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Abstract—Spiking neural networks (SNN) with their ‘integrate
and fire’ (I&F) neurons replace the hardware-intensive multiply-
accumulate (MAC) operations in convolutional neural networks
(CNN) with accumulate operations — not only making it easy to
implement on FPGAs but also opening up the opportunities for
energy-efficient hardware acceleration. In this paper, we propose
DeepFire — the high-performance RTL IP — for accelerating
convolutional SNN inference. The IP exploits various resources
available on modern FPGAs, and it outperforms existing SNN
implementations by more than 10× in terms of both frame per
second (FPS) and performance per watt (FPS/Watt). Our design
achieves up to 40.1kFPS and 28.3kFPS on MNIST and CIFAR-
10/SVHN datasets with 99.14% and 81.8%/93.1% accuracies
respectively. IP was evaluated with 7-series and Ultrascale+
FPGAs from Xilinx achieving Fmax of 375MHz and 500MHz
respectively.

Index Terms—Neuromorphic Computing, Integrate and Fire,
Acceleration, Hardware, FPGA

I. INTRODUCTION

Spiking neural networks (SNN) have been widely studied in
the past decades in different contexts. An interesting hardware
proposal uses the resistive-RAM (RRAM) in an analog in-
memory computation model [1]. This achieves significant sav-
ings in energy consumed by the digital counterparts. Numerous
large-scale neuromorphic ASICs were developed including
IBM’s TrueNorth [2] and Loihi [3] from Intel. These systems
demonstrate the power efficiency and speed of SNNs.

On the other hand, the FPGA community has been leverag-
ing the reconfigurability of FPGAs to rapidly prototype their
own neuromorphic systems on a small to medium scale. One
of the examples is the Bluehive system [4] using the FPGAs
cluster. It can handle up to 64k neurons per FPGA, thanks
to the large external memory storage. Thomas and Luk [5]
presented the simulation of 1k fully connected Izhikevich (IZ)
neurons by just using on-chip Block RAMs (BRAM) on the
Virtex-5 FPGA. Similarly, in 2017, Pani et. al. [6] has reported
the 1.44k fully connected IZ neurons acceleration on the more
advanced Virtex-6 FPGA. Since then, the FPGA technology
has advanced tremendously and the latest generation of Virtex
UltraScale+ VU9P has 47.7MB of on-chip memory [7]. This
gives researchers greater flexibility to explore more complex
SNN structures with massive data parallelism. Convolutional

models are demonstrably more powerful than simple mul-
tilayer perception (MLP) models in their ability to extract
features. However, they are also computationally much more
complex. Recent studies of model conversion from CNN to
SNN have shown to improve the SNN classification accu-
racy [2], [8]. Therefore, not only the SNN use case but also
the demand for hardware acceleration has increased [9].

In this paper, we focus on the acceleration of convolutional
SNN inference on standard image data sets such as MNIST,
CIFAR-10, and SVHN. We propose the DeepFire (DF) RTL
IP that utilizes all the facilities available on modern FPGAs
to improve both throughput and performance per watt. At the
same time, we will leverage recent advances in model conver-
sion techniques from CNN to SNN to train our networks.

The main contributions of this paper are as follows.
• We propose the data flow-aware ‘integrate and fire’

(I&F) neuron core design with the balanced utilization
of memories, LUTs, and DSPs.

• We discuss the neuron cores grouping methodology to
maximize the RTL timing.

• DF IP supports end-to-end acceleration including pre-
processing raw images to spikes.

Our experiment on ultrascale+ FPGAs shows that we are
able to achieve 40kFPS with MNIST datasets at the clock
speed of 500MHz. Using an Alexnet-like SNN model, we were
able to achieve 28.3kFPS running at 425MHz on the CIFAR10
and SVHN data sets. Still, our IPs can run up to 375MHz on
older 7-series FPGA and it is the highest performance recorded
thus far for SNNs running on FPGA.

The rest of the paper is organized in the following sequence.
In Section II, we discuss the brief background of neuromorphic
computing and our motivation for this paper. The presentation
of our main work begins in Section III, followed by the
network design and the hardware implementation in Section
IV. We discuss our experiment result in Section V and the
conclusion is in Section VI.

II. BACKGROUND

The goal of neuromorphic computing is to achieve fast real
time inference using as little energy as possible like how our
brain would do it. In 2016, TrueNorth [2] demonstrated deep
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Fig. 1. Architecture of DeepFire neuron core.

convolution SNN inferencing with the capability of classifying
6,000 CIFAR-10 images in just one watt.

Apart from low power neuromorphic ASIC, researchers are
also looking into FPGA platforms due to their flexibility to
quickly adapt to the emerging neuromorphic research [4], [6],
[10]. Some are using them as neuromorphic ASIC emula-
tors [11], [12] to assist ASIC developments and others are
building them as pure accelerators. FPGA-based systems are
very scalable. By leveraging the massive I/O connectivities in
between the FPGAs and external memory, multiple FPGAs can
be connected [4], [13]. However, these large systems are not
consistent with the energy efficiency goals of neuromorphic
systems. Moreover, many of the recent works on the SNN for
image classification are still use older generation of FPGAs,
and treat them as prototypes rather than tuning them for high-
performance. Hence, the potential of FPGAs as SNN hardware
accelerators has largely been unexplored [13], [14].

The contribution of our work is mainly on the hardware
level optimization and the effective utilization of FPGA on-
chip primitives for accelerating inference in convolutional
SNN. Our optimization strategies are based on throughput and
performance per watt metrics so as to be comparable with
recent works [14], [15].

III. DEEPFIRE ARCHITECTURE

A. Neuron Core Design

Our neuron core design shown in Figure 1 is an improved
version from [5], [6]. One of the changes in the design is
the use of full data bus-width (64-bits) when reading out the
synapse weights from the 36kb BRAM block. With weights
being quantized to 8-bit, our core can process 8 weights
in one cycle, doubling the throughput compared to [5], [6].
This improvement requires a three-stage adder tree. Unlike
[5] where it uses the CLB resources for the adder tree,
we proposed a hybrid use of DSP and CLB to balance the
hardware resource usage. The first stage of four adders are to
be allocated in one DSP and the remaining three adders in the
last two stages are implemented in CLB. At the end of add
and accumulation for every neuron, the result is compared
against the threshold to either shift out ONE for the result
higher than the threshold or shift out ZERO for otherwise

to the shift registers, SO. The 8-bits Spikes-Input, SI bus is
streamed from the macro-level hierarchy which is discussed
in the next section. CORE_CTRL orchestrates the neuron add-
and-accumulate function while making sure the data flow from
the weight memory to the spiking output is fully pipelined.
In RTL, the threshold values are instantiated in the bitstream
whereas the synapse weights are loaded from the host.

B. Fully Connected Layer

The fully connected (FC) layer is formed by connecting
multiple neuron cores together as shown in Figure 2(a). This
example shows how the FC layer processes the 3 × 3 × 56
feature map input (504 fan-ins). Since the feature map arrives
one column at a time from the previous layer, three-time steps
are required to push the entire feature map into FIFO, inferred
in LUTRAM. FIFO streams 504 fan-ins on the SI[7:0] bus to
neuron cores. For the example shown in Figure 2(a), only 8
neurons can fit into one BRAM in the core. Hence, 32 neuron
cores are needed in this case to process a total of 256 neurons.
Figure 2(a) also shows the memory mapping of this FC layer.
The fan-in spikes from 9 pixels (P) is to add and accumulate
with the first neuron of 32 cores. The accumulated results
of the neurons are compared against the respective thresholds
(TH) and spikes are sent to SO registers. This operation will
repeat 8 times to process 8 neurons in each core and generates
a total of SO[255:0] spike outputs.

In this FC layer, CORE_CTRL from the controller and the
SI from FIFO becomes timing-critical due to growing fan-out
loading with the more neuron cores. In our DF RTL, the re-
timing register insertion is parameterizable as CORE_GROUP
to allow users to optimize the IP performance. Our preliminary
experiment shows that inserting registers (highlighted grey in
Figure 2(a)) every two cores yields the best timing perfor-
mance. We code the FC layer RTL as a macro — a template
that can be re-purposed in the convolution layer.

C. Convolution Layer

In the convolution layer (CNV), each macro performs one
sliding window. For the given 3 × 3 convolution in Figure
2(b), three macros are required to process 5× 5 input feature
map. Just like in the FC layer example, the FIFO will start
streaming spikes to cores at the third time step. At the end of
the fifth time step, the output feature map of 3 × 3 × 56 is
passed to the next FC layer in Figure 2(b).

Based on the sliding window size of 3×3×56, each neuron
has 504 fan-in. Only the synapse weights of the 8 neurons are
stored in each BRAM. With 56 neurons in this layer, a total of
7 neuron cores are required per macro, and 21 cores in total
for this layer. Only the top macro which is the master performs
the handshake with the previous and next layers. Also, only
the master macro has synapse weights that are shared with the
other two macros. The fan-out loading of the weight-sharing
bus also increases when more macros are needed. Re-timing
registers insertion is parameterized as MACRO_GROUP in
RTL. We find that the best performance is achieved when both
MACRO_GROUP and CORE_GROUP are set to two. The
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Fig. 2. DeepFire Architecture (a) fully connected layer (CORE_GROUP=2) (b) convolution layer (CORE/MACRO_GROUP=2) (c) transduction layer.
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Fig. 3. Data dependency in convolutional SNN pipe-line.

trade-off between Fmax and the hardware overhead for smaller
MACRO_GROUP sizes is discussed in Section IV-C.

D. Transduction Layer

The transduction layer in Figure 2(c) is responsible for
transforming the raw images it received into spiking signal.
It performs the standard convolution on the input image, and
activations are binarized with batch-normalization to produce
spikes. Since DF is a streaming processor, its communication
with the PCIe bridge is the standard AXI-streaming interface.

E. Data Dependency

Data dependency arises when layers have to wait for data
from their preceding layers. Figure 3 shows two activity maps
of the neuron cores for the same 5-layer network model
as an example. The only parameter that differs between the
two activity maps is the synapse weight RAM size of the
neuron cores. In CONFIG_0 with one BRAM per neuron
core assignment, not all the neuron cores are fully active from
layers 1 to 4 (L[4:1]) because of the data dependency. Since
L1 is using a stride of 2, it has to idle every other time step.
To resolve this, we merge two cores into one by instantiating
two BRAMs per core (doubling the neurons in each core).
Hence, the core count is reduced by half in L1 in CONFIG_1.
The cores in L2 can be instantiated with two BRAMs because
its stride is one. This RAM scaling based on stride number is
only applicable if all filter sizes and neuron counts in the CNV
layers are the same. Otherwise, the user has to experiment with
the different RAM scaling factor for the best data flow. For
the FC layer, we increase the RAM size in the core as long as

it does not stall the data flow in the pipeline. In CONFIG_1,
the FC layers use 8×BRAMs (1×URAM) per neuron core. In
RTL, we treat both BRAM and URAM as single-port RAMs
with two internal pipeline registers.

The result of this optimization is summarized in Figure 3.
The number of the cores and DSPs used is nearly halved
in the optimized CONFIG_1 compared to the non-optimized
CONFIG_0. However, latency nearly doubled in CONFIG_1.
Hence, care must be taken for latency sensitive applications.

IV. IMPLEMENTATION

A. Network Model

The implemented networks only have convolution and fully
connected layers without max pooling and padding. The detail
of the network structure for different data sets is shown in
Table I. For example, CNV-28-3-1 in the table is referring to
the CNV layer with 28 neurons with 3 × 3 filter, one stride
and FC-512 implies that the layer is fully connected with 512
neurons. The networks were trained as CNNs using standard
back-propagation and batch normalization. However, CNN
features such as padding and max-pooling are not the SNN
native operations. Here, the max-pooling layers are replaced
with the 3× 3 kernel convolution and stride of 2.

Our IP accepts the parameters as shown in Figure 4 and
infers the necessary blocks required for an Alexnet-like net-
work (SNN<2>). CORE/MACRO_GROUP parameters are for
re-timed register insertion to improve the timing closure (men-
tioned in the Section III-B and III-C) and RAM_SCALING is
for resource optimization with data dependency as discussed



TABLE I
IMPLEMENTED NETWORK STRUCTURES

Dataset <SNN#>
MNIST <0> MNIST <1> CIFAR-10/SVHN <2>

Layer-0 CNV-1-3-1 CNV-1-3-1 CNV-28-3-1
Layer-1 FC-512 CNV-64-5-1 CNV-96-3-1
Layer-2 FC-384 CNV-64-3-2 CNV-256-3-2
Layer-3 FC-10 CNV-64-5-1 CNV-384-3-1
Layer-4 CNV-64-3-2 CNV-384-3-2
Layer-5 FC-128 CNV-256-3-1
Layer-6 FC-10 FC-2048
Layer-7 FC-2048
Layer-8 FC-10

INPUT_IMG_CHANNEL = 3;
FEATURE_MAP [8:0] = { 1,   1,   3,  5, 11, 13, 27,29,31};
NEURON_CNT  [8:0] = {10,2048,2048,256,384,384,256,96,28};
FILTER_SIZE [8:0] = { 1,   1,   3,  3,  3,  3,  3, 3, 3};
STRIDE_SIZE [8:0] = { 1,   1,   1,  1,  2,  1,  2, 1, 1};
CORE_GROUP  [8:0] = { 1,   2,   2,  2,  2,  2,  2, 2, 2};
MACRO_GROUP [8:0] = { 1,   1,   1,  2,  2,  2,  2, 2, 2};
RAM_SCALING [8:0] = { 1,  16,  16,  4,  4,  2,  2, 1, 2};
CONNECT_S   [8:0] = { 0,   1,   0,  1,  1,  1,  1, 0, 1};
CONNECT_M   [8:0] = { 0,   0,   1,  0,  1,  1,  1, 1, 0};

Fig. 4. DeepFire RTL configuration for SNN<2>

in the Section III-E. BRAMs are instantiated in the core
when the RAM_SCALING factor is less than or equal to
four. Otherwise, URAMs get instantiated. CONNECT_S/M
is the configuration of the slave and master interconnect of
each layer. If the value is one, that interface is marked to use
registers at the SLR crossing site or the Laguna site. With this
CONNECT_S/M setting, we assign the resource-heavy layer
[3] to SLR0, layer [2, 4, 7, 8] to SLR1, and layer [0, 1, 5, 6]
to SLR2. Clock rooting for Laguna site is based on [16].

The other parameters are network-specific. DF supports
various network structures except for padding and pooling, as
well as various filter sizes as long as the horizontal dimensions
and strides are equal to the vertical ones, respectively.

B. Scalability

DF communicates with the host through PCIe DMA-bridge
with two AXI-streaming interfaces (the slave AXIS for re-
ceiving raw images and synapse weight loading to neuron
cores and the master AXIS for delivering the classification
result back to the host). Due to the adoption of the standard
interfaces, DF is scalable. The handshake protocol between the
layers is AXI-streaming compliance and hence, the network
can be split easily and deploy across the FPGA cluster.

C. Performance

The Fmax performance of the DF IP on VCU118 is evalu-
ated at various MACRO_GROUP and CORE_GROUP settings
with the convolutional SNN<1> and SNN<2> from Table I.
Fmax in Figure 5 is determined by the iterative place-and-
route that increases the target IP clock until worst negative
slack (WNS) is almost zero. The dots are the data from the
experiment and the solid lines are the fitted lines based on the
experiment data. The small SNN<1> network achieves a Fmax
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of 475MHz without the grouping mechanism and it improves
to 513MHz with the group size of 2 (Figure 5 (a)). From
grouping of none to 2, the amount of additional flip flops added
to the SNN<1> implementation is only 8% (Figure 5 (b)).
Despite the hardware overhead, performance/watt improves
about 4% for such a small network since the bulk of the power
consumption is from the PCIe bridge itself.

For the Alexnet-like model (SNN<2>) trained for the
CIFAR-10 and SVHN dataset, Fmax improves as much as
23% from no grouping to a grouping of 2 for cores and
macros; topping as high as 432MHz (Figure 5 (c)). At the
highest frequency configuration, about 45% of the additional
flip-flops are added into the IP as the re-timed registers (Figure
5 (d)). Although throughput (kFPS) and Fmax of the Alexnet
improves, the system performance per watt degrades as much
as 8% due to the hardware overhead. The performance and
the hardware utilization of DF are summarized in Table II.
It represents the performance of the respective network when
CORE/MACRO_GROUP is equal to 2.

V. DISCUSSION

Table II shows the performance comparison with our DF
with other SNN implementations on the same platform. The
DF network models are the closed approximation of the coun-
terparts models from [14] [15] and the details are described in
Table I. DF is compared against [14] in multi-layer perception
(MLP) network at the first row of Table II. [14] claims to
improve the throughput by adopting asynchronous design with
the novel event-driven time step update. The design contains
16 neuron cores to perform parallel computation on spikes.
On the contrary, DF contains 204 neuron cores for spike
processing and spike conversion from the image input. Due to
the large core count, DF’s throughput is significantly more than
that of [14] by 128× and yet, DF is 11× more energy-efficient
than [14]’s. Given the same platform was used to benchmark,



TABLE II
DEEPFIRE (DF) HARDWARE PERFORMANCE BENCHMARK WITH PRIOR WORKS.

Dataset Ref. SNN# Wgt. Platform Prec. Acc% kFPS MHz kFPS/W LUT BRAM URAM DSP $/FPS*

MNIST

DF
< 0 >

1.17M VC707 8/1 98.1 115.5 375 14.6 44K 217.5 0 204 0.03
[14]+ 1.21M VC707 8/1 98 0.9 - 1.29 - - 0 0 4.88

DF
< 1 >

252K ZCU102 8/1 99.14 40.1 500 5.64 55K 138.5 0 271 0.06
[15]+ 269K ZCU102 8/1 98.94 0.16 150 0.036 125K 264.5 0 0 15.59

CIFAR-10 DF < 2 > 12M VCU118 8/1 81.8 28.3 425 0.99 386K 969 385 2963 0.247
SVHN DF < 2 > 12M VCU118 8/1 93.1 28.3 425 0.98 387K 969 385 2963 0.247

(+) Network does not have transduction layer. (-) The data is not reported (*) The pricing is from the Xilinx official website

DF offers two orders of cost-saving for each inferencing frame
and yet, it also provides comparable inference accuracy.

The second row compares DF with recently reported convo-
lutional SNNs with similar arithmetic precision on the MNIST
dataset. DF achieves 250× better in the frame throughput
and 156× more efficient in throughput per watt than [15].
DF high throughput is mainly contributed by the optimized
data pipeline across the entire network. For this network
model, DF has a total of 271 cores working in parallel almost
without downtime. In contrast to the counterpart [15], there
are only 6 neuron cores - one for each layer. Therefore, the
first convolution layer has become a performance bottleneck
in their design. Thanks to the mixed use of DSP and LUT
for neuron core computation, we managed to fit in 45× more
cores into the same FPGA platform and yet, DF uses only half
of the LUT and BRAM resources compared to [15]. Moreover,
the computations in DF’s cores are more energy-efficient due
to the weight-sharing mechanism across the macros in the
convolution layer. Thanks to throughput-driven optimization,
DF can clock 2.8× more than the counterpart. In addition, DF
produces slightly better classification accuracy. In summary,
Table II highlights the versatility of DF in both convolutional
and MLP networks, and at the same time, demonstrates the
DF’s best-in-class performance, energy efficiency, and signif-
icant cost saving. The performance results of SNN<2> are
shown in Table II without comparison because we could not
find any credible comparison for the CIFAR-10/SVHN dataset
in the SNN literature.

VI. CONCLUSION

In this paper, we present DeepFire, an RTL IP that accel-
erates spiking convolutional neural networks on FPGAs. The
goal of this IP development is to achieve the highest possi-
ble throughput by employing all of the diverse capabilities,
including DSP blocks, available on modern FPGAs. To do
so, the data flow in the IP is fully pipelined not only in the
neuron core but also in the network itself. We also introduce
the network floor planning and timing optimization at SLR
crossings. As a result, DeepFire can be clocked up to 500MHz,
achieving the best-in-class performance/watt among current
FPGA SNN implementations. Unlike earlier works, our IP is
also flexible enough to support both MLP and convolution
networks. DeepFire will enable the efficient implementation
of deep learning tasks on FPGAs.
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