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Abstract
Spiking neural networks (SNN) on non-volatile memory (NVM)
based neuromorphic computing (NC) chips have been regarded as a
promising solution in power constrained scenarios, such as Internet
of Things (IoT), due to its low energy consumption. The high power
efficiency of NC is due to various aspects including the non-von
Neumann architecture of NC chip, low power NVM, and the event
driven computation of SNN etc., and introduces a large space for low
power design exploration. Therefore, a comprehensive quantitative
study of the power modelling for such neuromorphic computing
system is important for low power design. In this work, we pro-
pose NCPower, an energy consumption estimator for NVM-based
neuromorphic chip. We systemically developed analytical models
based on physical laws, and verify them by comparing the analyti-
cal results with measurement results from different neuromorphic
chips. We integrated NCPower in a simulator, and analyzed the ac-
curacy and energy consumption of both the traditional multi-spike
based SNN and the new single-spike based SNN. It shows that the
single-spike model has 7X energy efficiency over the multi-spike
model, with similar accuracy under the CIFAR-10 dataset.

CCS Concepts
• Hardware→ Power estimation and optimization.
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1 Introduction
Spiking neuron networks (SNN) is one promising technique in the
field of artificial intelligence. The key component of SNN is the
spiking neurons, which mimics the behavior of biology neurons. In
SNN model, the input and output of the neuron is interpreted into
spikes. Each neuron can independently trigger the output spikes
regarding the frequency of input spikes and the weights. Given the
larger amount of neurons in SNN model, a tremendous amount of
computation power is required [6]. Today, the neuromorphic chip
is an efficient way to accelerate the computation process, which
adopts an non-Von Neumann architecture and shows very high
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Figure 1: (a) The structure of SNN soft core; (b) The behavior
of a single neuron in the soft core

parallelism [11]. One branch of the neuromorphic chip is based on
the non-volatile memory (NVM), where its conductance is adjusted
so that its value is proportional to the related weight [14]. NVM is
a promising energy-efficient memory technology which adopted in
both memory design [15] and in-memory logic design [8, 9].

The systematical estimation of NVM-based neuromorphic chip’s
energy consumption is very important during design stage. For
example, one important configuration of the NVM resistor is the
range of its resistance. On one hand, NVMs with lower resistance
are less affected by the crosstalk noise in the analog circuits, which
results in higher accuracy of the SNN model. On the other hand,
the energy consumption of NVM resistors would increase if its
resistance decrease. Hence, we need to precisely evaluate the energy
consumption of the whole chip in order to make a proper trade-off
between the energy and the model accuracy. Developers also want
to find the ratio between the energy consumption of NVM resistors
over the total energy consumption of the chip.

However, as an emerging technology, the power consumption of
the NVM-based neuromorphic chip is hard to obtain from the EDA
tools. Few paper have touched this topic before. Yakopcic et al. ana-
lyzed the power consumption of memristor based neuromorphic
processor during training [17]. Stromatias et al.modelled the power
consumption of large spiking neural networks running on multiple
GPGPUs and FPGAs [12]. Dong et al. [3] modelled the energy con-
sumption for emerging nonvolatile memory. Salkhordeh et al. [10]
modelled the performance of hybrid DRAM-NVM main memo-
ries. None of these paper have discussed the power modelling of
NVM-based neuromorphic chip during inference.

This paper proposes NCPower, an energy consumption estima-
tor for NVM-based neuromorphic chip. We systemically develop
analytical models for each module in the neuromorphic chip based
on physical laws. Afterwards, we calibrate and verify the results
of our estimator with published data from fabricated devices. To
show the compatibility of the analytical model, we test this estima-
tor on different neuromorphic chip designs using different NVM
devices. One of the chips is our in-house developed Novena chip.
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Figure 2: (a) The overview of the neuromorphic chip with
4×4 hard cores; (b) The structure of the 5-port router

NCPower is also integrated into a SNN simulator so that we can
analyze the energy consumption and accuracy of the neuromorphic
chip concurrently. It can generate the real-time heat map of the
chip, and show the variations of power consumption over time.
Using NCPower, developers can check if a certain location of the
chip will be over-heated, and try to alleviate the thermal issues by
optimizing soft core and hard core mapping strategy. Developers
can also check if the power consumption would exceed the power
limit at certain time, and try to avoid the power wall of the chip by
optimizing the scheduling policy.

2 Modelling of Energy Consumption
The SNN model can be decomposed into multiple soft cores, whose
structure is shown in Figure 1 (a). A soft SNN core contains mul-
tiple neurons, which receive input spikes from other neurons and
generate output spikes based on the incoming spikes. Typically, the
spikes from neurons in level 𝐿 can reach all the neurons in level 𝐿+1.
As shown in Figure 1 (b), each neuron can receive and generate
spikes independently. The relationship between incoming spikes
and the output spike is expressed in Equation 1.

𝑢𝑚 (𝑡 + 1) = 𝑢𝑚 (𝑡) +
∑
𝑛

𝑤𝑛𝑚 · 𝜖𝑛 (𝑡) + 𝛽𝑚 (1)

𝑢𝑚 (𝑡) is the membrane potential of neuron𝑚 at time step 𝑡 . 𝜖𝑛 (𝑡)
is the spiking from neuron 𝑛 in level 𝐿. it equals 1 if the spike
exits, and equals 0 if not. 𝑤𝑛𝑚 is the weight of the spike 𝜖𝑛 for
neuron𝑚 in layer 𝐿+1. 𝛽𝑚 is the bias value for neuron𝑚. If the
membrane potential at time step 𝑡+1 is larger than a threshold, then
the potential is reset to a constant, which typically equals 0.

The overview of the neuromorphic chip is depicted in Figure 2
(a). The central computation unit in the neuromorphic chip is the
hard core. In neuromorphic chip, there is a matrix of hard cores.
Each hard core can emulate the behavior of a specific soft core.
The data transmission in the neuromorphic chip is handled by the
network-on-chip (NoC). Each hard core is connected to a router,
which is connected into a mesh-based NoC. Spikes from one hard
core is delivered to another hard core via the NoC.

𝐸𝑡𝑜𝑡𝑎𝑙 =
∑
𝑖

∑
𝑗

∑
𝑘

(𝐸𝑖 𝑗𝑘
𝑋𝐵𝐴𝑅

+ 𝐸
𝑖 𝑗𝑘

𝑅𝑇𝑅
) (2)

The total energy consumption of the neuromorphic chip can be
expressed in Equation 2. 𝐸𝑖 𝑗𝑘

𝑋𝐵𝐴𝑅
and 𝐸𝑖 𝑗𝑘

𝑅𝑇𝑅
are the energy consump-

tion of the hard core and its adjacent router at location (𝑖 , 𝑗 ) of the
neuromorphic chip, at cycle 𝑘 .
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Figure 3: The overview structure of the NVM-based hard
core, which consists of amatrix ofNVMresistors, TIA (trans-
impedance amplifier), ADC (analog-to-digital converter),
REG (register), and arithmetic unit

2.1 Network-on-Chip
Router is the major component in NoC. The structure of router is
shown in Figure 2 (b). Different routers have different number of
ports depending on their locations in the network. For example, a
router in the center of the network has five ports. Among them,
four ports are used to transmit packets from four directions, and
the fifth port is used to transmit packets from its adjacent hard
core. At each input port of the router, there is an array of buffers,
which temporarily store the packets. A switch transmits the packet
in the buffer to its destination router. The control unit monitors the
hardware resources and decides which packet in the buffer can be
delivered first, typically based a round-robin mechanism [1].

𝐸𝑅𝑇𝑅 = 𝐸𝑆𝑊 + 𝐸𝐿𝐼𝑁𝐾 + 𝐸𝐶𝑇𝑅𝐿 + 𝐸𝐵𝑈𝐹 (3)

According to [7], the energy consumption of routers is expressed
in Equation 3, which includes the energy consumption of the switch
𝐸𝑆𝑊 , the link drivers 𝐸𝐿𝐼𝑁𝐾 , the control unit 𝐸𝐶𝑇𝑅𝐿 and the buffers
𝐸𝐵𝑈𝐹 . Since the links among routers are passive devices, their
energy consumption is included in the link drivers.

𝐸𝑆𝑊 = 𝑒𝑠𝑤 · 𝛾 · 𝐹 (4)
𝐸𝐿𝐼𝑁𝐾 = 𝑒𝑙𝑖𝑛𝑘 · 𝛾 · 𝐹 (5)

The energy consumption of the switch and the link drivers are
proportional to the number of bits transferred via the router. They
are expressed in Equation 4 and Equation 5. 𝑒𝑠𝑤 and 𝑒𝑘𝑖𝑛𝑘 are
the energy consumption per bit of the switch and the link driver,
respectively. 𝛾 is the number of transaction processed in the router,
during a cycle period. 𝐹 is the packet size in bits, and 𝛾 · 𝐹 is the
total number of bits transmitted.

𝑒𝑙𝑖𝑛𝑘 = 0.5 ·
√
𝑆𝐶𝑂𝑅𝐸 ·𝐶0 ·𝑉 2

𝐿𝐼𝑁𝐾 (6)

The energy consumption per bit of the link driver is expressed in
Equation 6. 𝑆𝐶𝑂𝑅𝐸 is the area of a single hard core, and

√
𝑆𝐶𝑂𝑅𝐸 is

the average router-to-router distance.𝐶0 is the capacitance per unit
2



Table 1: Parameters of Analog Circuits

Notation Device Description Value Ref.
𝑉𝑇 𝐼𝐴 TIA Supply voltage 0.2 V [20]
𝐼𝑇 𝐼𝐴 TIA Supply current 6 nA [20]
𝑡𝑎𝑐𝑞 ADC Acquisition time 100 ns [20]
𝑡𝑐𝑜𝑛𝑣 ADC Conversion time per bit 100 ns [20]
𝑉𝐴𝐷𝐶 ADC Supply voltage 0.4 V [20]
𝐼𝐴𝐷𝐶 ADC Average supply current 0.15 𝜇A [20]
𝑉𝑁𝑉𝑀 NVM Supply voltage 0.2 V [5]
𝑆𝑁𝑉𝑀 NVM Area overhead per resistor 0.4 𝜇𝑚2 [5]

length of the link. 𝑉𝐿𝐼𝑁𝐾 is the supply voltage of the link driver.

𝐸𝐶𝑇𝑅𝐿 = 𝑒𝑐𝑡𝑟𝑙 · 𝛾 (7)

The energy consumption of the control unit is proportional to the
number of transactions completed in a cycle period. It is expressed
in Equation 7. 𝑒𝑐𝑡𝑟𝑙 is the energy consumption per transaction of
the control unit.

𝐸𝐵𝑈𝐹 = (𝑒𝑏
𝑟𝑑

+ 𝑒𝑏𝑤𝑟 ) · 𝛾 · 𝐹 + 𝑃𝑏𝑠 · 𝑡0 ·
∑
𝑝

𝐵𝑝 (8)

The energy consumption of the buffer unit is expressed in Equa-
tion 8. 𝑒𝑏

𝑟𝑑
and 𝑒𝑏𝑤𝑟 are the read and write energy consumption per

bit of the buffer unit. 𝑃𝑏𝑠 is the static power consumption of the
buffer unit. 𝑡0 is the duration time of one cycle. 𝐵𝑝 is the capacity
of the buffer at input port 𝑝 .

2.2 NVM-based Hard Core
The overview of the NVM-based hard core is shown in Figure 3. It
is able to emulate the behavior of a soft core. In general, it receives
spikes from neurons in layer 𝐿, and generates output spikes of
neurons in layer 𝐿 + 1, using digital-analog hybrid circuits. NVM
resistors are the key components in the hard core. Suppose layer 𝐿
has 𝑁 neurons and layer 𝐿 + 1 has𝑀 neurons, a hard core contains
a 𝑁 × 2𝑀 matrix of NVM resistors. Each weight needs two NVM
resistors, one for positive value and one for negative value. When
we run the emulation, the supply voltage of the NVMmatrix is fixed
and the resistances of the NVM resistors are pre-tuned based on the
weights in the SNN network. The tuning mechanism guarantees
that the current going through each NVM is proportional to the
corresponding weight, if the input spike exists.

𝐼𝑛𝑚 = 𝛼 ·𝑤𝑛𝑚 · 𝜖𝑛 (9)

The relationship between the current and the weight is expressed
in Equation 9. 𝜖𝑛 stands for the existence of spike from neuron 𝑛 in
layer 𝐿. It equals 1 if the spike exists and equals 0 if not.𝑤𝑛𝑚 is the
weight of spike from neuron 𝑛 in layer 𝐿 to neuron𝑚 in layer 𝐿 + 1.
𝛼 is the coefficient between current 𝐼𝑛𝑚 and weight𝑤𝑛𝑚 .

𝑡0 = 𝑡𝑎𝑐𝑞 + 𝑡𝑐𝑜𝑛𝑣 · 𝑏 + 𝑡𝑐𝑎𝑙 · 𝑏 (10)

The during time of each cycle 𝑡0 can be expressed in Equation 10.
There are three stages within one cycle. First, it takes 𝑡𝑎𝑐𝑞 to charge
the capacitance of the trans-impedance amplifier (TIA), and stabi-
lize its output voltage. Next, the analog-to-digital converter (ADC)
converts the analog signal to the digital signal. Given 𝑏 as the width
of the digital signal, the total converting time of ADC is 𝑡𝑐𝑜𝑛𝑣 · 𝑏.
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0

Figure 4: The tested Novena chip for validation, which is fab-
ricated in 40 nm technology

Finally, it takes 𝑡𝑐𝑎𝑙 · 𝑏 for the arithmetic unit to process the 𝑏-bit
data from ADC, and to decide if the neurons would generate a spike.

𝐸𝑋𝐵𝐴𝑅 = 𝐸𝑁𝑉𝑀 + 𝐸𝑇 𝐼𝐴 + 𝐸𝐴𝐷𝐶 + 𝐸𝑅𝐸𝐺 + 𝐸𝐴𝑅𝐼𝑇𝐻 (11)

As expressed in Equation 11, the energy consumption of the NVM-
based hard core includes the energy consumption on the NVM
resistors 𝐸𝑁𝑉𝑀 , the TIA 𝐸𝑇 𝐼𝐴 , the ADC 𝐸𝐴𝐷𝐶 , the register 𝐸𝑅𝐸𝐺 ,
and the arithmetic unit 𝐸𝐴𝑅𝐼𝑇𝐻 .

Since resistance can only be positive, we need two NVM resistors
𝑅+𝑛𝑚 and 𝑅−𝑛𝑚 for one weight 𝑤𝑛𝑚 , in a complementary way. If
𝑤𝑛𝑚 > 0, then signal In+𝑛 is activated, which equals 𝜖𝑛 . At the
same time, signal In−𝑛 is disabled. If 𝑤𝑛𝑚 < 0, then signal In−𝑛 is
activated. At one time, current 𝐼𝑛𝑚 only flows through one of the
two complementary NVM resistors, either via 𝑅+𝑛𝑚 or 𝑅−𝑛𝑚 .

𝐸𝑁𝑉𝑀 = 𝑉𝑁𝑉𝑀

∑
𝑛

∑
𝑚

𝐼𝑛𝑚 · 𝑡𝑎𝑐𝑞 (12)

The energy consumption of NVM resistors is expressed in Equa-
tion 12. Since 𝐼𝑛𝑚 only flows through one of the two complementary
NVM resistors, the energy consumption on the other NVM resistor
is zero. 𝑉𝑁𝑉𝑀 is the supply voltage of the NVM resistors. After
𝑡𝑎𝑐𝑞 , the current is cut off.

𝐸𝑇 𝐼𝐴 = 𝑉𝑇 𝐼𝐴 · (
∑
𝑛

∑
𝑚

𝐼𝑛𝑚 + 2𝑀 · 𝐼𝑇 𝐼𝐴) · 𝑡𝑎𝑐𝑞 (13)

As expressed in Equation 13, the energy consumption of TIA in-
cludes the energy on the feedback resistor and the energy on the
amplifier unit. 𝑉𝑇 𝐼𝐴 and 𝐼𝑇 𝐼𝐴 are the supply voltage and supply
current of the TIA, respectively. Theoretically, the current of the
NVM resistor will flow through the feedback resistor, where the
current signal is converted to the voltage signal. At the same time,
the amplifier stabilizes the voltage signal. In the hard core, currents
flowing through the same row of NVM registers share the same
ADC. For example, current 𝐼00 to current 𝐼𝑁−1,0 share the same
ADC in row 0. According to physical laws, the current flowing
through the feedback resistor of the ADC is the summation of all
those currents flowing through NVM resistors related to that ADC.

𝐸𝐴𝐷𝐶 = 2𝑀 ·𝑉𝐴𝐷𝐶 · 𝐼𝐴𝐷𝐶 · 𝑡𝑐𝑜𝑛𝑣 · 𝑏 (14)

The energy consumption of ADC is expressed in Equation 14.𝑉𝐴𝐷𝐶
and 𝐼𝐴𝐷𝐶 are the supply voltage and average supply current of the
ADC. The supply current 𝐼𝐴𝐷𝐶 depends on the input voltage signal
of the ADC. Therefore, we use the average current 𝐼𝐴𝐷𝐶 to estimate

3



Table 2: Energy Consumption Breakdown (nJ)

Model Resistance Range NVM TIA ADC REG ARITH BUF LINK SW CTRL Total
1 kΩ-10 kΩ 4.5x105 4.5x105 2.0x104 1.3x104 1.1x104 3.5x103 3.7x103 2.7x102 1.1x103 9.6x105

Multi-spike 10 kΩ-100 kΩ 4.4x104 4.4x104 2.0x104 1.3x104 1.1x104 3.5x103 3.6x103 2.6x102 1.1x103 1.4x105
100 kΩ-1 MΩ 3.9x103 4.0x103 1.9x104 1.2x104 1.1x104 3.4x103 3.4x103 2.5x102 1.1x103 5.9x104

1 kΩ-10 kΩ 1.2x104 1.2x104 3.4x101 2.2x101 1.9x101 2.3x101 8.3x101 4.3 2.3x101 2.5x104
Single-spike 10 kΩ-100 kΩ 1.3x103 1.3x103 3.4x101 2.2x101 1.9x101 2.5x101 9.5x101 4.9 2.6x101 2.9x103

100 kΩ-1 MΩ 1.3x102 1.3x102 3.4x101 2.2x101 1.9x101 2.7x101 1.0x102 5.3 2.8x101 4.9x102
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Figure 5: Comparison of data from analytical models in the
NCPower and data from fabricated devices

the energy consumption of ADC, which is defined as the supply
current of ADC when the input voltage signal is 1/2 ·𝑉𝐴𝐷𝐶 .

Each ADC is connected to a 𝑏-bit register, which stores the
output data of ADC. In the NVM-based hard core, the spikes from
neurons in layer 𝐿 are represented by two complementary currents:
one for positive weights and one for negative weights. Therefore,
we need to find the difference between these two currents by a
digital arithmetic unit. Once theADCs for these two complementary
currents finish the converting process and store the results into
registers, a subtractor would calculate the difference of these two
values. The result is then added to the membrane potential 𝑢𝑚 ,
which is stored in a third 𝑏-bit register. Finally, to emulate leakage,
the potential is divided or subtracted by a constant using shift
add/subtract operations. The result is written back to the register.

𝐸𝑅𝐸𝐺 = 3𝑀 · (𝑒𝑟
𝑟𝑑

+ 𝑒𝑟𝑤𝑟 + 𝑃𝑟𝑠 (𝑡0 − 𝑡𝑎𝑐𝑞)) · 𝑏 (15)
The energy consumption of registers is expressed in Equation 15.
𝑒𝑟
𝑟𝑑

and 𝑒𝑟𝑤𝑟 are the read and write energy consumption per bit of
the register. 𝑃𝑟𝑠 is the static power consumption of the register.

𝐸𝐴𝑅𝐼𝑇𝐻 = 2𝑀 · 𝑒𝑎𝑑𝑑 · 𝑏 +𝑀 · 𝑒𝑠 𝑓 𝑡 · Δ𝑏 (16)
The energy consumption of the arithmetic unit is expressed in
Equation 16. 𝑒𝑎𝑑𝑑 and 𝑒𝑠 𝑓 𝑡 are the energy consumption per bit of
the add operation and shift operation, respectively.

3 Analysis and Comparison
We integrate the estimator in SNN simulator, and analyze the accu-
racy and energy consumption of two SNN models: the traditional
multi-spike based SNN and the new single-spike based SNN[4].
Traditionally, the multi-spike model converts each pixel of the
input image into multiple spikes. The value of the pixel is repre-
sented by the frequency of the spikes. Different from the traditional

10
2

10
3

10
4

10
5

10
6

10
7

0.2 0.3 0.4 0.5 0.6 0.7 0.8

MSM (1 kΩ~10 kΩ)

MSM (10 kΩ~100 kΩ)

MSM (100 kΩ~1 MΩ)

SSM (1 kΩ~10 kΩ)

SSM (10 kΩ~100 kΩ)

SSM (100 kΩ~1 MΩ)

Multi-spike Model (MSM)

Single-spike Model (SSM)

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

n
J
)

Accuracy

Figure 6: Energy consumption and accuracy of the multi-
spike model (MSM) and the single-spike model (SSM)

multi-spike model, the single-spike model first converts the input
image into a tensor by a convolutional layer. Afterwards, each el-
ement in the tensor is converted into a spike if the value of that
element is greater than 0. Compared with the multi-spike model,
the single-spike model usually takes less cycles in inference because
it interprets the input images more efficiently. NCPower is accurate
for both models because the basic working principles of these two
models on the neuromorphic chip are equivalent.

3.1 Validation of NCPower
We collect parameters from published paper. The parameters re-
lated to analog circuits are listed in Table 1. Typically, the succes-
sive approximation (SAR) ADC is used. The listed parameters of
NVM resistors are based on HfOx NVM, which are fabricated as
1T1R cell arrays. The parameters of digital circuits and metal in-
terconnects are collected from the ITRS report [16]. We verified
NCPower by comparing the results generated from our analytical
models with the experiment results of the real NVM-based neu-
romorphic chip. One of the chip is our in-house developed chip
called Novena (shown in Figure 4), where we measured the data
directly. The data of other neuromorphic chips using different NVM
devices are collected from publish paper, including ECRAM [13],
PCM [2], TaOx/HfAlyOx [18] and HfOx/TiOx [19]. The compari-
son on energy consumption per spike is shown in Figure 5. From
the figure we can see that our analytical model could well match
experiment results, in both low and high conductance ranges. In av-
erage, NCPower has ±23% error on energy estimation. One reason
of such error is that we do not have enough detailed configurations
of these devices. Their exact architectures may have little variations.
In this experiments, we only input the basic configurations they
shown into the estimator.
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Figure 7: The energy consumption per cycle on different
cores. The chip for the multi-spike model have more cores
than the single-spike model. For fair comparison, the result
of the single-spike model is plotted in its actual size, at the
right bottom corner of the multi-spike model

3.2 Trade-off on Resistance Range
NCPower can help us to make choice on the resistance range of the
NVM resistors. Figure 6 shows the energy consumption and the
accuracy of the multi-spike model and the single-spike model, in
three different resistance ranges. In this figure we have two obser-
vations. First, the accuracy of the multi-spike model at resistance
range 1 kΩ-10 kΩ is similar to the accuracy at resistance range 10
kΩ-100 kΩ, but their energy consumption is different. We can save
the energy consumption by one order of magnitude if we choose
the larger resistance range. Second, the accuracy of the single-spike
model with resistance range 1 kΩ-10 kΩ is comparable to the multi-
spike model with resistance range 1 kΩ-10 kΩ and 10 kΩ-100 kΩ. If
we choose the single-spike model instead of the multi-spike model,
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Figure 8: The accumulated energy consumption of different
cores on the neuromorphic chip. The total inference time
is divided into four quarters, and each sub-figure shows the
accumulated energy over a quarter. The single-spike model
is tested, with resistance range 1 kΩ-10 kΩ

the energy consumption can be saved by around two orders of
magnitude. We can also use NCPower to further analyze the break-
down of the energy consumption. Table 2 shows the details. At
resistance range 1 kΩ-10 kΩ and 10 kΩ-100 kΩ, around 87% of the
energy consumption is on the NVM resistors and TIA. However, at
resistance range 100 kΩ-1 MΩ, the energy consumption of NVM
resistors and TIA are only 33% of the total energy consumption,
in average of the two models. This is because with the increasing
of resistance, the energy consumption of NVM and TIA decrease
substantially, while that of the other components does not change a
lot. This table explains why the increment of NVM resistance could
effectively reduce the energy consumption of the chip.

3.3 Spatial Analysis
We can use NCPower to analyze neuromorphic chip’s energy con-
sumption on the space domain. Figure 7 shows the energy consump-
tion per cycle on each core. We compare the multi-spike model and
the single spike model, on three different resistance ranges of the
NVM resistors. From the figure we can see that with the increasing
of resistance range, the energy consumption in both cases decrease.
In average, the energy consumption per cycle on each core of the
multi-spike model is 79% less than that of the single-spike model.
However, given the fact that the multi-spike model uses 3680 cores
and the single-spike model uses only 95 cores, the total energy
consumption of the single-spike model is much less than that of the
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Figure 9: The power consumption of the neuromorphic chip
over time when it is inferring a single image

multi-spike model. Cores do not consume equal amount of energy,
and some cores are overheated. For example, in the multi-spike
model, cores in the left part of the chip consume most of the en-
ergy. These cores are mapped to neurons in the first few layers of
the SNN model. Usually, it takes several cycles of operation until
neuron on those layers can accumulate enough potential and fire.
Such property makes the neurons at the first few layers tend to
consume more energy consumption than neurons in the other lay-
ers, resulting in hot spots on the chip. This phenomenon become
acute if the soft cores in SNN is not properly mapped to hard cores.
The mapping strategy can be optimized to avoid this problem, and
NCPower can be a useful tool during the optimization process.

3.4 Temporal Analysis
We can also use NCPower to analyze neuromorphic chip’s energy
consumption on the time domain. Figure 7 shows the energy con-
sumption of the single-spike model when it is inferring one image.
We divide the total inference time into four quarters. From the
figure we can observe the movement of hot sport from one part
of the chip to the other part. In the first quarter, around 82% of
the energy consumption is consumed on the first two columns of
cores. In the later three quarters, eleven cores at column 5 and
column 6 consume around 33% of the energy consumption. This is
because the number of weights in those eleven cores is almost half
of the total number of weights in the model. Figure 9 shows the
variation of power consumption of the neuromorphic chip when it
is inferring one image. We compare the multi-spike models and the
single-spike model, in three different resistance ranges of the NVM
resistors. From the figure we can see that with the increasing of
resistance range, the power consumption in both cases decrease. In
average, the power consumption of the single-spike model is one
order of magnitude less than that of the multi-spike mode, and the
single-spike model has 7X energy efficiency over the multi-spike
model. In either case, we can observe a drop of power consumption
at a certain point of the inference time. This is because at that point,
the whole image is transmitted into the SNNmodel and there are no
incoming spikes from the input image afterwards. Hence, neurons
at the first few layers of SNN models do not consume energy any

more. If the neuromorphic chip is inferring multiple images at the
same time, the chip may consume tremendous amount of energy at
a certain cycle, and hit the power wall of the chip. The scheduling
policy can be optimized to avoid this problem, and NCPower can
be a useful tool during the optimization process.

4 Conclusions
In this paper, we propose NCPower, a power estimator for neuro-
morphic chip. We verify it on different NVM based neuromorphic
chips. The analytical result from NCPower could well match exper-
iment results. We integrate it into a SNN simulator, and analyze the
traditional multi-spike SNN and the new single-spike SNN. From
NCPower we can see that the single-spike model has 7X energy
efficiency over the multi-spike model, while keeping similar accu-
racy under the CIFAR-10 dataset. Using NCPower, developers can
check if a certain location of the chip is over-heated, and try to
alleviate the thermal issues by optimizing soft core and hard core
mapping strategy. Developers can also check if the power consump-
tion would exceed the power limit at certain time, and try to avoid
the power wall of the chip by optimizing the scheduling policy.
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