING BITWIDTH ON TWO DIFFERENT

OBJECTIVES WITH 1% ACCURACY LOSS

Layer conv1 conv2 conv3 conv4 conv5 Total
#Input(×103) 154.6 70 43.2 64.9 64.9 397.6
#MAC(×108) 1.05 2.25 1.5 1.12 0.75 6.66
max |XK | 161 139 139 443 415 -
Baseline [1] 9 7 4 5 7 -
#Input bits(×103) 1391.3 489.9 173.1 324.5 454.3 2833
#MAC bits(×108) 9.49 15.68 5.98 5.61 5.23 41.98
Opt for #Input 6 6 5 6 7 -
#Input bits(×103) 927.5 419.9 216.3 389.3 454.3 2407
Opt for #MAC 7 5 5 6 7 -
#MAC bits(×108) 7.38 11.2 7.48 6.73 5.23 38.01

number of bits needed to read input data for each layer by
multiplying the bitwidths with the respective number of input
elements from the #Input row. The results is given in the
Input bits row. Let ρK be the coefficient that gives the relative
importance of each layer K in the objective. These coefficients
are exactly the #Input row in Table II. The more input elements
there is in a layer, the more it contributes towards total
bandwidth. We can now formulate an optimization problem
where we minimize the total number of input bits based on
the relationship between ∆XK

and bitwidth from Section II-A.
With ∆XK

= λKσYŁ

√
ξK + θK from Eq. 7, the objective is:

min F =

5∑
K

ρK(− log2(∆XK
)), s.t.

5∑
k

ξK = 1 (8)

Using the search technique described in Section V-C, we
found σYŁ ≈ 0.32. λK and θK were then measured as
described in Section V-A. We put the above optimization
problem to Octave’s sqp function, which yielded a solution
ξ = (0.32, 0.13, 0.14, 0.23, 0.18). We then computed ∆XK

from Eq. 7. The results were then translated to the fraction
bitwidth. These were then combined with the integer bitwidths
found as discussed in Section II-A. Doing so yielded the total
bitwidths that were enough to represent the input for each
layer. These are given as in Opt for #Input row. We then
recompute the objective values, which are the Input bits values
for each layer using the computed bitwidths. We can observe
that the optimization will increase the bitwidth of layers conv3
and conv4 (which have fewer input elements) in order to
decrease the bitwidth of layer conv1 and conv2 (which have
more input elements). It results in the total 2.407 × 106 bits
used for all input elements, a 15% saving over the baseline.

The same procedure can be applied for optimizing bitwidth
of MAC operations (hence energy) by assigning ρK to be the
#MAC row which contains the number of MAC operations
of each layer. All other parameters remained the same. The
resultant bitwidths are shown in the Opt for #MAC row.
Doing the same calculation for the total number of bits spent
on inputs in all the MAC units showed a 9.5% saving in total.
Both sets of optimized bitwidths yielded < 1% error when
tested against the 25,000 images in the ImageNet test set.

In Section VI we will do a more extensive experiment of
these same two objectives using eight CNNs, some of which

are the largest available now. Because the number of layers is
large, we will normalize the total number of bits in the Total
column by dividing them by the total number of input elements
and MAC operations in row #Input and #MAC, respectively. In
the above example, effective bitwidth on each input element
of the baseline is 2833/397.6 ≈ 7.1 and of the optimized
bitwidth for input is 2407/397.6 ≈ 6.05. In short, if the
bitwidth of each layer K is BK , the effective bitwidth is∑

(ρK ·BK)/
∑
ρK .

E. Searching for weight bitwidth

The extended version of Stripes [1], Loom [2] searches for
weight bitwidth after the reduction in input bitwidth has been
made. We integrated the same method at the end of the input
optimization process and report the results in Section VI. Our
bitwidth optimization method can also work well with other
weights quantization techniques [11], [13] as a complementary
and separate workflow.

VI. EXPERIMENTAL EVALUATION

We compared our results using the same representation
format as in Stripes [1] and Loom [2]. Our weight bitwidths
is similar to theirs. Thus, we compare the possible saving in
terms of input bitwidths only, the weight bitwidths are shown
in columns W for reference, and used in the computation of en-
ergy consumption. Because of the variation in accuracy when
training a neural work, we used the four deepest networks in
their experiments with pretrained weight available online, and
four even deeper and more recent CNNs. The number of layers
for each is shown in column # layers of Table III. Stripes
ignored the fully connected layers, so we did the same for
AlexNet, NiN, GoogleNet and VGG-19. The trained models
are from the Caffe Model Zoo [14] and [15]. Due to space
limitation, we can only report the effective bitwidth optimized
for two criteria as in Section V-D, which are Optimized Input
and Optimized MAC. For each optimized bitwidth and the
baseline, the effective bitwidth is computed for both criteria
(show in Input and MAC columns) to show the difference
between two objectives. The result is reported in Table III
for 1% and 5% relative top-1 accuracy loss. All optimized
bitwidths were tested against 25,000 images of the ImageNet
test dataset. No accuracy criterion was violated1.

The performance gain for Stripes’ MAC unit can be de-
rived directly from the table because their performance scales
almost linearly with the saving in effective bitwidth (the MAC
columns). The bandwidth gain is calculated directly from
the effective bitwidth for input elements (Input columns) and
reported in column BW Saving. The objective Optimized MAC
also implies minimizing energy consumption on all MAC
units. To further estimate the possible saving in energy con-
sumption, a standard MAC design available in the Synopsys
DesignWare IP (DWIP) library is used for simulations with
TSMC 40-nm Low-Power (LP) LVT technology at 0.9 VDD
and 500 MHz frequency. The MAC has been synthesized with

1Stripes’ bitwidth resulted in a 3.5% loss for NiN. Hence, we used this
same accuracy target for a fairer comparison with their NiN experiment.



TABLE III
RESULT ON VARIOUS DEEP NEURAL NETWORKS OF OPTIMIZING FOR BANDWIDTH (BW) AND MAC ENERGY USING OUR PROPOSED METHOD

#
layers

1% relative accuracy drop 5% relative accuracy drop

W Baseline Optimized Input Optimized MAC W Baseline Optimized Input Optimized Mac

Input MAC Input MAC
BW
save
(%)

Input MAC
Ener
save
(%)

Input MAC
BW
save
(%)

Input MAC
Ener
save
(%)

AlexNet 5 10 7.10 6.30 6.05 5.89 14.7 6.27 5.70 12.5 8 5 4.55 4.27 9 4.83 4.20 22
NiN 12 10 7.79 8.35 7.66 7.58 1.6 8.22 6.94 22.8 8 8 7.33 7.10 8.4 7.93 6.72 23.9

GoogleNet 57 10 8.66 8.58 6.96 7.17 19.7 7.22 6.79 29.3 8 6 5.97 6.23 0.5 6.26 5.83 5.2
VGG-19 16 11 9.93 10.90 7.20 7.64 27.5 7.29 7.27 45.8 9 7 6.37 6.93 9 6.62 6.84 0.9

ResNet-50 54 9 9 9 7.78 7.96 13.6 8.07 7.57 20.2 8 8 6.90 7.20 13.8 7.35 6.77 22.4
ResNet-152 156 11 12 12 9.70 9.37 19.2 9.90 9.27 32.1 8 11 8.90 8.86 19.1 9.37 8.76 26.8
SqueezeNet 26 8 9 9 9.24 8.77 -2.7 9.60 8.03 11.6 7 9 8.24 7.77 8.4 9.17 7.13 27.9
MobileNet 28 10 10 10 9.55 9.48 4.5 10.38 8.93 16.3 9 9 8.77 8.58 2.6 9.70 7.99 13.2

Average - - - - - - 12.3 - - 23.8 - - - - 8.8 - - 17.8
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Fig. 4. NiN example with 12 layers, by sacrificing bitwidth of less power-
hungry layers (2,3,5), the bitwidth of more power-hungry layers (1,4,7,10)
can be reduced. It results in a saving of 22.8% in the total energy comsumed
by all MAC units compared to the baseline.

commercially available cells in a standard digital flow and used
conservative wire models for synthesis and power estimations.
The total energy consumed by all MAC operations in each
CNN to process one image is shown in the Ener Save column.
The baseline bitwidths are taken directly from Stripes where
available. Otherwise, we used the smallest possible uniform
bitwidth for all layers as the baseline.

A. Discussion

Our method transformed the time-consuming searching
method in previous works into two simpler tasks: (1) profiling
λK and θK which takes a few minutes and (2) binary search
for σYŁ . After profiling, the user can put their constraints for
bitwidth optimization to our tool. It costs only 5 minutes for
optimization and less than 1 hour for binary search on the
deepest Resnet-152 using 1 Nvidia P100 GPU. Changing the
user constraints only requires re-running the last optimization
step. Optimizing for bandwidth and MAC energy will yield
different solutions for bitwidths. For example, in Figure 4,
optimizing for energy will yield a bandwidth that is 5.6%
worse than the baseline. However, there will be a 22.8% saving
in MAC energy. It is conceivable that designers can formulate
different optimization criteria using our framework.

VII. CONCLUSION

The key insight of this paper is that the propagation of
rounding errors between layers of a learned neural networks
is governed by constants, λK and θK , that can be measured.
This allows us to compute the layer-level precision allocation
for very deep networks of over 150 layers. While we do

not expect edge devices to implement such huge networks,
our experiments confirmed that our method is robust. More
importantly, we have showed how our technique can be used
to optimize bitwidths in deep neural network according to
different resource constraints if the final classification accuracy
is slightly relaxed. Our technique outperform the state-of-the-
art in both the quality of the results and compute time. The tool
has been integrated into Caffe [16]. We believe it will aid in
the deployment of efficient deep neural network accelerators.
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