
ThundeRiNG: Generating Multiple Independent Random
Number Sequences on FPGAs

Hongshi Tan
1
, Xinyu Chen

1
, Yao Chen

2
, Bingsheng He

1
, Weng-Fai Wong

1

1
School of Computing, National University of Singapore

2
Advanced Digital Sciences Center, Singapore

ABSTRACT
In this paper, we propose ThundeRiNG, a resource-efficient and

high-throughput system for generating multiple independent se-

quences of random numbers (MISRN) on FPGAs. GeneratingMISRN

can be a time-consuming step in many applications such as numeric

computation and approximate computing. Despite that decades of

studies on generating a single sequence of random numbers on

FPGAs have achieved very high throughput and high quality of

randomness, existing MISRN approaches either suffer from heavy

resource consumption or fail to achieve statistical independence

among sequences. In contrast, ThundeRiNG resolves the depen-

dence by using a resource-efficient decorrelator among multiple

sequences, guaranteeing a high statistical quality of randomness.

Moreover, ThundeRiNG develops a novel state sharing among a

massive number of pseudo-random number generator instances on

FPGAs. The experimental results show that ThundeRiNG success-

fully passes the widely used statistical test, TestU01, only consumes

a constant number of DSPs (less than 1% of the FPGA resource

capacity) for generating any number of sequences, and achieves a

throughput of 655 billion random numbers per second. Compared

to the state-of-the-art GPU library, ThundeRiNG demonstrates a

10.62× speedup onMISRN and delivers up to 9.15× performance and

26.63× power efficiency improvement on two applications (𝜋 esti-

mation and Monte Carlo option pricing). This work is open-sourced

on Github at https://github.com/Xtra-Computing/ThundeRiNG.

CCS CONCEPTS
•Hardware→Hardware accelerators; •Mathematics of com-
puting → Random number generation.

KEYWORDS
FPGA, pseudorandom number generation, statistical testing

ACM Reference Format:
Hongshi Tan, Xinyu Chen, Yao Chen, Bingsheng He, Weng-Fai Wong. 2021.

ThundeRiNG: GeneratingMultiple Independent RandomNumber Sequences

on FPGAs. In 2021 International Conference on Supercomputing (ICS ’21),
June 14–17, 2021, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3447818.3461664

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICS ’21, June 14–17, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8335-6/21/06.

https://doi.org/10.1145/3447818.3461664

1 INTRODUCTION
A pseudo-random number generator (PRNG) generates a sequence

of uniformly distributed random numbers. It is a fundamental rou-

tine at the core of many modern applications, i.e., Monte Carlo

simulation [44, 47] and approximated graph mining [24, 42, 45].

Many of these applications are inherently parallel and can cope

well with the increasing amount of data by mapping the paral-

lelism onto modern hardware. This has led to the need to generate

a massive quantity of pseudo-random numbers with high quality

of statistical randomness. In other words, the PRNG itself must also

be scalable [53].

Field programmable gate arrays (FPGAs) have demonstrated

promising performance on single sequence generation, benefit-

ing from the good fit between the computation of PRNGs and the

architecture of FPGAs. PRNG generally adopts recurrence algo-

rithms [16] for generating a sequence of numbers and consists of

two successive stages, as shown in the following equations.

𝑥𝑛 = 𝑓 (𝑥𝑛−1) 𝑛 = 1, 2, 3, . . . (1)

𝑢𝑛 = 𝑔(𝑥𝑛) (2)

The state 𝑥𝑛 belongs to 𝑿 , which is a finite set of states (the state

space). 𝑓 :𝑿 → 𝑿 is the state transition function. 𝑔:𝑿 → 𝑼 is the

output function, where𝑈 is the output space. The generation of ran-

dom numbers involves the following repeated steps: first, the state

of the PRNG is updated according to Equation (1); then, Equation (2)

extracts the random number 𝑢𝑛 from the state 𝑥𝑛 . To guarantee sta-

tistical randomness, existing FPGA-based PRNGs [10, 32, 51] usually

implement the state transition with a large state space, requiring

block RAMs (BRAMs) in the FPGAs to be used as storage for state

processing. The output stage usually includes bitwise operations

such as truncation or permutation to increase the unpredictability

of the sequence. Leveraging the bit-level customization capability

of FPGAs, the algorithm-specific permutation can be efficiently

implemented and pipelined with the state transition to achieve

high throughput in FPGAs. For instance, previous studies [1, 8–

10, 32, 51] have shown that FPGAs deliver a better performance

than CPU or GPU based single sequence generation.

While the single sequence of random number generation on

FPGAs has been well studied, extending it to generate multiple

independent sequences of random numbers (MISRN) is nontrivial.

Despite that decades of studies on generating a single sequence of

random numbers on FPGAs have achieved very high throughput

and high quality of randomness, existing approaches for generat-

ing MISRN [10, 14, 20, 32, 55] either suffer from heavy resource

consumption or fail to achieve independence among sequences.

First, the resources of FPGAs can easily become a limitation for the

concurrent generation. The state transition stage usually adopts

states with large space or complex nonlinear arithmetic operations

https://github.com/Xtra-Computing/ThundeRiNG
https://doi.org/10.1145/3447818.3461664
https://doi.org/10.1145/3447818.3461664

Table 1: Survey of PRNG algorithms and implementations. The test suite for statistical quality is the TestU01 suite.

PRNG Algorithms Platform State width #Multiplication Single sequence Multiple sequences Critical resources
for 𝑛 instances Statistical quality Methods Statistical quality on FPGAs

Li et al. [32]

FPGA

19937 0 Crushable Substream Crushable Block RAMs

Dalal et al.[10] 19937 0 Crushable Substream Crushable Block RAMs

LUT-SR [51] 19937 0 Crushable Substream Crushable LUTs

Philox4_32 [49]

GPU/CPU

256 6𝑛 Crush-resistant Multistream Crush-resistant DSP slices

MRG32k3a [29] 384 4𝑛 Crush-resistant Substream Crushable DSP slices

Xoroshiro128** [4]

CPU

128 2𝑛 Crush-resistant Substream Crush-resistant DSP slices

PCG_XSH_RS_64 [39] 64 𝑛 Crush-resistant Multistream Crushable DSP slices

LCG64 [35] 64 𝑛 Crushable Multistream Crushable DSP slices

ThundeRiNG FPGA 192 1 Crush-resistant Multistream Crush-resistant LUTs

in PRNG, which consumes the precious BRAM or DSP resources

of FPGAs [10, 32]. Due to the heavy resource consumption, we

cannot scale a large number of PRNG instances on a single FPGA.

Second, the correlation among multiple sequences leads to low

quality of randomness [10, 32]. Sequences generated by the same

type of PRNG tend to have correlation, diminishing the quality of

randomness [14, 20]. In fact, the quality of the generated sequences

of the previous two designs is not guaranteed [10, 32], as they fail

in some of the empirical tests such as TestU01 [30].

To our best knowledge, none of the previous studies on FP-

GAs achieved high quality of randomness as required in many

applications, or the high throughput and scalability for MISRN. In

this paper, we propose a high-throughput, high-quality, and scal-

able PRNG, called ThundeRiNG, to tackle the aforementioned two

challenges. ThundeRiNG inherits linear congruential generator [31]
(LCG) that natively supports affine transformation to generate dis-

tinct sequences. While the widely adopted LCG parallelization

approaches such as state spacing [55] suffer from long-range cor-

relation [14, 20] and efficiency problems [12, 52], we identified an

opportunity to share the most resource-consuming stage between

multiple PRNG instances on FPGAs, and found a technique to elim-

inate the correlation among the concurrently generated sequences.

Specifically, ThundeRiNG makes the following contributions:

• It enables state sharing for generating multiple independent se-

quences to solve the resource inefficiency problem when increas-

ing the number of PRNGs instantiated on FPGAs.

• It has a resource-efficient decorrelation mechanism to remove

the correlation among sequences to guarantee the quality of

randomness.

• It consumes a constant number of DSPs for a varied number

of generated sequences and achieves up to 655 billion random

numbers per second (20.95 Tb/s), without compromising the

quality of randomness.

• Compared with the state-of-the-art GPU implementation, it de-

livers up to 10.62× performance improvement. Furthermore, we

demonstrate its effectiveness on two real world applications with

delivering up to 9.15× speedup on throughput and 26.63× power

efficiency.

The rest of the paper is organized as follows. Section 2 introduces

the background and related work. Section 3 presents the design,

followed by the implementation details on FPGA in Section 4. We

present the experimental results and case studies in Sections 5 and 6,

respectively. We conclude this paper in Section 7.

2 BACKGROUND AND RELATEDWORK
In this section, we present the quality criteria and review existing

approaches for generating MISRN (summarized in Table 1).

2.1 PRNG Quality Criteria
The statistical randomness of the generated sequences is the most

important quality criterion of PRNG.

Statistical Randomness. Randomness is hard to measure due to

its considerable evaluation space. Instead, statistical randomness is

commonly used for measuring the quality of a PRNG. A numerical

sequence is statistically random if it contains no recognizable pat-

tern or regularities [54]. In essence, statistical randomness indicates

how well the successive outputs of PRNG behave as independent

and identically distributed (i.i.d) random variables.

Statistical RandomnessTesting.There are two testing approaches
for statistical randomness: theoretical test and empirical test. The-

oretical test is a kind of prior test based on the knowledge of the

PRNG algorithm, and thus it is not applicable for PRNGs without

clear mathematical modeling [27]. In contrast, the empirical test is

able to extract recognizable patterns from the generated sequences

without knowledge of detailed mathematical modeling, and it is

widely adopted in the evaluation of PRNGs [3, 7, 34].

The TestU01 suite[30], which is the most stringent empirical

test suite, has been widely used and has become the standard for

testing the statistical quality of a PRNG. It contains several test

batteries, including SmallCrush (with 10 tests), Crush (with 96 tests),

and BigCrush (with 160 tests). PRNGs that pass all tests in those

test batteries can be referred as crush-resistant, indicating a good
quality of statistical randomness, while the PRNGs fail to do that is

called crushable, indicating that recognizable patterns exist [49].
All FPGA-based PRNGs (except this work) in Table 1 are crushable

even for single sequence generation.

2.2 Multiple Sequence Generation Methods
In supporting MISRN, existing PRNGs usually adopt one of the

two methods: substream and multistream (as shown in the column

Methods for “Multiple sequences“ in Table 1).

Substream. Substream based solutions equally divide the state

space into many non-overlapped subspaces to generate disjoint

logical sequences. The practical criterion to guarantee nonover-

lapping is maintaining at least 2
63

skipped elements among the

logical sequences [4]. This method is widely adopted in existing

works [4, 19, 32, 36, 41].

Multistream. The multistream approach is that the same PRNG

module is instantiated multiple times, and the instances run con-

currently with different parameters for generating multiple distinct

streams. All prior cited FPGA-based PRNGs use the substream solu-

tion, and only CPU/GPU based solutions adopt multistream based

solutions, e.g., Philox4_32 [49] and PCG_XSH_RS_64 [39].

2.3 Challenges of MISRN Generation on FPGAs
Table 1 summarizes the existing FPGA-based PRNGs as well as

CPU/GPU based PRNGs. We revisit those algorithms for poten-

tial adoption and thus analyze each method in terms of the state

width, number of multiplications, statistical quality, multi-sequence

generation method, and critical resources. We identify the limita-

tions of existing works and the open challenges of multi-sequence

generation on FPGAs.

2.3.1 Challenge 1: correlation among sequences. A common issue

with existing methods of MISRN is the correlation between se-

quences. This leads to poor statistical randomness and may not

satisfy the application requirements [15, 20]. Correlation violates

the independence of the generated sequences and leads to inaccu-

rate or biased results even in the simplest applications [15, 20]. All

FPGA-based solutions are crushable for both single and multiple

sequence generation.

2.3.2 Challenge 2: high throughput via parallelism. To increase

throughput, multiple pseudo-random sequences must be generated

concurrently. The recent methods [4, 32, 36, 39, 49] require instan-

tiating one PRNG module for generating one sequence. On FPGAs,

this translates to a significant resource consumption that is linearly

proportional to the number of sequences. As a single FPGA has lim-

ited resources, this will severely limit the number of sequences that

can be generated concurrently on one FPGA. Even worse, PRNGs

usually require either a large state width (e.g., the 19937-bit state of

FPGA-based solutions shown in Table 1), or complex arithmetic (e.g.,

the multiplication operation of CPU-based solutions shown in Ta-

ble 1) to improve the randomness of the output. When instantiating

on FPGAs, the large state width will consume the BRAM resources

of FPGAs, and the complex arithmetic consumes heavily on DSPs.

As a result, directly implementing existing CPU/GPU-based PRNGs

on the FPGAs can be resource- and throughput-constrained.

3 DESIGN OF THUNDERING
We describe the design of our proposed ThundeRiNG in this sec-

tion, followed by the implementation details on FPGA in the next

section. As far as we know, ThundeRiNG is the first FPGA-based

solution that solves the two above-mentioned challenges, provid-

ing a high-throughput, high-quality PRNG. ThundeRiNG is based

on a well-studied linear congruential generator (LCG) PRNG [31].

To ensure the highest quality of the output, ThundeRiNG adopts

a resource-efficient decorrelator that removes the correlation be-

tween the multiple sequences generated by parameterizing the

LCG via increments. To scale the throughput, ThundeRiNG uses

state sharing to reduce resource consumption when instantiating a

massive number of PRNG instances on FPGAs.

3.1 Parameterizing LCG via Increment
The LCG algorithm has three parameters, labelled as𝑚, 𝑎 and 𝑐 ,

where𝑚 is themodulus (𝑚 ∈ Z+), 𝑎 is themultiplier (0 < 𝑎 < 𝑚)

and 𝑐 is the increment (0 ≤ 𝑐 < 𝑚). The set of sequences gener-

ated with the same 𝑎,𝑚, 𝑐 parameters are represented as X𝑎,𝑚 =

{𝑋𝑐
𝑎,𝑚, ... | 0 ⩽ 𝑐 < 𝑚}, and the generation of each instance of𝑋𝑐

𝑎,𝑚

is defined in the following equation:

𝑥𝑛+1 = (𝑎 · 𝑥𝑛 + 𝑐) mod 𝑚, 𝑛 ≥ 0 (3)

𝑢𝑛+1 = 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑖𝑜𝑛(𝑥𝑛+1) (4)

Equation (3) is the state transition function, and Equation (4) is

the output function, which conducts a simple truncation on 𝑥𝑛 to

guarantee that the state space is larger than the output space [39].

Instead of parameterizing PRNGswithmodulus andmultiplier [14],

ThundeRiNG explores parameterization via the increment 𝑐 , to

enable a resource-efficient multiple sequence generation method.

However, the generated distinct sequences also suffer the severe

correlation problem [43], which motivates us to develop a decorre-

lation approach in the following subsection.

3.2 Decorrelation
As shown in previous studies [43], the sequences generated by

LCGs with different increments still have severe correlations. There

have been several existing approaches to eliminate the correlations,

such as dynamic principal component analysis [46] or Cholesky

matrix decomposition [17, 26]. However, these methods involve

massive computation, which is resource inefficient and unpractical

for high-throughput random number generation on FPGAs.

The number of possible combinations of sequences generated

by LCG is very large, leading the correlations among multiple se-

quences hard to analyze. Therefore, we first consider the correlation

between two sequences to simplify the problem, and then we extend

it to multiple sequences.

3.2.1 Decorrelation on two sequences. Yao’s XOR Lemma [57] states

that the hardness of predication is amplified when the results of sev-

eral independent instances are coupled by the exclusive disjunction.

Therefore, we use the XOR operation to amplify the independence

of the generated sequences by LCG. Specifically, we first adopt a

light-weight but completely different algorithm from LCG for the

generation of two sequences, even if they are weakly correlated,

and then combine them to the sequences generated by the LCG

algorithm with bitwise XOR operations.

Theorem 3.1 gives the theoretical proof of the improved inde-

pendence for the newly generated sequences with our approach.

Theorem 3.1. Suppose 𝑋𝑐1
𝑎,𝑚 = {𝑥𝑐1𝑛 }𝑛∈N and 𝑋𝑐2

𝑎,𝑚 = {𝑥𝑐2𝑛 }𝑛∈N
are two distinct sequences belong to X𝑎,𝑚 , and there are two weakly
correlated sequences 𝐼 = {𝑖𝑛}𝑛∈N and 𝐽 = { 𝑗𝑛}𝑛∈N ,which are uncor-
related with the sequences in X𝑎,𝑚 . Then the correlation between the
combined sequences, 𝑍 1

= {𝑥𝑐1𝑛 ⊕ 𝑖𝑛}𝑛∈N and 𝑍 2
= {𝑥𝑐2𝑛 ⊕ 𝑗𝑛}𝑛∈N is

weaker than the correlation between 𝑋𝑐1
𝑎,𝑚 and 𝑋𝑐2

𝑎,𝑚 .

Proof. First, we consider two binary uniformly distributed se-

quences, 𝑋 and 𝑌 . As we cannot directly calculate the probabil-

ity based on XOR, we transform the XOR operator to multiplica-

tion [18]. Specifically, we define a sequence transformation, ℎ(𝑋) =

1 − 2𝑋 = {1 − 2 · 𝑥𝑛}𝑛∈N, which maps the value of the elements in

𝑋 from {0, 1} to {−1, 1} . Then we have

ℎ(𝑋 ⊕ 𝑌) = ℎ(𝑋) · ℎ(𝑌). (5)

The mathematical expectation (𝐸), variance (𝑣𝑎𝑟) of ℎ(𝑋), and the

covariance (𝑐𝑜𝑣) between ℎ(𝑋) and ℎ(𝑌) are calculated as follows:

𝐸(ℎ(𝑋)) = 1 − 2𝐸(𝑋) (6)

𝑣𝑎𝑟 (ℎ(𝑋)) = 4𝑣𝑎𝑟 (𝑋) (7)

𝑐𝑜𝑣(ℎ(𝑋), ℎ(𝑌)) = 4𝑐𝑜𝑣(𝑋,𝑌) (8)

As X and Y are uniformly distributed, then we have

𝐸(𝑋) = 𝜇𝑋 ≈ 1/2. (9)

Since 𝑣𝑎𝑟 (𝑋) = 𝐸(𝑋 2
) − (𝐸(𝑋))2, we can approximate the variance

of X:

𝑣𝑎𝑟 (𝑋) = 𝜇𝑋 − (𝜇𝑋)
2 ≈ 1/4 (10)

Therefore, we can calculate the variance of the new sequence𝑋 ⊕𝑌
by Equations (7) and (10):

𝑣𝑎𝑟 (𝑋 ⊕ 𝑌) = 𝑣𝑎𝑟 (ℎ(𝑋 ⊕ 𝑌))
4

=

1

4

·
(
𝑣𝑎𝑟 (ℎ(𝑋)) · 𝑣𝑎𝑟 (ℎ(𝑌))

+ 𝑣𝑎𝑟 (ℎ(𝑌)) · 𝐸[ℎ(𝑋)]2 + 𝑣𝑎𝑟 (ℎ(𝑋)) · 𝐸[ℎ(𝑌)]2
)

=

𝑣𝑎𝑟 (ℎ(𝑋)) · 𝑣𝑎𝑟 (ℎ(𝑌))
4

= 4 · 𝑣𝑎𝑟 (𝑋) · 𝑣𝑎𝑟 (𝑌) ≈ 1/4 (11)

Taking two sequences in 𝑍 (in the Theorem definition), their corre-

lation 𝜌𝑍 can be represented by the definition of correlation:

𝜌𝑍 =

𝑐𝑜𝑣(𝑋
𝑐1
𝑎,𝑚 ⊕ 𝐼 , 𝑋𝑐2

𝑎,𝑚 ⊕ 𝐽)√
𝑣𝑎𝑟 (𝑋

𝑐1
𝑎,𝑚 ⊕ 𝐼) · 𝑣𝑎𝑟 (𝑋𝑐2

𝑎,𝑚 ⊕ 𝐽)

(12)

Equation (12) can be further approximated using Equation (11):

𝜌𝑍 ≈ 4 · 𝑐𝑜𝑣(𝑋𝑐1
𝑎,𝑚 ⊕ 𝐼 , 𝑋𝑐2

𝑎,𝑚 ⊕ 𝐽) (13)

where the covariance can be rewritten as

𝑐𝑜𝑣(𝑋
𝑐1
𝑎,𝑚 ⊕ 𝐼 , 𝑋𝑐2

𝑎,𝑚 ⊕ 𝐽)

=

𝑐𝑜𝑣[ℎ(𝑋
𝑐1
𝑎,𝑚 ⊕ 𝐼), ℎ(𝑋𝑐2

𝑎,𝑚 ⊕ 𝐽)]

4

=

𝑐𝑜𝑣[ℎ(𝑋
𝑐1
𝑎,𝑚) · ℎ(𝐼), ℎ(𝑋𝑐2

𝑎,𝑚) · ℎ(𝐽)]
4

=

1

4

·
(
𝐸[ℎ(𝑋

𝑐1
𝑎,𝑚)ℎ(𝑋

𝑐2
𝑎,𝑚)ℎ(𝐼)ℎ(𝐽)]

− 𝐸[ℎ(𝑋𝑐1
𝑎,𝑚)ℎ(𝐼))]𝐸[ℎ(𝑋

𝑐2
𝑎,𝑚)ℎ(𝐽)]

)
.

(14)

As 𝑋𝑎,𝑚 is independent of 𝐼 and 𝐽 , the first item in Equation (14)

can be represented by their covariances:

𝐸[ℎ(𝑋
𝑐1
𝑎,𝑚)ℎ(𝑋

𝑐2
𝑎,𝑚)ℎ(𝐼)ℎ(𝐽)]

= 𝐸[ℎ(𝑋
𝑐1
𝑎,𝑚)ℎ(𝑋

𝑐2
𝑎,𝑚)] · 𝐸[ℎ(𝐼)ℎ(𝐽)]

=

(
𝑐𝑜𝑣[ℎ(𝑋

𝑐1
𝑎,𝑚), ℎ(𝑋

𝑐2
𝑎,𝑚)] + 𝐸[ℎ(𝑋

𝑐1
𝑎,𝑚)]𝐸[ℎ(𝑋

𝑐2
𝑎,𝑚)]

)
·
(
𝑐𝑜𝑣[ℎ(𝐼), ℎ(𝐽)] + 𝐸[ℎ(𝐼)]𝐸[ℎ(𝐽)]

)
(15)

Similar with Equation (13), we use the correlation (𝑐𝑜𝑟𝑟) to replace

the covariance items in Equation (15):

𝐸[ℎ(𝑋
𝑐1
𝑎,𝑚)ℎ(𝑋

𝑐2
𝑎,𝑚)ℎ(𝐼)ℎ(𝐽)]

≈ 1

4

·
(
𝑐𝑜𝑟𝑟 [ℎ(𝑋

𝑐1
𝑎,𝑚), ℎ(𝑋

𝑐2
𝑎,𝑚)] + 4𝐸[ℎ(𝑋

𝑐1
𝑎,𝑚)]𝐸[ℎ(𝑋

𝑐2
𝑎,𝑚)]

)
·
(
𝑐𝑜𝑟𝑟 [ℎ(𝐼), ℎ(𝐽)] + 4𝐸[ℎ(𝐼)]𝐸[ℎ(𝐽)]

) (16)

As 𝑋
𝑐1
𝑎,𝑚 and 𝑋

𝑐2
𝑎,𝑚 from the same LCG set, the difference of their

expectations can be ignored. We use 𝜇𝑋𝑎,𝑚
to represent their expec-

tation:

𝐸(𝑋
𝑐1
𝑎,𝑚) = 𝐸(𝑋

𝑐2
𝑎,𝑚) = 𝜇X𝑎,𝑚 (17)

Here, 𝜌X𝑎,𝑚 represents the correlation of 𝑋
𝑐1
𝑎,𝑚 and 𝑋

𝑐2
𝑎,𝑚 , and 𝜌

(𝐼 ,𝐽)

represents the correlation of 𝐼 and 𝐽 , Finally, combining Equa-

tions (13) to (16), Equation (12) can be simplified as

𝜌𝑍 ≈ 𝜌𝑋𝑎,𝑚
· 𝜌

(𝐼 ,𝐽) + 𝜌𝑋𝑎,𝑚
· (1 − 2𝜇

(𝐼 ,𝐽)) + 𝜌(𝐼 ,𝐽) · (1 − 2𝜇X𝑎,𝑚).

(18)

The expectations of the sequence 𝐼 , 𝐽 and 𝑋𝑎,𝑚 are very close to

1/2. Hence, the terms 𝜌X𝑎,𝑚 · (1 − 2𝜇
(𝐼 ,𝐽)) and 𝜌(𝐼 ,𝐽) · (1 − 2𝜇X𝑎,𝑚)

in Equation (18) can be ignored. Finally, the correlation between

𝑍 1
and 𝑍 2

is simplified as

|𝜌𝑍 | ≈
��𝜌𝑋𝑎,𝑚

�� · ��𝜌
(𝐼 ,𝐽)

�� . (19)

We assume that the sequences in the X𝑎,𝑚 are highly correlated,

so

��𝜌X𝑎,𝑚 ��
is close to 1.

��𝜌
(𝐼 ,𝐽)

��
is a small value (< 1) as the sequences

𝐼 and 𝐽 are only weakly correlated. Thus, |𝜌𝑍 | <
��𝜌X𝑎,𝑚 ��

from Equa-

tion (19), which proves that our XOR based approach decreases the

correlation of the original LCG generated sequences. □

3.2.2 Decorrelation on multiple sequences. On top of Theorem 3.1,

we further consider the correlation among the sequences generated

from more than two generators. Typically, the independence of

multiple random number sequences has two measurements, mutual

independence and pairwise independence. Mutual independence is

a strong notion of independence. It requires that each sequence is

independent of all other sequences and any combination of other

sequences in the set. Matsumoto et al. [37] have the hypothesis of

mutual independence on the linear recurrence. However, there is no

mathematically rigorous proof, and it is even impossible to evaluate

all possible combinations in empirical tests when the number of

sequences is large. Pairwise independence indicates that any two

sequences in the domain are independent of each other, which

is mostly considered measurement in PRNG [30]. Therefore, we

…

𝑧𝑛+1
1

𝑔 𝑥𝑛+1
𝑐1

Decorrelator
(𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐾1)

𝑘𝑛+1
1⊕

𝑧𝑛+1
𝑖

𝑔 𝑥𝑛+1
𝑐𝑖

Decorrelator
(𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐾𝑖)

𝑘𝑛+1
𝑖⊕

State transition Decorrelation PRNG instance

11

22

𝑥𝑛+1
𝑐𝑖 = 𝑎 × 𝑥𝑛

𝑐𝑖 + 𝑐𝑖 𝑚𝑜𝑑 𝑚𝑥𝑛+1
𝑐1 = 𝑎 × 𝑥𝑛

𝑐1 + 𝑐1 𝑚𝑜𝑑 𝑚

Figure 1: The decorrelation mechanism.

only extend Theorem 3.1 to pairwise independence of multiple

sequences, as given in Theorem 3.2.

Theorem 3.2. Suppose there is a set of independent sequences,
denoted as K, of which all members are uncorrelated with X𝑎,𝑚 .
Separately selecting𝑛 sequences fromK andX𝑎,𝑚 , denoted as {𝐾𝑖 }𝑛

𝑖=1

(𝑛 > 2) and {𝑋𝑐𝑖
𝑎,𝑚}𝑛

𝑖=1
. The combined sequences, {𝑍 𝑖 = 𝑋𝑐𝑖

𝑎,𝑚⊕𝐾𝑖 }𝑛
𝑖=1

are pairwise independent from each other.

Proof. We give the induction proof. Let 𝑃 (𝑛) be the statement

"the 𝑛 decorrelated sequences {𝑍 𝑖 = 𝑋𝑐𝑖
𝑎,𝑚 ⊕ 𝐾𝑖 }𝑛

𝑖=1
are pairwise

independent". We will prove that 𝑃 (𝑛) is true for all 𝑛 > 2.

We first prove 𝑃 (3) is true, which means three distinct sequences

are pairwise independent (denote them as 𝑍 1
, 𝑍 2

and 𝑍 3
). Based

on our definition, we have 𝑍 1
= 𝑋

𝑐1
𝑎,𝑚 ⊕ 𝐾1

and 𝑍 2
= 𝑋

𝑐2
𝑎,𝑚 ⊕ 𝐾2

.

𝐾1
and 𝐾2

belong to K. Hence based on Theorem 3.1, we can get

that 𝑍 1
is independent from 𝑍 2

. In a similar way, 𝑍 1
is independent

from 𝑍 3
, and 𝑍 2

is independent from 𝑍 3
. Therefore, 𝑃 (3) is true.

For the inductive step, assume 𝑃 (𝑗) true, we will prove that 𝑃 (𝑗 +

1) is also true. Compared to 𝑃 (𝑗), 𝑍 𝑗+1
is the newly introduced

sequence, of which the 𝐾 𝑗+1
is independent with the sequences in

{𝐾𝑖 } 𝑗
𝑖=1

.

Successively combining 𝑍 𝑗+1
with all sequences in {𝑍 𝑖 } 𝑗

𝑖=1
into

pairs, and adopting Theorem 3.1 on all of the pairs, we derive that

𝑍 𝑗+1
is independent from all the members in {𝑍 𝑖 } 𝑗

𝑖=1
. Therefore,

according to the definition of pairwise independence, 𝑃 (𝑗 + 1) is

true, completing the proof. □

3.2.3 The algorithm. We propose our decorrelation method based

on Theorem 3.1 and Theorem 3.2, using the XOR operation to

combine the correlated LCG sequences with a series of independent

sequences.

The algorithm flow is shown in Figure 1, for the 𝒊-th instance at

Step 𝒏 + 1 , it transits the old state from 𝑥
𝑐𝑖
𝑛 to the new state 𝑥

𝑐𝑖
𝑛+1

by the LCG algorithm, and the inside decorrelator generates an

element 𝑘𝑖
𝑛+1

and an XOR operation is performed to output 𝑧𝑖
𝑛+1

.

According to the proof in Theorem 3.2, there are two theoretical

constraints on the sequences generated by the decorrelator. Define

K to be the set of all candidate sequences for the decorrelator. The

constraints are: (i) Every sequence in K should be independent of

the sequences in LCG set X𝑎,𝑚 . (ii) Any pair of sequences in K
should not be strongly correlated with each other. These are the

fundamental guidelines for choosing a suitable decorrelator.

Beyond the theoretical constraints, several practical factors could

also be considered to reduce the selection space of the decorrela-

tor when implementing the decorrelation method on FPGAs. First,

since the XOR operation could reduce the statistical bias [57], the

sequences generated by the decorrelator do not need to have perfect

statistical randomness. Second, the decorrelator should be light-

weight to be resource-efficient. For example, it is desirable to reduce

the number of multiplications that are costly in FPGA resource

consumption. Finally, the decorrelator should produce massive un-

correlated sequences, adapting to the different required degree of

parallelism.

Based on the theoretical constraints and practical considerations,

we adopt the xorshift algorithm [35] as the decorrelator for the

following reasons. First, the generation process of xorshift is com-

pletely independent of the LCG algorithm, which guarantees the

first theoretical constraint. Second, xorshift supports the substream

method to generate long-period logical sequences, which can avoid

long-range correlations [19] and hence meets the second theoret-

ical constraint. Lastly, as xorshift is based on the binary linear

recurrence, it only uses bit-shift and XOR operations that can be

efficiently implemented on FPGAs.

3.3 State Sharing Mechanism
The decorrelation method introduced in the previous section solves

the correlation issue of the LCG seqences X𝑎,𝑚 . To use it on FPGA

platforms, each LCG sequence is generated by an independent

calculation process, and it requires one multiplication and one

addition operation during each step of the state transition. This

can require a large number of hardware multipliers in MISRN. To

reduce the number of hardware multipliers, we propose the state

sharing mechanism that reuses the intermediate results of state

transition over distinct generators.

In order to enable intermediate result reuse, we further extend

the LCG transition. Considering that 𝜉ℎ is an addition transition

with a given constant integer ℎ after the LCG transition (given

in Equation (3)):

𝑤𝑛 = 𝜉ℎ(𝑥𝑛) = (𝑥𝑛 + ℎ) mod 𝑚 (20)

We can get the transition from𝑤𝑛+1 to𝑤𝑛 by expanding the modu-

lus and replacing 𝑥𝑛 with Equation (3). That is

𝑤𝑛+1 = [𝑎 ·𝑤𝑛 + (𝑙 ·𝑚 + 𝑐 − 𝑎 · ℎ)] mod 𝑚, (21)

where 𝑙 is an integer introduced during the expansion of the modu-

lus operation. The transition from𝑤𝑛+1 to𝑤𝑛 has the same form

as LCG. As the multiplier 𝑎 is the same as the multiplier in Equa-

tion (3), the sequence𝑊 generated by Equation (20) belongs to

X𝑎,𝑚 . This indicates that selecting different ℎ results in a unique

sequence, which is the same as changing the increment 𝑐 of LCG.

Hence, we have the following representation:

𝑤𝑛+1 = 𝜉ℎ(𝜑𝑐 (𝑥𝑛)) = 𝜑(𝑙 ·𝑚+𝑐−𝑎 ·ℎ)(𝑤𝑛) (22)

where 𝜑𝑐 is the LCG transition with a specific increment 𝑐 .

Equation (22) allows us to share the output of𝜑𝑐 in the generation

of multiple sequences. We illustrate this state sharing mechanism,

as shown in Figure 2. We refer 𝜑𝑐 as the root transition that can

be shared among multiple sequences, and 𝜉ℎ as the leaf transition.

Every leaf transition uses the same root state from a root transition

and occupies a unique number ℎ to guarantee that the sequences

generated are distinct from others.

Combining with our decorrelation method, the flow of state

sharing MISRN generation is as follows. First, the root transition

generates an intermediate state at step 𝑛 +1, 𝑥𝑛+1. Then, it is shared

among 𝑝 instances. Furthermore, the 𝑖-th instance transits to 𝑥𝑛+1
by a unique leaf transition 𝜉ℎ𝑖 to get a unique leaf state𝑤

𝑖
𝑛+1

. Finally,

𝑤𝑖
𝑛+1

goes through the output stage and then couples with the

corresponding output of the decorrelator (illustrated in Section 3.2)

to produce a random number 𝑧′𝑖𝑛+1.

State sharing Decorrelation PRNG instance

𝜑𝑐 ∶ 𝑥𝑛+1 = 𝑎 × 𝑥𝑛 + 𝑐 𝑚𝑜𝑑 𝑚

…

11
Root State Transition

…

𝑧𝑛+1
′1

Decorrelator
(𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐾1)

𝑘𝑛+1
1⊕

𝜉ℎ1: 𝑤𝑛+1
1 = 𝑥𝑛+1 + ℎ1 𝑚𝑜𝑑 𝑚

Leaf State Transition

𝑔 𝑤𝑛+1
1

Permutation

22

Random Number: 𝑧𝑛+1
′𝑖

Decorrelator
(𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐾𝑖)

𝑘𝑛+1
𝑖⊕

𝜉ℎ𝑖: 𝑤𝑛+1
𝑖 = 𝑥𝑛+1 + ℎ𝑖 𝑚𝑜𝑑 𝑚

Leaf State Transition

𝑔 𝑤𝑛+1
𝑖

Permutation

Permutation

Figure 2: The State sharing mechanism.

To guarantee a maximum period of the sequences generated

from the leaf transition, there is a constraint on the selection of ℎ.

First, referring to Hull-Dobell Theorem [22], (𝑙 ·𝑚+𝑐−𝑎 ·ℎ)must be

an odd number. Second, as𝑚 is power-of-two, 𝑙 ·𝑚 is always even.

Hence, we only need to consider the parity of (𝑐−𝑎 ·ℎ). Again, 𝑐 , the
increment in the root transition, which is also under the constraint

of the Hull-Dobell Theorem, is an odd number. Therefore, if 𝑎 · ℎ is

an even number, (𝑙 ·𝑚−𝑎 ·ℎ) is an odd number, and the Hull-Dobell

Theorem holds. Finally, because 𝑎 is a prime number, an even ℎ

will let the Hull-Dobell Theorem hold to guarantee the maximum

period.

Comparing with all existing methods, which need 𝑝 times mul-

tiplication for 𝑝 distinct instances to transit the state at each step,

our state sharing method needs only one multiplication along

with 𝑝 addition operations. Specifically, on the FPGA platform,

our approach only needs one multiplier to support any number of

PRNG instances. This completely resolves the bottleneck of existing

methods to increase the number of high-quality PRNG instances to

improve the throughput.

3.4 Permutation Function for Output
Since LCG is known to have weak statistical quality of low-order

bits [33], ThundeRiNG adopts the random rotation permutation

in the output function 𝑔 as proposed by O’Neill [39]. Basically, it

performs a uniform scrambling operation and then remaps the bits

to enhance the statistical quality. The remapping operation is a

bitwise rotation, of which the number of rotations is determined by

the leaf state. As the leaf states are different from each other, the

rotation operations of different sequences are different, which can

further reduce the collinearity. We demonstrate the impact of the

adopted permutation in Section 5.2.2.

•••

. . .

Advance-6
Recurrence

Random Number
Sequence #1

1

1

2

3

4

. . .

Random Number
Sequence #N

1

2

3

4

Chain Topology

Figure 3: The overview of implementation of ThundeRiNG.

4 IMPLEMENTATION OF THUNDERING
4.1 Architecture Overview
The overall architecture of ThundeRiNG implementation on FPGA

is shown in Figure 3. The architecture mainly consists of one root
state generation unit (RSGU) and multiple sequence output unit
(SOU). Each SOU is responsible for generating a single random

sequence. RSGU generates one root state per cycle by performing

the transition function of LCG and shares it with all SOUs through

a daisy-chaining topology [5] interconnection (Step ①). SOU is the

main component to realize the decorrelation and state sharing as

presented in Section 3. It is composed of three subcomponents,

including the leaf state generation unit (LSGU), permutation unit,

and decorrelator unit. Given the shared root state 𝑥𝑛 , each SOU

executes the leaf state generation in LSGU to generate a leaf state

(Step ②) and then executes the permutation function to generate a

distinct LCG sequence (Step ③). Finally, the decorrelator will output

the random number sequence with the input from the permutation

(Step ④).

4.2 Root State Generation Unit (RSGU)
The RSGU recursively generates root states by the following equa-

tion: 𝑥𝑛+1 = (𝑎 · 𝑥𝑛 + 𝑐) mod 𝑚, where the initial 𝑥𝑛 is initialized

with a random constant. Although the computation of one multiply-

accumulate operation (MAC) is rather simple, generating one root

state per cycle is nontrivial due to the true dependency [25] intro-

duced by the recursive computation pattern. The calculation of the

next state is based on the previous state, which means the calcula-

tion of a new state can only be started after the calculation of the

previous state is finished. However, the latency of multiplication

with DSPs on FPGA usually has multiple cycles (e.g., DSP48E2 takes

6 cycles as indicated in Figure 4(a).) As a result, the throughput is

limited by the long latency of multiplication on FPGAs.

Another possible way of finishing the MAC in one cycle is to use

logic resources such as LUTs and registers to construct the MAC

directly. However, a large-bit multiplier costs a large number of

LUTs. Moreover, it consists of many long combinational logic paths

that result in a large propagation delay and lead to low frequency.

As shown in Figure 4(b), the LUT-based 64-bit MAC can output 𝑥1
after 𝑥0 in one cycle. However, it runs at a much lower frequency,

which degrades the generation performance.

Instead, ThundeRiNG hides the long multiplication latency of

DSPs by leveraging the step-jump-ahead feature of LCG [6]. Al-

though recursive state generation has flow dependency, LCG sup-

ports the arbitrary advance recurrence, which could generate states

-3 -2 -1 0 1 2 3 4 5 6 7 8

CLK

MAC X0 X1

(a) DSP-based state generation.

-3 -2 -1 0 1 2 3 4 5 6 7 8

CLK

MAC X0 X1 ...

(b) LUT-based state generation.

-3 -2 -1 0 1 2 3 4 5 6 7 8

CLK

MAC5 X5 X11

...

MAC1 X1 X7

MAC0 X0 X6

MERGE X0 X1 X5 X6 X7 ...

6 cycles

(c) Proposed state generation with advance-6 recurrence.

Figure 4: The timing diagrams of different hardware designs
for root state generation unit.

in a jump-wise manner: 𝑥𝑛+𝑖 = 𝑓𝑎𝑑𝑣−𝑖 (𝑥𝑛), where 𝑖 is an arbitrary

integer number and 𝑓𝑎𝑑𝑣−𝑖 is a new recurrence function whose

parameters can be derived from the original LCG state transition

function (Equation (3)). With it, the process of state generation

can be partitioned into multiple portions and executed by multi-

ple hardware units with different lags in parallel. For example, to

generate {𝑥0, 𝑥1, ...𝑥6, 𝑥7 ...} as the output state sequence, instead of
using one state generator, we could use two dependent advance-2

state generators with the first one generating the state sequence

{𝑥0, 𝑥2, ..., 𝑥6, ...} and the second one generating the state sequence

{𝑥1, 𝑥3, ..., 𝑥7, ...}.
The architecture of RSGU is shown in Figure 3. The RSGU con-

sists of multiple independent state generators. Each state generator

contains a MAC unit for multiplication operations, a modulus unit

for modulus operation, and registers for storing the temporal state

during the recurrence process. State generators perform the same

𝑓𝑎𝑑𝑣−𝑖 on adjacent starting positions in parallel. Their outputs are

further merged in the order of the original state sequence. Since

the latency of state calculation is six cycles, we implement six state

generators so that RSGU could generate one state per cycle, as

indicated in Figure 4(c).

In addition, our design does not involve critical combinational

logic paths, and the evaluation shows that the post-routing fre-

quency can be scaled up to 550MHz using the HLS toolchain. Pa-

rameters for advance-𝑖 recurrence are calculated in compile-time

following the algorithm proposed by Brown et al. [6], which has

𝑂(log(𝑖)) complexity. With 𝑖 equal to 6 in our case, the overhead of

calculating these parameters is negligible.

4.3 Sequence Output Unit (SOU)
With the root state as input, each SOU performs leaf state generation

(LSGU), permutation, and decorrelation to finally output a random

number sequence. Each LSGU consists of an integer adder. The

LSGU adder in the 𝑖-th SOU performs the addition of the root state

with a unique constant value ℎ𝑖 , which is calculated at compile

time by the approach described in Section 3.3. The permutation

unit is implemented by shift registers. The rotation operation in

the permutation function is divided into three stages to reduce the

length of the combinatorial logic path. In the first stage, it calculates

the the number of required bits for the rotation with the output from

LSGU as input. In the second stage, it splits the rotation operation

into two small rotations. In the remaining stages, it performs these

split rotations in parallel. These stages are executed in a pipelined

manner to guarantee a throughput of one output per cycle. The

decorrelator, which is a xorshift sequence generator and belongs to

the linear feedback shift register generators, is implemented by the

shift registers on FPGAs by following these previous works [1, 40].

When increasing the number of SOUs to provide a massive num-

ber of sequences, state sharing by simple data duplication may

cause a high fan-out problem since all SOUs require the same input

from the RSGU. This problem can be optimized by handcrafted

register replication, but it loses the flexibility associated with HLS

tools [11]. Therefore, we adopt a daisy chain scheme [5] for the

internal data transfer that each SOU receives data from the front

SOU and then directly forwards the received data to the next SOU.

As there is no 1-to-N connection, it can keep the fan-out at a very

low level at the cost of a slight increase in output latency. The extra

latency is equal to the number of SOUs in the same topology times

the period of the execution clock, which is only 1.82𝜇𝑠 for 1000

SOUs running at a frequency of 550MHz.

4.4 Discussion
Although ThundeRiNG is specifically designed for FPGAs, we also

explore the possibility of generalizing our decorrelation and state

sharing methods to CPUs and GPUs with the results presented

in Section 5.5. As this generalization is not the main focus of this

paper, the implementations on CPUs and GPUs are rather straight-

forward, and we believe that more optimizations can be considered

as future work. For CPU implementation, we utilize a single thread

for root state generation and multiple threads for parallel sequence

output. The root states are generated in a batch manner so that

the root states of each batch can fit in the last level cache for good

data locality. In addition, we explore a double buffering scheme to

overlap the root state generation and sequence output processes

to increase throughput. For the GPU implementation, the state

sharing mechanism leverages the shared memory hierarchy and

hardware-accelerated arrive/wait barrier [38]. In one stream pro-

cessor of GPU, we use a single thread for root state generation and

multiple threads for parallel sequence output. The synchronization

among them is managed through the efficient cooperative group

interface provided by CUDA [38].

5 EVALUATION
In this section, we evaluate both the quality and the throughput of

ThundeRiNG.

5.1 Experimental Setup
5.1.1 Hardware Platform. The evaluation of statistical quality is

conducted on a server with an Intel Xeon 6248R CPU and 768 GB

DDR4 memory. The throughput benchmarks and case studies are

conducted on the following hardware platforms and corresponding

development environments:

FPGA: XilinxAlveoU250 accelerator cardwith Vitis HLS Toolchain
2020.1. The number of available hardware resources are 2,000

BRAMs, 11,508 DSP slices, and 1,341,000 LUTs.

GPU: NVIDIA Tesla P100 GPU with CUDA Toolkit 10.1.

CPU: Two Intel Xeon 6248R CPUs (96 cores after hyperthreading

enabled) with oneAPI Math Kernel Library 2021.2.

5.1.2 Parameter setting. The parameters of the root state transition

include the modulus𝑚, multiplier 𝑎 and increment 𝑐 . According to

the existing empirical evaluation [33, 39], we choose modulus𝑚 as

2
64
, multiplier 𝑎 as 6364136223846793005 and increment 𝑐 as 54. To

guarantee scalability, we choose the xorshift128 generator as the

decorrelator since it has the period of 2
128−1 and hence can generate

2
64

nonoverlapping subsequences which satisfies the decorrelation

requirement on 2
63

distinct sequences [39] of LCG with the state

size of 64-bit. With the above parameters, ThundeRiNG is able to

generate up to 2
63

uncorrelated sequences, and the period of each

sequence is up to 2
64 − 1.

5.1.3 Evaluation Methods for StatisticalQuality. To our best knowl-
edge, there is no systematic benchmark for MISRN. Thus, we eval-

uate the quality of the MISRN generated by ThundeRiNG with two

kinds of tests: intra-stream correlation and inter-stream correlation.

The intra-stream correlation indicates the dependence of random

numbers from the same sequence (stream), while the inter-stream

correlation indicates the dependence from different sequences.

Evaluationmethodon intra-streamcorrelation. Following pre-
vious studies [39, 49], we adopt a complete and stringent test suite,

TestU01 suite [30], as the empirical test suite for statistical quality

measurement. While existing works [2, 32] only conducted tests

with the Crush battery, we evaluate ThundeRiNGwith the BigCrush

battery, which is more extensive and has 64 more tests than the

Crush battery [30]. Despite the BigCrush battery testing approx-

imately 2
38

random samples from one sequence, it can still miss

regular patterns with a long period. We hence adopt a complimen-

tary test suite, PractRand [13], which allows for an unlimited test

length of one sequence. PractRand runs in iterations. In each itera-

tion, all tests are run at a given sample size. In the next iteration, the

sample size is doubled until unacceptable failure occurs. Therefore,

it is powerful to detect regular long-range patterns. As ThundeR-

iNG can generate up to 2
63

distinct sequences, it is impractical to

evaluate them all. Hence, we randomly select 64 distinct sequences

for evaluations.

Evaluation method on inter-stream correlation. As TestU01

and PractRand test suits are not designed for testing the inter-

stream correlation [23], we adopt the evaluation method from Li et

al. [32] that interleaves multiple sequences into one single sequence

before evaluating the interleaved sequence with the BigCrush and

PractRand test suites. Specifically, the interleaved sequence is gen-

erated by selecting numbers from multiple sequences in a round-

robin manner. Suppose there are 𝑘 sequences in total and the 𝑖-

th sequence is {𝑥𝑖
0
, 𝑥𝑖

1
, ..., 𝑥𝑖𝑛, ...}, the interleaved sequence will be

{𝑥0
0
, 𝑥1

0
, ..., 𝑥𝑘

0
, 𝑥0

1
, 𝑥1

1
, ...𝑥𝑘

1
, ...}. Besides TestU01 and PractRand, we

also perform the Hamming weight dependency (HWD) test on the

interleaved sequences. HWD, which is the dependency between

the number of zeroes and ones in consecutive outputs, has been

an important indicator of randomness and adopted by many test

suites [30]. We use a powerful HWD testbench from Blackman et

al. [4] that several existing crush-resistant PRNGs fail to pass [4].

Beyond this commonly adopted evaluation, to demonstrate the

strength of our decorrelation method, we conduct a more stringent

analysis on inter-stream correlation by three pairwise correlation

evaluations. The experiments on pairwise correlation include Pear-

son’s correlation coefficient, Spearman’s rank correlation coeffi-

cient, and Kendall’s rank correlation coefficient [50].

• The Pearson correlation is also known as cross-correlation,

which measures the strength of the linear relationship be-

tween two sequences.

• Spearman’s rank correlation represents the strength and di-

rection of the monotonic relationship between two variables

and is commonly used when the assumptions of Pearson

correlation are markedly violated.

• Kendall rank correlation describes the similarity of the or-

dering of the data when sorted by each of the quantities.

The outcomes of the three pairwise correlation tests range from -1 to

+1, where -1 indicates a strong negative correlation, +1 for a strong

positive correlation, and 0 for independence. As it is hard to traverse

and analyze the pairwise correlations of all candidate sequences,

we randomly select a pair of distinct sequences to calculate their

coefficients and report the maximal correlation for 1000 such pairs.

5.1.4 Methods for Throughput Evaluation. We first evaluate the

throughput of ThundeRiNG by varying the number of PRNG in-

stances, and then comparing it with the state-of-the-art FPGA-based

designs as well as CPU/GPU designs. For each experiment, we re-

peat the execution for 10 times and report the median throughput.

There are, in general, two performancemetrics for PRNG through-

put evaluation: terabits generated per second (Tb/s), and giga sam-

ples generated per second (GSample/s). Tb/s is commonly used in

FPGA-based evaluation since FPGA-based PRNGs tend to have a

large and arbitrary number of output bits (e.g., LUT-SR [51] uses

624-bit output) to increase the throughput. GSample/s is used in

CPU/GPU-based evaluation, where the size of a sample is usually

aligned with 32-bit. Hence, we use Tb/s when comparing with other

FPGA-based implementations, and GSample/s with the sample size

of 32-bit when comparing with CPU/GPU-based implementations.

For implementations with a larger sample size, we normalize it to

32-bit correspondingly. For example, Philox-4×32 uses the 128-bit

round key [49], which produces 4 × 32-bit random numbers per

output. We will count that as four samples per output, for a fair

comparison.

5.2 Quality Evaluation
5.2.1 TestU01 and PractRand. Table 2 shows the testing results of

ThundeRiNG and the state-of-the-art PRNG algorithms [4, 29, 39,

49, 51] on BigCrush testing battery and PractRand test suite.

The results indicate that ThundeRiNG passes all tests in the

BigCrush battery for both single sequence and multiple sequences.

The results of the PractRand suite show ThundeRiNG never en-

counters a defect even after outputting up to 8 terabytes random

numbers. In summary, ThundeRiNG demonstrates a competitive

quality of statistical randomness compared to the state-of-the-art

PRNG algorithms.

Table 2: Statistical testing of ThundeRiNG and state-of-the-
art PRNGalgorithms onBigCrush andPractRand test suites.

Algorithms Intra-stream correlation Inter-stream correlation
BigCrush PractRand BigCrush PractRand

Xoroshiro128** [4] Pass >8TB Pass >8TB

Philox4_32 [49] Pass >8TB Pass 1TB

PCG_XSH_RS_64 [39] Pass >8TB 105 failures 256MB

MRG32k3a [29] Pass >8TB 1 failure 2TB

LUT-SR [51] 2 failures >1TB Pass 16MB

ThundeRiNG Pass >8TB Pass >8TB

5.2.2 Pairwise Correlation Evaluation. Table 3 shows the evalu-

ation of pairwise correlation analysis when we enable different

techniques: original LCG, original LCG + decorrelation, original

LCG + permutation, and ThundeRiNG. The results indicate that

the three kinds of correlations of multiple sequences generated by

ThundeRiNG are much smaller than those by other design solutions,

demonstrating the good statistical randomness of ThundeRiNG.

Table 3: Pairwise correlation tests with different techniqes
enabled.
Inter-stream LCG LCG + LCG + ThundeRiNGCorrelations Baseline Decorrelation Permutation

Pearson 0.99764 0.00151 0.00019 0.00003
Spearman’s rank 0.99764 0.00150 0.00020 0.00003
Kendall’s rank 0.99843 0.00101 0.00013 0.00002

5.2.3 Hamming Weight Dependency Evaluation. Table 4 shows

the evaluation results of Hamming weight dependency of different

methods. The value of a result of the HWD test indicates the number

of generated random numbers before an unexpected pattern is

detected. Thus, a higher value of the result means better statistical

quality.

We examine the impact of different techniques. If we only ap-

ply the permutation to the original LCG, there is no reduction in

Hamming weight dependency, although it reduces the collinear-

ity significantly (shown in Table 3). In contrast, our decorrelation

method significantly reduces the Hamming weight dependency.

Table 4: Hamming weight dependency test with different
techniqes enabled.
Inter-stream LCG LCG + LCG + ThundeRiNGCorrelations Baseline Decorrelation Permutation

Blackman et al. [4] 1.25𝑒 + 08 > 1𝑒 + 14 1.25𝑒 + 08 > 1e + 14

5.3 Throughput Evaluation on FPGA
We evaluate the throughput and resource consumption of the pro-

posed FPGA implementation of ThundeRiNG. Figure 5 shows the

resource consumption and the implementation frequency with the

increasing number of PRNG instances. The results show that DSP

consumption is less than 1% of the total capacity and, more impor-

tantly, it is oblivious to the number of instances. This is because

only the root state generation unit that requires the multiplication

operation consumes the DSP resource, and ThundeRiNG only needs

0.52%

29.10%

0%

536MHz
355MHz

0

100

200

300

400

500

600

0%

10%

20%

30%

40%

50%

60%

1 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰ 2¹¹

R
e

so
u

rc
e

 C
o

n
su

m
p

ti
o

n

Fr
e

q
u

e
n

cy
 (

M
H

z)

Number of Instances

DSP LUT+FF BRAM Frequency

Figure 5: Resources consumption and clock frequency with
varying number of SOU instances.

20.95 Tb/s

655 GSample/s

0

100

200

300

400

500

600

700

0

5

10

15

20

25

0 256 512 768 1024 1280 1536 1792 2048

Th
ro

u
gh

p
u

t
(G

Sa
m

p
le

/s
)

Th
ro

u
gh

p
u

t
 (

Tb
/s

)

Number of Instances

Theoretical Optimal

Experiment

Figure 6: Throughput with varying number of SOU in-
stances.

one root state generation unit for MISRN generation. In addition,

ThundeRiNG does not occupy any BRAM resource since the state

is small enough to fit into the registers, and thus the BRAM utiliza-

tion is 0%. The frequency is up to 500MHz and gradually drops as

increasing number of instances due to more resource (FF + LUT)

consumption.

Figure 6 shows the overall throughput with increasing number

of instances, where the solid black line is the measured through-

put, and the dashed grey line is the optimal throughput under the

frequency of 550MHz. The observed throughput is nearly propor-

tional to the number of instances and can be up to 20.95 Tb/s with

2048 instances. The gap between the optimal line and our results is

because of the frequency drop (from 536MHz to 355MHz).

5.3.1 Comparison with FPGA-based Works. Table 5 shows the per-
formance comparison between ThundeRiNG and other state-of-the-

art FPGA works as well as implementations with optimistic scaling.

We estimate the throughput of the FPGA methods [32, 51] with

optimistic scaling, where we assume the number of PRNG instances

scales perfectly within the resource capacity, and the implemen-

tation frequency is fixed at 500MHz. In addition, we estimate the

performance of porting high-quality CPU-based solutions [4, 49] to

run on FPGAs. The estimated number of PRNG instances of CPU-

based implementation on FPGAs is equal to the resource capacity

of the FPGA platform divided by the resource consumption of one

PRNG reported by the synthesis of the Vitis tool. We assume they

have the 500MHz frequency on FPGA.

Table 5: Throughput, quality test and resource utilization
of the state-of-the-art FPGA-based works and porting CPU-
based designs to FPGAs.

PRNGs Quality Freq. Max BRAM DSP Thr. Sp.(MHz) #ins. (%) (%) (Tb/s)

Implementation Benchmarking:
ThundeRiNG Crush-resistant 355 2048 0% 0.5% 20.95 1×
Li et al. [32] Crushable 475 16 1.6% 0% 0.24 87.08×
LUT-SR [51] Crushable 600 1 0% 0% 0.37 55.9×
Optimistic Scaling:
Philox4_32 [49] Crush-resistant 500 442 0% 100% 2.83 7.39×
Xoroshiro128** [4] Crush-resistant 500 1150 0% 100% 18.40 1.14×
Li et al. [32] Crushable 500 1000 100% 0% 16.00 1.37×

ThundeRiNG outperforms all other designs significantly, deliver-

ing 87.08× and 55.9× speedup over the state-of-the-art FPGA-based

solutions [32, 51] while guaranteeing a high quality of randomness.

More importantly, while Li et al. [32] achieve a throughput of 16Tb/s

with optimistic scaling, ThundeRiNG still has 37% higher through-

put. It is also noteworthy that ThundeRiNG consumes no BRAMs

while they use up all BRAMs. Even assuming that Philox4_32 [49]

and xoroshiro128** [4] are ideally ported to the FPGA platform,

ThundeRiNG still delivers 7.39× and 1.15× speedups over them,

respectively, with much lower resource consumption.

Table 6: Throughput of various GPU PRNG schemes run-
ning on Nvidia Tesla P100 compared to ThundeRiNG’s
throughput.

Algorithms BigCrush Throughput ThundeRiNG’s
(cuRAND) GSample/s Tb/s Speedup

Philox-4×32 [49] Pass 61.6234 1.9719 10.62×
MT19937 [36] Pass 51.7373 1.6556 12.65×
MRG32k3a [28] 1 failure 26.2662 0.8405 24.92×
xorwow [35] 1 failure 56.6053 1.8114 11.56×
MTGP32 [48] 1 failure 29.1273 0.9321 22.47×

5.4 Comparison with Existing Works on GPUs
We perform throughput and quality comparison with GPU-based

PRNGs in cuRAND [38], which is the official library from Nvidia,

as shown in Table 6. The statistical test results of cuRAND on the

BigCrush battery are collected from the official document [38]. The

results show the ThundeRiNG outperforms GPU-based solutions

from 10.6× to 24.92×. On the other hand, three of the GPU-based

PRNGs fail to pass the BigCrush test, while ThundeRiNG passes all

tests. These experiments indicate that ThundeRiNG outperforms

cuRAND in both throughput and quality.

5.5 ThundeRiNG on CPU and GPU
As a sanity check, we evaluate the design of ThundeRiNG on the

CPU/GPU. Figure 7 compares the throughput of porting the design

of ThundeRiNG to CPU/GPU with the state-of-the-art CPU/GPU-

based PRNG implementations (Intel MKL and cuRAND). Thun-

deRiNG did not perform well on the CPU when the number of

instances is larger than 2
4
because the overhead of CPU synchro-

nization for state sharing rises dramatically. ThundeRiNG on GPU

slightly outperforms cuRAND. To be fair, more optimizations for

these implementations are needed in the future. For example, the

655 GSample/s

61.6 GSample/s

0.1

1

10

100

1000

1 2¹ 2² 2³ 2⁴ 2⁵ 2⁶ 2⁷ 2⁸ 2⁹ 2¹⁰ 2¹¹

Th
ro

u
gh

p
u

t
(G

Sa
m

p
le

/s
)

Number of Instances

ThundeRiNG on CPU ThundeRiNG on GPU ThundeRiNG

Intel MKL NVIDIA cuRAND

Figure 7: Performance comparison of the compatibility im-
plementations of ThundeRiNG on CPU/GPU, Intel MKL
PRNG and NVIDIA cuRAND with varying number of in-
stances.

ThundeRiNG design on the CPU can be improved by utilizing SIMD,

and ways can be found to reduce the synchronization overhead.

In summary, because of its fine-grained parallelism and synchro-

nization, the state sharing and decorrelation proposed fits FPGAs

better, allowing for the instantiation of many MISRN generators.

Consequently, the throughput of ThundeRiNG on FPGA scales lin-

early with the number of generators and outperforms other designs

significantly, even though it runs at a much slower frequency.

6 CASE STUDIES
To further demonstrate the advantages of ThundeRiNG, we apply

it to two applications: the estimation of 𝜋 and Monte Carlo option

pricing. Furthermore, we compare the FPGA implementations with

the GPU-based ones.

6.1 Implementation
Estimating the value of 𝜋 is widely used as an application to demon-

strate the efficiency of the PRNG [21, 32]. The basic idea is that

assuming we have a circle and a square that encloses the circle, the

value 𝜋 can be calculated by dividing the area of the circle by the

area of the square. In order to estimate the area of the circle and the

square, we generate a large number of random points within the

square and count how many of them falling in the enclosed circle.

Random number generation is the bottleneck of this application

as it consumes 87% of the total execution time of the GPU-based

implementation according to our experiment.

Monte Carlo option pricing is commonly used in the mathemati-

cal finance domain. It calculates the values of options using multiple

sources of random features, such as interest rates, stock prices, or

exchange rates. It relies on PRNGs to generate a large number of

possible but random price paths for the underlying of derivatives.

The final decision is made by computing the associated exercise

value of the option for each path. We choose the Black-Scholes

model as the target model for option pricing. On the GPU-based

implementation, random number generation accounts for 54% of

the total execution time, according to our experiment.

We implement two applications on both GPU and FPGA plat-

forms for comparison. For GPU-based implementations, we directly

72s

662s

9.15x

0

5

10

15

20

25

30

35

2²⁰ 2²² 2²⁴ 2²⁶ 2²⁸ 2³⁰ 2³² 2³⁴ 2³⁶ 2³⁸ 2⁴⁰ 2⁴² 2⁴⁴

Sp
e

e
d

u
p

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Number of Draws

ThundeRiNG GPU SpeedUp

Figure 8: Execution time of estimation of 𝝅 of FPGA-based
solution (ThundeRiNG) and GPU-based solution with vary-
ing number of draws.

204s
475s

2.33x

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

2²⁰ 2²² 2²⁴ 2²⁶ 2²⁸ 2³⁰ 2³² 2³⁴ 2³⁶ 2³⁸ 2⁴⁰ 2⁴² 2⁴⁴

Sp
e

e
d

u
p

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Number of Draws

ThundeRiNG GPU SpeedUp

Figure 9: Execution time of Monte Carlo option pricing of
FPGA-based solution (ThundeRiNG) and GPU-based solu-
tion with varying number of draws.

use the officially optimized designs of Nvidia using the cuRAND

library [38], targeting the Nvidia Tesla P100 GPU. For our FPGA-

based implementation, we use the ThundeRiNG for random number

generation and design the rest of the logic in the application using

HLS to achieve the same functionality as the GPU-based designs.

For all implementations, single-precision floating points were used

as the data type.

6.2 Results
Figure 8 shows the performance of FPGA-based solution (ThundeR-

iNG) and GPU-based solution on the estimation of 𝝅 with varying

the number of draws, where each draw requires two random num-

bers. The results show FPGA-based solution significantly outper-

forms GPU-based solution for all number of draws, and the speedup

is stable and up to 9.15× for the massive number of draws. The

downgrade trend of speedup is because GPU-based implementa-

tion cannot fully utilize the hardware capacity when the number

of draws is not large.

Figure 9 shows the performance of FPGA-based solution (Thun-

deRiNG) and GPU-based solution on Monte Carlo option pricing

with varying number of draws, each draw requiring a new ran-

dom number. Our implementation with ThundeRiNG significantly

outperforms the GPU-based solution for all number of draws. The

speedup of the massive number of draws can be up to 2.33×.
In addition to the comparison on throughput, we also show

the resource utilization of the FPGA platform and the power effi-

ciency comparison between GPU and FPGA, as shown in Table 7,

Table 7: The comparison of throughput and power efficiency
of two applications between FPGA and GPU.
Applications Estimation of 𝝅 MC option pricing

Frequency (MHz) 304 335

Number of instances 1600 256

FPGA: Alveo U250

LUTs 1048235(70%) 735173(49%)

(16nm FinFET)

FFs 1171130(38%) 751810(24%)

DSPs 5512(45%) 5984(49%)

Throughput (GSample/s) 480 86

Power consumption (W) 45 43

GPU: Tesla P100

Frequency (MHz) 1,190 1,190

(16nm FinFET)

Throughput (GSample/s) 53 33

Power consumption (W) 131 126

ThundeRiNG’s Throughput speedup 9.15x 2.33x
improvement Power efficiency 26.63x 6.83x

where the power consumption is reported by respective official

tools, namely nvidia-smi for GPU and xbutil for FPGA, and the

power efficiency is calculated by dividing the throughput by the

power consumption. The results show the FPGA-based solutions

outperform the GPU-based solutions by 6.83× and 26.63× for MC

option pricing and the estimation of 𝜋 , respectively. The end-to-end

comparison of the two applications demonstrates that ThundeR-

iNG is able to generate massive independent random numbers with

high throughput, and FPGA can be a promising platform for PRNG

involved applications.

7 CONCLUSION
In this paper, we propose the first high-throughput FPGA-based

crush-resistant PRNG called ThundeRiNG for generating multiple

independent sequences of random numbers. Theoretical analysis

shows that our decorrelation method can enable the concurrent

generation of high-quality random numbers. By sharing the state,

ThundeRiNG uses a constant number of multipliers and BRAM

regardless of the number of sequences to be generated. Our results

show that ThundeRiNG outperforms all current FPGA and GPU

based pseudo-random number generators significantly in perfor-

mance as well as quality of the output. Furthermore, ThundeRiNG

is designed to be used as a ‘plug-and-play’ IP block on FPGAs

for developer convenience. We believe that our work contributes

to making the FPGA a promising platform for high performance

computing applications.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback on

this work. We thank the Xilinx Adaptive Compute Cluster (XACC)

Program [56] for the generous donation. This work is supported by

MoE AcRF Tier 1 grant (T1 251RES1824), Tier 2 grant (MOE2017-

T2-1-122) in Singapore, and also partially supported by the National

Research Foundation, Prime Minister’s Office, Singapore under

its Campus for Research Excellence and Technological Enterprise

(CREATE) programme.

REFERENCES
[1] M. Bakiri, J. Couchot, and C. Guyeux. 2018. CIPRNG: A VLSI Family of Chaotic

Iterations Post-Processings for F2 -Linear Pseudorandom Number Generation

Based on Zynq MPSoC. IEEE Transactions on Circuits and Systems I: Regular
Papers 65, 5 (2018), 1628–1641. https://doi.org/10.1109/TCSI.2017.2754650

[2] Mohammed Bakiri, Christophe Guyeux, Jean-François Couchot, and Ab-

delkrim Kamel Oudjida. 2018. Survey on hardware implementation of random

https://doi.org/10.1109/TCSI.2017.2754650

number generators on FPGA: Theory and experimental analyses. Computer
Science Review 27 (2018), 135–153.

[3] Lawrence E Bassham III, Andrew L Rukhin, Juan Soto, James R Nechvatal, Miles E

Smid, Elaine B Barker, Stefan D Leigh, Mark Levenson, Mark Vangel, David L

Banks, et al. 2010. Sp 800-22 rev. 1a. a statistical test suite for random and pseudo-
random number generators for cryptographic applications. National Institute of
Standards & Technology.

[4] David Blackman and Sebastiano Vigna. 2018. Scrambled linear pseudorandom

number generators. arXiv preprint arXiv:1805.01407 (2018).

[5] Andrew Boutros, Sadegh Yazdanshenas, and Vaughn Betz. 2018. You cannot im-

prove what you do not measure: FPGA vs. ASIC efficiency gaps for convolutional

neural network inference. ACM Transactions on Reconfigurable Technology and
Systems (TRETS) 11, 3 (2018), 1–23.

[6] Forrest B Brown. 1994. Random number generation with arbitrary strides. Trans-
actions of the American Nuclear Society 71, CONF-941102- (1994).

[7] Karen H Brown. 1994. Security requirements for cryptographic modules. Fed.
Inf. Process. Stand. Publ (1994), 1–53.

[8] Pawel Dabal and Ryszard Pelka. 2012. FPGA implementation of chaotic pseudo-

random bit generators. In Proceedings of the 19th International Conference Mixed
Design of Integrated Circuits and Systems-MIXDES 2012. IEEE, 260–264.

[9] Pawel Dabal and Ryszard Pelka. 2014. A study on fast pipelined pseudo-random

number generator based on chaotic logistic map. In 17th International Symposium
on Design and Diagnostics of Electronic Circuits & Systems. IEEE, 195–200.

[10] Ishaan L. Dalal and Deian Stefan. 2008. A Hardware Framework for the Fast

Generation of Multiple Long-Period Random Number Streams. In Proceedings of
the 16th International ACM/SIGDA Symposium on Field Programmable Gate Arrays
(Monterey, California, USA) (FPGA ’08). Association for Computing Machinery,

New York, NY, USA, 245–254. https://doi.org/10.1145/1344671.1344707

[11] Johannes de Fine Licht, Simon Meierhans, and Torsten Hoefler. 2018. Transfor-

mations of high-level synthesis codes for high-performance computing. arXiv
preprint arXiv:1805.08288 (2018).

[12] Lih-Yuan Deng, Jyh-Jen Horng Shiau, and Henry Horng-Shing Lu. 2012. Large-

order multiple recursive generators with modulus 231- 1. INFORMS Journal on
Computing 24, 4 (2012), 636–647.

[13] C Doty-Humphrey. [n.d.]. PractRand official site (2018). URL http://pracrand.
sourceforge. net ([n. d.]).

[14] Mark J Durst. 1989. Using linear congruential generators for parallel random

number generation. In Proceedings of the 21st conference on Winter simulation.
462–466.

[15] Karl Entacher, Andreas Uhl, and StefanWegenkittl. 1999. Parallel random number

generation: long-range correlations among multiple processors. In International
Conference of the Austrian Center for Parallel Computation. Springer, 107–116.

[16] Graham Everest, Alfred Jacobus Van Der Poorten, Igor Shparlinski, Thomas

Ward, et al. 2003. Recurrence sequences. Vol. 104. American Mathematical Society

Providence, RI.

[17] Roger G Ghanem and Pol D Spanos. 2003. Stochastic finite elements: a spectral
approach. Courier Corporation.

[18] Oded Goldreich, Noam Nisan, and Avi Wigderson. 1995. On Yao’s XOR lemma.

Technical Report TR95–050, Electronic Colloquium on Computational Complex-

ity.

[19] Hiroshi Haramoto, Makoto Matsumoto, Takuji Nishimura, François Panneton,

and Pierre L’Ecuyer. 2008. Efficient Jump Ahead for F2-Linear Random Number

Generators. INFORMS Journal on Computing 20, 3 (2008), 385–390.

[20] Peter Hellekalek. 1998. Don’t trust parallel Monte Carlo! ACM SIGSIM Simulation
Digest 28, 1 (1998), 82–89.

[21] Lee Howes and David Thomas. 2007. Efficient random number generation and

application using CUDA. GPU gems 3 (2007), 805–830.
[22] Thomas E Hull and Alan R Dobell. 1962. Random number generators. SIAM

review 4, 3 (1962), 230–254.

[23] Chester Ismay. 2013. Testing Independence of Parallel Pseudorandom Number
Streams: Incorporating the Data’s Multivariate Nature. Arizona State University.

[24] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkataraman, Vladimir

Braverman, and Ion Stoica. 2018. ASAP: Fast, Approximate Graph Pattern

Mining at Scale. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 745–761.

https://www.usenix.org/conference/osdi18/presentation/iyer

[25] Ken Kennedy and John R. Allen. 2001. Optimizing Compilers for Modern Archi-
tectures: A Dependence-Based Approach. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

[26] Agnan Kessy, Alex Lewin, and Korbinian Strimmer. 2018. Optimal whitening

and decorrelation. The American Statistician 72, 4 (2018), 309–314.

[27] Donald E. Knuth. 1997. The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co., Inc., USA.

[28] Pierre L’Ecuyer. 1996. Combined multiple recursive random number generators.

Operations research 44, 5 (1996), 816–822.

[29] Pierre L’ecuyer. 1999. Good parameters and implementations for combined

multiple recursive random number generators. Operations Research 47, 1 (1999),

159–164.

[30] Pierre L’Ecuyer and Richard Simard. 2007. TestU01: AC library for empirical test-

ing of random number generators. ACM Transactions on Mathematical Software
(TOMS) 33, 4 (2007), 1–40.

[31] Derrick H Lehmer. 1951. Mathematical methods in large-scale computing units.

Annu. Comput. Lab. Harvard Univ. 26 (1951), 141–146.
[32] Yuan Li, Paul Chow, Jiang Jiang, Minxuan Zhang, and Shaojun Wei. 2013. Soft-

ware/Hardware Parallel Long-Period Random Number Generation Framework

Based on the WELL Method. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 22, 5 (2013), 1054–1059.

[33] Pierre L’ecuyer. 1999. Tables of linear congruential generators of different sizes

and good lattice structure. Math. Comp. 68, 225 (1999), 249–260.
[34] George Marsaglia. 1995. The diehard test suite, 1995. URL http://stat. fsu. edu/˜

geo/diehard. html (1995).
[35] George Marsaglia. 2003. Xorshift RNGs. Journal of Statistical Software, Articles 8,

14 (2003), 1–6. https://doi.org/10.18637/jss.v008.i14

[36] Makoto Matsumoto and Takuji Nishimura. 1998. Mersenne twister: a 623-

dimensionally equidistributed uniform pseudo-random number generator. ACM
Transactions on Modeling and Computer Simulation (TOMACS) 8, 1 (1998), 3–30.

[37] Makoto Matsumoto and Takuji Nishimura. 2000. Dynamic creation of pseudo-

random number generators. InMonte-Carlo and Quasi-Monte Carlo Methods 1998.
Springer, 56–69.

[38] Nvidia. 2020 (accessed November 13, 2020). CUDA Toolkit Documentation. https:

//docs.nvidia.com/cuda/curand/device-api-overview.html#performance-notes

[39] Melissa E O’Neill. 2014. PCG: A family of simple fast space-efficient statistically

good algorithms for random number generation. ACM Trans. Math. Software
(2014).

[40] Amit Kumar Panda, Praveena Rajput, and Bhawna Shukla. 2012. FPGA imple-

mentation of 8, 16 and 32 bit LFSR with maximum length feedback polynomial

using VHDL. In 2012 International Conference on Communication Systems and
Network Technologies. IEEE, 769–773.

[41] François Panneton, Pierre L’ecuyer, and Makoto Matsumoto. 2006. Improved

long-period generators based on linear recurrences modulo 2. ACM Transactions
on Mathematical Software (TOMS) 32, 1 (2006), 1–16.

[42] Aduri Pavan, Srikanta Tirthapura, et al. 2013. Counting and sampling triangles

from a graph stream. (2013).

[43] Ora E Percus and Malvin H Kalos. 1989. Random number generators for MIMD

parallel processors. Journal of parallel and distributed computing 6, 3 (1989),

477–497.

[44] SJ Plimpton, SG Moore, A Borner, AK Stagg, TP Koehler, JR Torczynski, and MA

Gallis. 2019. Direct simulation Monte Carlo on petaflop supercomputers and

beyond. Physics of Fluids 31, 8 (2019), 086101.
[45] Do Le Quoc, Ruichuan Chen, Pramod Bhatotia, Christof Fetze, Volker Hilt, and

Thorsten Strufe. 2017. Approximate Stream Analytics in Apache Flink and

Apache Spark Streaming. arXiv preprint arXiv:1709.02946 (2017).
[46] Tiago J Rato and Marco S Reis. 2013. Advantage of using decorrelated residuals

in dynamic principal component analysis for monitoring large-scale systems.

Industrial & Engineering Chemistry Research 52, 38 (2013), 13685–13698.

[47] Reuven Y Rubinstein and Dirk P Kroese. 2016. Simulation and the Monte Carlo
method. Vol. 10. John Wiley & Sons.

[48] Mutsuo Saito. 2010. A Variant of Mersenne Twister Suitable for Graphic Proces-

sors. CoRR abs/1005.4973 (2010). arXiv:1005.4973 http://arxiv.org/abs/1005.4973

[49] John K Salmon, Mark A Moraes, Ron O Dror, and David E Shaw. 2011. Parallel

random numbers: as easy as 1, 2, 3. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis. 1–12.

[50] Richard Taylor. 1990. Interpretation of the correlation coefficient: a basic review.

Journal of diagnostic medical sonography 6, 1 (1990), 35–39.

[51] David B Thomas and Wayne Luk. 2012. The LUT-SR family of uniform random

number generators for FPGA architectures. IEEE transactions on very large scale
integration (vlsi) systems 21, 4 (2012), 761–770.

[52] Hubbul Walidainy and Zulfikar Zulfikar. 2015. An improved design of linear

congruential generator based on wordlengths reduction technique into FPGA.

International Journal of Electrical and Computer Engineering 5, 1 (2015), 55.

[53] Martin Weigel. 2018. Monte Carlo methods for massively parallel computers.

In Order, Disorder and Criticality: Advanced Problems of Phase Transition Theory.
World Scientific, 271–340.

[54] Wikipedia contributors. 2020. Statistical randomness —Wikipedia, The Free Ency-

clopedia. https://en.wikipedia.org/w/index.php?title=Statistical_randomness&

oldid=948430929 [Online; accessed 29-October-2020].

[55] Pei-Chi Wu and Kuo-Chan Huang. 2006. Parallel use of multiplicative congruen-

tial random number generators. Computer Physics Communications 175, 1 (2006),
25–29. https://www.sciencedirect.com/science/article/pii/S0010465506001007

[56] Xilinx. 2020. Xilinx Adaptive Compute Cluster (XACC) Program. https://www.

xilinx.com/support/university/XUP-XACC.html.

[57] Andrew C Yao. 1982. Theory and application of trapdoor functions. In 23rd
Annual Symposium on Foundations of Computer Science (SFCS 1982). IEEE, 80–91.

https://doi.org/10.1145/1344671.1344707
https://www.usenix.org/conference/osdi18/presentation/iyer
https://doi.org/10.18637/jss.v008.i14
https://docs.nvidia.com/cuda/curand/device-api-overview.html#performance-notes
https://docs.nvidia.com/cuda/curand/device-api-overview.html#performance-notes
https://arxiv.org/abs/1005.4973
http://arxiv.org/abs/1005.4973
https://en.wikipedia.org/w/index.php?title=Statistical_randomness&oldid=948430929
https://en.wikipedia.org/w/index.php?title=Statistical_randomness&oldid=948430929
https://www.sciencedirect.com/science/article/pii/S0010465506001007
https://www.xilinx.com/support/university/XUP-XACC.html
https://www.xilinx.com/support/university/XUP-XACC.html

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 PRNG Quality Criteria
	2.2 Multiple Sequence Generation Methods
	2.3 Challenges of MISRN Generation on FPGAs

	3 Design of ThundeRiNG
	3.1 Parameterizing LCG via Increment
	3.2 Decorrelation
	3.3 State Sharing Mechanism
	3.4 Permutation Function for Output

	4 Implementation of ThundeRiNG
	4.1 Architecture Overview
	4.2 Root State Generation Unit (RSGU)
	4.3 Sequence Output Unit (SOU)
	4.4 Discussion

	5 Evaluation
	5.1 Experimental Setup
	5.2 Quality Evaluation
	5.3 Throughput Evaluation on FPGA
	5.4 Comparison with Existing Works on GPUs
	5.5 ThundeRiNG on CPU and GPU

	6 Case Studies
	6.1 Implementation
	6.2 Results

	7 Conclusion
	Acknowledgments
	References

