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Abstract—Graphic Processing Units (GPUs) are made up of
many streaming multiprocessors, each consisting of processing
cores that interleave the execution of a large number of threads.
Groups of threads - called warps and wavefronts, respectively,
in nVidia and AMD literature - are selected by the hardware
scheduler and executed in lockstep on the available cores. If
threads in such a group access the slow off-chip global memory,
the entire group has to be stalled, and another group is scheduled
instead. The utilization of a given multiprocessor will remain
high if there is a sufficient number of alternative thread groups
to select from. Many parallel general purpose applications have
been efficiently mapped to GPUs. Unfortunately, many stream
processing applications exhibit unfavorable data movement pat-
terns and low computation-to-communication ratio that may lead
to poor performance. In this paper, we describe an automated
compilation flow that maps most stream processing applications
onto GPUs by taking into consideration two important architec-
tural features of nVidia GPUs, namely interleaved execution as
well as the small amount of shared memory available in each
streaming multiprocessors. In particular, we show that using
a small number of compute threads such that the memory
footprint is reduced, we can achieve high utilization of the GPU
cores. Our scheme goes against the conventional wisdom of GPU
programming which is to use a large number of homogeneous
threads. Instead, it uses a mix of compute and memory access
threads, together with a carefully crafted schedule that exploits
parallelism in the streaming application, while maximizing the
effectiveness of the unique memory hierarchy. We have imple-
mented our scheme in the compiler of the StreamIt programming
language, and our results show a significant speedup compared
to the state-of-the-art solutions.
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I. INTRODUCTION

Stream-based processing is an important domain of applica-
tions. Streaming programming languages ease the expression
of parallelism in such applications [1]. Fine-grained compu-
tation is encapsulated in small code units, called filters, with
small data sets. However, this model requires adjacent filters
to communicate through memory. At the start of a filter, data
is read from memory, and at the end of a filter’s execution,
the results are written to memory, all in a phased manner.

As hardware platforms, GPUs have gained good traction
in general purpose computing, and in particular, high perfor-
mance computing [2][3]. Various programming frameworks
and run-time environments have been proposed for this pur-
pose [4][5]. Since its early use in general computing, streaming
programming languages have also been used in programming

GPUs [6]. A GPU is made up of a number of streaming
multiprocessors (SM), which in turn consist of a number of
execution cores running in SIMD mode. Blocks of parallel
software threads run on each of the available SMs. Typi-
cally, there are much more software threads than there are
cores. In order to schedule the many threads on SMs, they
are statically grouped into scheduling units – called ‘warps’
and ‘wavefront’, respectively, in nVidia and AMD literature1.
Warps execute in lockstep, and if one or more threads in a warp
block, the entire warp has to block. A hardware scheduler will
then select another ready warp for execution.

GPU programmers are generally encouraged to expose as
much parallelism as possible so that the hardware scheduler
can utilize more ready threads to hide potential stalls [5]. How-
ever, there is a cost to having too many threads – increasing the
number of threads diminishes the number of registers allocated
to each thread, potentially causing spills to global memory.
Besides this trade-off, a second hidden penalty is also often
overlooked. More threads reading their input, output and local
data stored in the global memory lead to more memory traffic,
potentially exceeding the available memory bandwidth. Jittery,
application-specific memory access patterns (such as intensive
memory accesses at the beginning of a filter in order to read
the inputs) can further exacerbate these problems.

Each SM in a GPU contains a small but very fast on-
chip memory that is shared among all the threads in the
SM. We shall refer to this as ‘SM memory’2. Due to its
size (i.e. 16KB for each SM in the nVidia Tesla 10-series
and 48KB in the 20-series ‘Fermi’), and because the large
number of independent threads that will run in a SM leads
to large memory footprints, it is typically not well utilized.
This paper describes an automated compilation flow that maps
and orchestrates StreamIt programs for execution on GPU
processors, avoiding the issues mentioned above, as well as
maximizing the effectiveness of the SM memory. At the heart
of the flow is a mapping scheme that is based on a static
GPU performance model derived from the GPU specifications.
Our key idea is that we can take advantage of the structure
of streaming applications and move slow global memory
accesses from compute threads into another class of threads

1As our proposed scheme is more suitable for nVidia-class of architectures,
we shall refer to such a group of threads as a ‘warp’ in this paper.

2We find the nVidia way of refering to this as ‘shared memory’ potentially
confusing.



so that the former can run at full speed while the latter’s
number is kept to a level that is just sufficient to meet the
former’s demands. Our flow generates two kinds of threads
from a StreamIt input program: specialized memory access
(M) threads and compute (C) threads.M threads transfer data
sets from global memory to the fast SM memory. C threads
compute instances of the stream graph to obtain results locally
inside each SM by using the data sets loaded earlier by M
threads. We also propose to constrain the number of C threads
such that they work exclusively with the SM memory. These
are major departures from the norm of using large number
of homogeneous parallel threads in programming GPUs. Our
results show that these counter intuitive measures can yield
significant speedups compared to more traditional approaches
of mapping streaming applications to GPUs.

Section II places this work in the context of other mapping
efforts from StreamIt to parallel platforms and, in particular, a
previous effort to map StreamIt to GPU. Section III provides
an overview of the current GPU architectures, and gives the
intuition regarding how StreamIt programs can be efficiently
mapped. Section IV describes the mechanisms that we im-
plement to provide an automated translation and orchestration
of the stream programs onto GPU. The performance of this
scheme depends on deriving a small memory footprint (Sec-
tion V). Using our scheme, we characterize in Section VI
the performance achieved onto several GPUs from nVidia.
We then propose a performance model that can drive our
automated mapping flow. Finally, Section VII presents our
results achieved on various platforms and shows the speedup
we obtained with respect to previous implementations.

II. RELATED WORK

The parallelism exposed by the streaming language StreamIt
makes it a natural candidate for programming multicores [7],
or parallel architectures such as Cell [8] and Raw [1]. Stream-
ing languages have also been previously mapped to GPU
platforms [9][6]. It is built on top of the synchronous dataflow
model [10], with filters repeating in a static schedule. The
stream graph is usually partitioned into kernels and distributed
between the processing cores (or SMs in the case of GPUs)
with filters in the graph communicating via memory. However,
on GPUs where fast caches or dedicated communication are
often missing, the overhead of accessing global memory often
limits performance. To reduce run-time overhead, commu-
nication between SMs executing different kernels has to be
deferred until a large amount of data is processed locally.
As a result, the latency of executing the stream graph is not
improved (even though throughput may be improved) despite
the use of pipelining.

We take an entirely different approach in mapping streaming
graphs to GPUs. Instead of partitioning, we execute multiple
instances of the entire stream graph in parallel on each
SM, taking care to adjust the number of parallel threads
to match the resource constraints. The aim is to achieve a
balance between the number of GPU threads, the layout of
the SM memory, and memory bandwidth consumption that

will maximize performance. Selecting the right number of
parallel threads and the location of frequently used data is not
trivial [11]. One well-known approach that boosts performance
is to prefetch data from global memory to SM memory [12].
This is also the approach taken by other high-level language
translations to CUDA and OpenCL [13][14][15]. However, to
the best of our knowledge, our work is the first to apply a
variant of double buffering to fully parallelize prefetching with
computation.

Because the amount of SM memory is limited, we are also
interested in reducing the footprint of the working set of each
stream execution. There are two complementary techniques.
One relies on caching transformations for StreamIt that have
included narrowing the memory requirement through modula-
tion or copy-shift [16]. In addition, temporary buffers can be
overlapped during the computation. Optimal algorithms have
also been proposed for compiler management of scratchpad
memory [17]. Our approach is based on the copy-shift method,
adapted to the way our stream graph executions share a
common memory. Furthermore, it is a heuristics that is near-
optimal but completes in linear time.

III. BACKGROUND AND RATIONALE

A. StreamIt language

In StreamIt, programs are described hierarchically at a
conceptual level, where the leaf node is a filter, and filters
can be combined into pipelines. The flow can be distributed in
parallel paths using splitters and joiners. Filters are essentially
C code with special constructs to access input and output.
Filter communication is done through special input and output
channels. Producer (consumer) access to the output (input)
channel is realized through push (pop) constructs. All the
input and output rates are statically defined. The compiler
can therefore determine a static sequential schedule through
which it can iterate to consume all the input data. Multiple
copies of the entire schedule can be executed in parallel if
filters do not maintain internal state. An additional feature in
StreamIt is the mere inspection of a channel through peek
constructs. A filter can peek into more data than it consumes
during the current firing. This allows for structured data
dependencies between multiple filter firings, and helps avoid
the need for stateful filters in many situations. Our parallel
mapping schemes support peeking filters, but not stateful ones.

B. Architecture-aware mapping onto GPUs

GPUs are massively parallel processors. The current archi-
tectural trend points to an increase in the number of threads
supported in each SM so as to match the execution rate of
the increasing number of processing cores. Current GPUs
divide the thread pool of each SM into warps. For the current
generation of nVidia GPUs, a warp consists of 32 threads.
The threads belonging to a warp execute in parallel but in
lockstep, and any intra-warp control flow discrepancies will
lead to serialized executions. A hardware scheduler selects a
warp for execution and dispatches the threads to the execution
cores. At each instruction issue interval, the scheduler can



select a different warp and dispatch it to the same execution
cores even before the previous warp finishes processing. Thus,
while there are a large number of parallel threads, the threads
are actually interleaved onto a limited number of execution
cores at the granularity of a warp.

The key to good performance is to always have warps that
are ready for execution when the hardware scheduler attempts
to select one. Two factors can stall the execution of a warp:
the first is the latency of the execution cores (typically 22
cycles), and the other is the latency of the global memory
access (around 400 cycles). For example, to hide the latency
of the execution cores, nVidia suggests 6 such warps on older
devices of capability 1.x and 11 on devices of capability
2.x [5]. As the global memory access is an order of magnitude
slower, the number of threads required to completely hide this
latency will exceed the maximum number of threads that can
be supported by the hardware if all the threads concurrently
require access to global memory. Unfortunately, this pattern
is exhibited by many stream processing applications through
filters, their basic processing units. Typically, filter execution is
phased: (1) reading the data set from memory, (2) performing
the computation, and (3) writing it back to memory to pass it
onwards to the next processing filter. Moreover, the ratio of
computation to communication is usually small. Therefore, if
the filter’s input and output are stored in global memory, filter
instances will spend most of the time on memory accesses. It
is therefore advantageous to bring data onto the SM memory
shared by the threads. This is so that the filters can process
the prefetched data set at a much faster rate. Unfortunately,
the memory latency still cannot be completely hidden, and
having threads do data prefetching before computation will
still result in the computation section of the code waiting on
the prefetching section most of the time.

In our proposed approach, we introduce two classes of
threads: memory access (M) threads and compute (C) threads.
M threads perform prefetching for the next stream execution
while C threads execute on data fetched by the M threads
into the SM memory during the previous stream execution.
Intuitively, because the C threads will always access SM
memory, they will always be ready for execution, while theM
threads will be scheduled from time to time to initiate more
parallel memory transfers.

Due to the architectural constraint that only threads in the
same SM can communicate through the fast SM memory,
our entire stream processing flow must reside in the same
SM. It is replicated on all the other SMs to fully utilize the
GPU. Since StreamIt exposes the potential massive parallelism
within applications, we also map the parallelism available in
each stream execution to multiple threads inside the SM.

IV. MAPPING STREAMIT TO GPU
A. Mapping flow

Our automated mapping flow applies a sequence of code
transformations in order to: (1) match the large number of
parallel threads that can be handled by the hardware, (2)
cluster the memory transfer operations with large latency into
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Fig. 1. Our automatic mapping flow.

dedicated threads, (3) transform the data flow based on the
fine-grained parallelism exposed by StreamIt, and (4) apply a
novel buffer manipulation scheme that replaces the one used
by StreamIt compiler for inter-filter communication.

We implemented our mapping flow, shown as grey boxes
in Figure 1, as an extension to the back-end of the StreamIt
compiler. It generates C code that can be compiled by the
standard GPU compiler. The StreamIt compiler flattens the
hierarchical stream program to a set of base operators (filters,
splitters and joiners). It also produces a schedule that consists
of a sequence E of operators, and the number of times they are
executed (fired). Note that multiple firings may be necessary,
because filters are allowed to have non-matching input and
output rates and hence the elements produced by one filter’s
firing may require multiple firings of the consumer filter. Apart
from the initialization portion, the resulting schedule consists
of a steady state component that can be executed as many
times as required to completely process the given input. At
this point, the schedule generated by StreamIt is sequential,
targeting single threaded execution. From this point on, our
mapping extension takes over.

We analyze the requirements of each operator in the
schedule and produce a compact buffer layout (detailed in
Section V) that can eventually be realized in the fast SM
memory. Once this buffer size is known, we can statically
determine additional mapping parameters such as the number
of stream schedules that are to execute in parallel, the number
of C threads supporting the execution of each stream schedule,
and the number of dedicated M threads accessing global
memory. To determine the mapping parameters, access to the
stream schedule structure and to the specification of the target
GPU is also required. Finally, we use the derived mapping
parameters to build two components: (1) a kernel loader which
will run on the CPU and will coordinate the memory allocation
and configuration, (2) the GPU kernel code that executes the
mapping described in Section IV-B. In addition, the push, pop
and peek primitives of each operator are replaced by code
that perform the correct accesses of the working set buffer in
SM memory. The C code implementing the operators, together
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with the kernel and its loader are given to the GPU compiler
to obtain the final executable.

B. Mapping to parallel threads

The CPU host allocates input and output buffers for the
stream graph in the off-chip global memory of the GPU.
Current GPUs are capable of concurrent code execution and
host memory transfer, and hence we assume the data transfer
from the host CPU to the GPU incurs no penalty. However,
because global memory accesses impact the efficiency of
the computation inside the GPU, we chose to avoid any
unnecessary partitioning of the stream graph into multiple
components residing on different SMs, as this would imply
having to connect these partitions through global memory
buffers. Instead, our approach is to keep the number of
partitions to the minimum, and execute an instance of the
entire steady state schedule of the stream graph on each SM.

Figure 2a shows the execution model of the stream graph
in the GPU. Let i be the current execution of the steady
state schedule. In SM memory, we allocate a working set

buffer (WS) that will hold the inputs, outputs, as well as the
buffers between operators for one execution of the schedule.
In addition, we require a second, smaller, buffer, DB, in SM
memory. It is an intermediary buffer that is large enough to
hold all the stream graph inputs, or outputs, whichever is
larger. Our double buffering prefetch scheme works as follows.
Let INi and OUTi denote the input and output of execution
i, respectively. During execution i − 1, INi is brought into
the buffer DB (step ¬). Before the start of execution i, INi

is copied from DB into the input space of WS (step ).
After the completion of this copying, execution i may begin
(step ®). OUTi would reside in WS at the end of execution i.
Concurrent with execution i in step ®, INi+1 is brought into
the buffer DB for the next execution. At the end of execution i,
INi+1 is copied from DB into WS replacing INi, after which,
OUTi is copied from WS into DB (step ¯). Execution i + 1
then begins. Concurrent with execution i+1, OUTi is written
back to global memory (step °). This last step is interleaved
with the prefetching of INi+1 so that DB can be reused.

The above describes what happens in one instance of the
steady state schedule. We further unroll and execute in parallel
a group of W instances of the steady state schedule. Each of
these executions store its local data into a separate working
set buffer allocated in the fast SM memory. These executions
are mostly independent except for peeking (which will be
discussed later), and suitable for a parallel orchestration as
described in Figure 2b. Each steady state schedule includes a
sequence of filter firings that may be iterative. We shall call
one complete processing of a stream graph an execution of the
steady state schedule. We map each schedule execution to one
or more C threads. We also iterate over the group of W parallel
executions as many times as necessary to process all the
application’s inputs. We shall call a pass over the group of W
executions a group iteration. Each SM is assigned a different
part of the input and output stream in sequence. In particular,
for SM1, this sequence number starts from the beginning of
the stream in global memory. All the SMs will compute the
results for distinct portions of the input stream, and the access
offsets in these streams are known and computed by the loader
before the kernel launches.

Furthermore, the double buffering mechanism described in
Figure 2a can be refined for a group of parallel executions.
Loading as well as storing to global memory are performed
by a set of parallel M threads that combine the load and
store operations corresponding to all executions. Let F be
the number of M threads. We ensure that C threads and
M threads are allocated to distinct warps. They therefore
execute in an interleaved manner as shown in Figure 2c. In
general, C threads will always be available for execution,
as their data dependencies are satisfied from registers or
SM memory. M threads, however, issue long latency global
memory operations, and are scheduled only sporadically. The
intuition is that by adjusting the number of M threads (F ),
and C threads (W ), we can completely hide the latency of the
global memory accesses.

The steady state schedule, E, is an ordered sequence of



stream operator firings that consumes a set of inputs, and
eventually generates a set of results. The amount of interme-
diate data obtained during these executions may require more
memory than the IN and OUT buffers. Additional buffers are
also found in WS that are used for operators in the graph to
communicate with one another. Let the total memory require-
ment for the WS be LW . The size of the secondary buffer
DB, on the other hand, is LD = max(size(IN), size(OUT)).

For non-GPU multicore mappings, each core executes a
single instance of the schedule, and has a large amount of
memory available. The StreamIt compiler offers a feature that
may fuse filters only to tune their working set and buffers to
the cache size. Nevertheless, as the buffers are not reused, there
was no effort to optimize the memory resource usage over the
entire graph. For our work, the buffer requirement is critical as
it dictates how many parallel executions of the graph we are
able to run because we need to be able to store the complete
working set in SM memory. We describe our algorithm to
determine a compressed WS buffer layout in Section V.

If the schedule fires an operator OPi Ri times, these firings
are independent and can be executed in parallel in a number
of C threads. Therefore, we allow mapping each of the W
steady state executions of the schedule to S C threads of the
GPU. This effectively multiplies the available parallelism, and
is essential in improving the GPU’s utilization. Otherwise, the
number of C threads utilized would be limited by the size of
the SM memory. Accordingly, we split the WS buffer of a
steady state execution into equal sections associated to each C
thread. If an operator fires for less than S times, then it will be
assigned to some of the threads, while the remaining threads
will be idle, without any additional performance penalty.
Operators firing more than S times will be executed several
times by each C thread. Such a mapping is valid ∀S such that
∀i, gcd(Ri, S) = min(Ri, S).

Another important feature of SM memory is that it is banked
and therefore supports parallel accesses, provided they do not
go to the same bank. If in lockstep, all the C threads in a
warp are accessing the SM memory, and the accesses are all
to distinct banks, then the hardware will coalesce the accesses
into a parallel access [5]. We can arrange for the accesses
to the SM memory to be coalesced as follows. The WS and
DB buffers are stored in a contiguous area of SM memory.
Since the number of banks is a power of 2 (typically 16), to
enforce coalescing, we just need to ensure that LW + LD is
a odd number. If the gap between consecutive WS buffers is
an odd number p, then any WS offset in thread i and thread
i + j, ∀i,∀j < 2b is separated by a distance j · p which does
not divide by 2b, thereby ensuring that all banks are used.
Therefore, the total number of parallel executions, W , that
can fit a memory of size LSM is

W ≤ LSM/Λ

where Λ is the buffer requirement for a single stream schedule
execution, Λ = 2 · bLW +LD

2 c+ 1.
Figure 3a compares the execution of an operator OP, sched-

uled to fire two times in a single thread with that of distributing
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Fig. 3. Buffer transformation examples.

it among two parallel threads. A region [a, b] from a buffer
of length LW + LD will be subdivided into a set of smaller
buffers, each of length LW +LD

S . The elements in the buffer are
redistributed in sequence among the smaller buffers, filling
the buffer of one thread before continuing to the next. By
doing so, if the stream operator OP fires f · S times in the
schedule, its firings can be distributed among S threads, in
parallel, each thread handling f firings using data from its
properly aligned section of the WS buffer. We avoid most of
the additional synchronization overhead for this scheme by
taking advantage of the lockstep nature of the threads in the
same warp. The original buffers also need to be aligned to a
multiple of S elements. Alternatively, Figure 3b shows how we
execute a single firing of operator OP, when two threads are
implemented. By means of a conditional, we simply disable
the execution in the second thread. The operator running in
the first thread can access elements from both WS buffers,
and the same coalescing properties are maintained among the
active threads in a warp.

C. Stream graph orchestration

A complete example of our method to orchestrate parallel
executions of the steady state schedule, each onto multiple C
threads (S = 2 in this example), is shown in Figure 4. The
stream graph in the shaded box on the left is automatically
translated to the execution scheme to its right. Whenever
possible, operator firings are handled by parallel C threads.
Each thread is allocated a buffer size of half the total WS
size, precomputed for the entire steady state schedule. The
WS buffer stores the intermediate results for future operator
firings. For clarity, we shade those parts of the WS buffer in
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the figure used as input by the current operator firing. Also,
we do not include in this illustration the DB buffer.

In this example, the 12 input items consumed by the stream
graph during each execution of the steady state schedule are
distributed among the SM memory buffers of the two C threads
corresponding to each execution. Because OP0 pushes only
one element but OP1 pops four elements, the schedule will
consist of four firings of OP0 for each firing of OP1. We
distribute OP0’s firings among the two threads, two in each
thread À. The outputs of OP0’s firings are written back to the
WS buffer of both threads using a similar layout.

OP1 needs four elements in a single firing, executed in the
first thread, so it requires access to both its own WS buffer and
the adjacent thread’s WS buffer, both in the SM memory Á.
To avoid the run-time overheads, we generate precomputed
tables that translate the 0-based consecutive indexes of pop
and push operations into relative offsets to the beginning of
the allocated WS buffer. These relative offsets specify access
ranges beyond the WS buffer limit of the current thread, and
thus enable the fetching of data produced by adjacent threads
that cooperate for the same schedule execution.

The output of OP1 is the input of the splitter OP2. The
splitter divides the eight data items into two distinct buffers
of four items. As necessitated by our mapping, each of these

output buffers also need to be distributed in the WS buffers
of both threads. Therefore, the splitter operator we generate
distributes consecutive groups of two elements between the
two threads’ WS buffers. The execution of OP3 and OP4 is
serialized in the steady state schedule. Each firing of OP3

utilizes the set composed of the first two elements from each
WS buffer, and runs in one of the two GPU threads. OP3 does
not utilize the second set of elements generated by OP2.

Support for peeking: OP4 is a peeking operator. In this
example, OP2 is required to push seven elements to the input
of OP4, before the latter can be fired Â. However, only the
first four elements produced will be consumed. Therefore,
the semantics of peeking requires preceding operators in the
schedule to generate more data, which will be only inspected,
but not consumed. In the current execution, OP2 only gener-
ates four elements for OP4. OP4 must obtain the other three
from another execution’s OP2 either in the current or the
previous group iteration. We handle peeking in our scheme
by shifting the buffer reference of the peeking filter’s input
into the previous execution’s WS buffer. Intuitively, the first
accessed elements in the sequence, which are those popped,
were generated during a previous execution of the steady state
graph, while the most recent ones, generated by the current



steady state execution, are only peeked. Our precomputed
tables take into account the popping/peeking requirements, and
may contain negative relative offsets at the beginning of the
sequence so that peeking filters can access elements in of the
previous execution’s WS buffer.

We precompute all the necessary offset tables on the host
CPU and we preload them in the constant memory. We need to
precompute such tables for each type of operator input / output
rate. For example, for a filter having a pop rate p and a peek
rate e, the input table T has e elements computed as follows:
∀i ∈ [0, e], Ti = (p−e+i)·S

p · size(Λ) + (p−e+i)·S mod p
S . The

first term determines the WS buffer to access and adjusts the
offset by the relative offset of that buffer with respect to the
current buffer. The second term specifies the relative position
inside the WS. Integer division returns the lower integer as
the result, while the mod returns only positive values. As the
constant memory is cached and the practical number of tables
is small, this indirection has lower overhead than computing
the values at runtime.

To support this peeking scheme in all parallel executions,
we need to reserve a section (named ‘PK’ in Figure 4) at the
beginning of the SM memory, where we copy the content of
the previous input buffer of the peeking operators belonging
to the last executions of the previous group iteration. This is
necessary to expose the additional elements required by the
first parallel C threads of the current group iteration. Suppose
the current group iteration is j. OP4 of execution k, k > 1 of
group iteration j will obtain the three additional elements from
execution k − 1 of group iteration j, as they were written as
a result of OP2. The situation for execution 1 is special. OP4

of execution 1 of group iteration j will have to get them from
execution W of group iteration (j − 1) via the PK area. In
this example, we copy these last three elements as the last step
of the schedule execution in group iteration (j − 1), because
OP4’s input buffer is not reused later Ã.

To ensure access consistency to elements from adjacent
executions, we introduce additional synchronization among the
C threads before firing each peeking filter. This guarantees that
the C threads belonging to different warps have completed
execution of predecessor operators, and have produced all the
necessary input data. Because we need to synchronize only
C threads and not interfere with the M threads, we cannot
use the SM thread synchronization primitives. We propose a
simple workaround barrier that takes advantage of the lockstep
execution within a warp. A thread representative is appointed
for each C warp. This owns and increments a counter residing
in SM memory when it reaches a synchronization point.
Afterwards it repeatedly checks if its counter has a value
smaller or equal to the other appointed threads’ counters. If
not, it waits. To avoid busy waiting, we force the hardware
scheduler to run other warps by accessing a global memory
location marked as volatile. Because all the threads in such
a warp are in lockstep, this reduces the workload required,
while holding all the warp’s threads synchronized.

In addition, stream graphs containing peeking operators,
need a special initialization schedule before the steady state
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Fig. 5. Liveness analysis and lower bound of required buffer computation.

groups can begin. This is necessary to initialize the buffers
accessed during peeking. Otherwise, for example, OP4 of
execution 1 of very first group iteration would never have
the additional three elements needed to be fired up. We
can determine statically the number of required initialization
iterations, and our scheme coordinates the GPU to execute
an additional number of group iterations of the steady state
for which it ignores the final outputs, but it updates all the
intermediate values in the WS buffers, thus initializing them.
We statically determine the correct offset in the input stream
which enables the first group iteration of the steady state to
fully utilize all the C threads after buffer initialization.

V. WS BUFFER LAYOUT

The size of the WS buffer stored in SM memory has direct
impact on the performance of our mapping. The amount of SM
memory is small, and thus a compact WS will enable a larger
number of parallel stream executions. We present a simple
algorithm that provides a near-optimal WS buffer layout for
any stream graph. We first identify a lower bound on the WS
buffer size. Next, using a simple yet efficient heuristic, we
perform buffer allocation, slightly increasing the WS buffer
size, if necessary, to accommodate this layout.

Figure 5 revisits the stream graph example in Section IV,
showing the buffer requirements for each operator. Filters have
a single input and output buffer each, while splitters and
joiners transfer data from and to multiple buffers. An operator
can be fired, if, and only if, its input/output buffers are in
memory before and after its firing. Each buffer is written and
read only once. Therefore, our mapping needs to arrange the
layout of the buffers to prevent overwriting buffers before the
data they contained is used.
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Let Bk be the buffer between two operators. In particular, let
it be the output buffer of operator OPi and the input buffer
of operator OPj . We define the liveness interval of Bk as
the interval bk = [E(i), E(j)], where E(n) is the position of
operator OPn in the execution schedule E. In Figure 5 we
show the liveness interval of each buffer in the stream graph.
For example, the liveness interval b4 begins before the firing
of OP2 and ends after the firing of OP4.

Based on the liveness intervals, we can compute the
lower bound of the WS buffer size for the entire stream
graph as follows. We scan linearly the execution of the
N operators in the steady state (as shown in Figure 5)
and we determine the minimum WS buffer size as LB =

max
k∈[E(0),E(N)]

(
∑

∀n,k∈bn

size(Bn)).

This lower bound is the minimum WS buffer size that can
store all the necessary buffers during the entire execution
of the steady state of the stream graph. The computation
of this lower bound does not take into account the memory
fragmentation caused by the constraint that each buffer must
be a single, contiguous block of memory. We do not allow
buffer relocation. Instead, we may have to increase the WS
buffer size slightly in order to accommodate this constraint.

Given the lower bound of the size of the steady state
WS buffer, we now describe a heuristic that uses this bound
as a starting point and allocates buffers for each operator.

Figure 6 walks through the allocation algorithm for the above
mentioned stream graph and uses the lower bound of WS
buffer size identified as LB = size(B5 ∪ B6 ∪ B7) = 16).
Initially, we allocate the input B0 in the WS buffer (a). After
E(0), B1 is placed into the SM memory (b). When processing
E(1), according to the liveness analysis, the space utilized by
B0 can be reused for B2 (c). Next, splitter OP2 will also have
its output allocated (d). After the analysis of E(3) and E(4)
(e), the joiner OP5 has all its input allocated, and its output
is allocated at E(5), completing the steady state schedule
analysis (f).

Algorithm 1 Buffer allocation algorithm
Require: steady state schedule E; number of operators N ;

lower bound of WS buffer LB

Ensure: allocation for each buffer in the WS, feasible WS
buffer size LW ;

1: LW ← LB ;
2: for i = 0 to N− 1 do
3: for each bj = [. . . , E(i− 1)] do
4: deallocate(bj);
5: update availability(LW );
6: for each bj = [E(i), . . .] do
7: if (find next slot(bj)) then
8: allocate(bj);
9: update availability(LW );

10: else
11: extend(LW );
12: record allocation(bj , allocation);
13: return allocation, LW ;

Algorithm 1 summarizes our buffer allocation strategy. To
allocate buffers for each ready operator in the execution
schedule, we first update the availability of the WS buffer,
deallocating all the buffers for which liveness has ended
(line 3). The memory for the deallocated buffers will become
available, and is combined to form large contiguous blocks of
available memory. For each buffer that becomes live at this
step, we search for an available memory slot (line 7, though
not shown in detail) using a simple heuristic: we start from
the last successful allocation, and try to find the nearest slot
that will fit the current allocation request. The intuition is that
neighboring buffers tend to expire together or close to one
another, thereby increasing the likelihood of large chunks of
contiguous free slots. If we are still unable to find a suitable
memory slot, we extend the current WS buffer to fit the current
buffer (line 11). Note that if there is some available memory
at the rear of the WS buffer, we only need to extend its size
by the difference to accommodate the new buffer. Finally, we
return the allocated configuration and the final WS buffer size
LW (line 13).

We apply several constraints to the algorithm described
above. We enforce a buffer alignment that is equal to the
split factor S, such that we enable the splitting mechanism
described in Section IV. Furthermore, peeking operators can
not overlap their input buffers as the data is saved at the



same offset in the PK section of the SM memory. So if two
peeking filters overlap in their input buffers, their PK buffers
will also overlap. However, the allocation in the PK section for
peeking operators never expires, and so will result in a conflict.
Therefore, while analyzing the stream graph, we maintain a
set of ‘visited’ peeking operators and their buffer requirements,
and we avoid allocating another peeking operator in the same
memory segment. However, this issue does not occur between
a peeking operator and a non-peeking one as the latter does
not have a persistent presence in memory.

We also introduce a special optimization for duplicate
splitters. These splitters are a special type of splitters that
generate multiple identical output buffers from a single input
buffer. To prevent expensive data movement, we simply extend
the liveness of its input buffer until the last use of the splitter’s
original outputs.

VI. CHARACTERIZATION OF MAPPING ON DIFFERENT
GPUS

In this section, we characterize the parameters used for our
mapping strategy. We have used benchmarks that are packaged
along with the StreamIt compiler [18]. The three mapping
parameters that determine the execution time were defined in
Section IV, namely,

• W , the number of parallel stream schedule executions;
• S, the number of C threads per execution;
• F , the number of M threads that transfer data between

global and SM memory.
We varied the parameters of our mapping in order to better

understand their impact on performance. We also revisited the
idea that the standard approach taken in hiding the latency
of global memory, which is to maximize the number of C
threads. However, our C threads will generally be available
for execution, as their WS buffer is allocated in SM memory,
and thus we only need to find the right balance of C and M
threads that matches their workload. Scheduling is done at the
granularity of a warp, so if M and C threads are in distinct
warps, they will execute concurrently.

According to nVidia [5], hiding the latencies of the exe-
cution units requires 192 and 352 threads (6 / 11 warps) for
devices of capability 1.x and 2.x, respectively. This assumes
no global memory stalls and we will refer to this number as
NG. Therefore, we expect to see improvement in terms of
execution time as long as we enable more C threads to run the
stream graph schedule in parallel, until we reach NG. As W
is limited by the total size of the SM memory, we can increase
the split factor S to enable more C threads.

Figure 7a characterizes the speedup we achieved based
on the number of parallel stream executions for the Filter-
Bank benchmark. We have selected a number of M threads
(F = 32) high enough to sustain the transfer demands for the
given design space. We then enumerated all the possible range
of values for W and S. We measured the speedup achieved
by the same benchmark configuration for two nVidia GPUs
of capability 1.x, namely the G8800 and the Tesla S1070.
The X- and Y-axis show the number of stream executions W ,

in each SM, and speedup, respectively. For each GPU type,
different lines represent the speedup for different S values
(number of C threads per steady state schedule execution). As
expected, if the number of C threads increases, the speedup of
the application increases accordingly. We define the speedup as
the ratio of execution time of the application mapped to GPU
compared to the execution time of a CPU (2.83 GHz Intel
Xeon E5440) compilation. For the same number of iterations
W , increasing S leads to higher speedup. The result also shows
that the speedups on the S1070 are higher than those obtained
on the G8800.

Does a higher number of C threads always guarantee higher
speedup? Figure 7b shows an interesting result that higher
number of C threads may hurt speedup. These anomalies can
be explained by the correspondence of C threads to warps. If
the number of C threads is a multiple of 32, warp occupancy
will be at its highest, and only full warps are scheduled. On
the other hand, if additional C threads are scheduled, the last
warp is not only under-utilized but also occupies the same
amount of GPU time allocated to the other warps. In Figure
7b, the speedup falls exactly at the above-mentioned points
(because S = 1, the actual number of C threads is equal to
the number of parallel stream executions). After a point, if
the number of C threads continues to increase, the speedup
gradually recovers due to increased warp occupancy.

As mentioned above, the number of M threads plays an
important role when the C threads execute fast relative to the
latency of global memory. Figure 8a shows the performance
penalty when not enough M threads are scheduled for both
the G8800 and S1070. We present experimental data for two
different values of each GPU type: one in which the data
demand of the C threads (F = 32) is not satisfied, and another
in which it is (F = 128). After linearly increasing, the speedup
corresponding to the smaller number ofM threads reaches an
upper bound, while the speedup corresponding to the higher
number ofM threads increases steadily on both GPUs. When
the number of C threads is high enough, the data transferred
by a small number ofM threads is unable to keep up with the
demand for data from the global memory. If the number of
M threads increases correspondingly with demand, speedup
increases nearly linear in terms of the number of C threads.

If the number of M threads is too high, performance
(speedup) also degrades. Note that M threads compete for
SM occupancy with C threads. All threads, irrespective of their
type, are allocated an equal number of registers, and a higher
SM occupancy leads to less registers available to each of the C
threads. Therefore, performance may degrade due to register
spilling as shown in Figure 8b. This effect is orthogonal to
the one in Figure 7b, where no register spilling occurred. Our
experiments show that the number of M threads typically
required is 32 or 64. This result matches with the intuition
that we do not need many M threads, because their task is
only to match the demands of the W stream executions on
each SM.
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Fig. 8. The trade-offs for F , the number of M threads.

Heuristic equations for parameter selection: Based on these
insights, we propose a set of equations to compute the correct
number of C and M threads for any streaming application.

We first introduce an architectural constraint that requires
that the number of C threads to be lower or equal to NG

because this number of threads fully utilizes the GPU in the
absence of global memory stalls. M threads do not execute
often, and we assume that they do not contribute to the total
utilization. Thus, W ·S ≤ NG. We next include the constraint
presented in Section IV-B and we derive the maximum number
of parallel executions as a function of S:

W (S) = min(
NG

S
,
LSM

Λ
)

The execution time T (E, S) of a group iteration depends on
how the steady state schedule, E, maps on the S C threads.
Only operators fired iteratively in the schedule of the stream
graph can be distributed and subsequently lower the execution
time. Therefore, we analyse the execution schedule ES

t for

each thread t from the set of S threads associated with a stream
graph execution. We obtain information about the estimated
workload WL(p) of each operator OPp from the StreamIt
compiler. Putting these together, we get:

T (E, S) = max
t<S

(
∑

p∈ES

t

WL(p))

To maximize the speedup, i.e. W (S)/T (E, S), we need
to determine Sm such that ∀Si 6= Sm,W (Si)/T (E, Si) ≤
W (Sm)/T (E, Sm) which corresponds to W ′ = W (Sm)
executions. However, as suggested by Figure 7b, we need to
ensure that packing the W ′ · Sm threads into warps does not
leave the number of active threads in the last warp to be less
than (W ′ · Sm)/16. If the last warp is underutilized then we
reduce W to bW ′·Sm

32 c · 32, otherwise use W = W ′.
In addition, we analyse the ratio of parallel executions to
M threads. This has to match the ratio between the run time
of the parallel stream executions and their IO data set size LD.



TABLE I
BENCHMARK CHARACTERIZATION

Benchmark Description
Bitonic Sorting algorithm for 8 float elements apply-

ing the bitonic algorithm
BitonicRec The same as above, recursive method
DCT Discrete Cosine Transform for a matrix of

8x8 float elements
DES DES encryption algorithm, input 8 bytes,

output as 16 hex digits
FFT Fine grained FFT transform, with 32 inputs
FilterBank Instantiates 4 filter banks for multirate signal

processing
FMRadio 11-band equalizer radio
MatrixMult3 Blocked matrix multiplication algorithm for

4x4 matrices, split into blocks of 2x2

W

F
= k · T (E, S)

LD

where k is a GPU-dependent constant we derive experimen-
tally. We round F to the next full warp value.

VII. EXPERIMENTS

Based on the heuristic presented above, we can efficiently
select the number of C and M threads. In the following
experimental results we shall compare the speedups between:

• the previous state of the art implementation [9] and our
results;

• different nVidia architectures.
We start by comparing our mapping scheme with the results

presented by a recent work [9], already described in Section II.
We shall refer to this by the acronym ‘UGT’. This work
partitions the stream graph between SMs, and launches a large
set of homogeneous parallel threads in each SM. Data transfers
between SMs are done via the global memory.

We develop our mapping flow at the back-end of the
StreamIt 2.1.1 compiler. As presented in Section IV, the output
of our mapping can be compiled and run on different GPU
architectures with the correct number of parameters as selected
by the heuristic equation. In order to match the experimental
setup of UGT, we ran one set of experiments on the nVidia
G8800 with an old driver of release number 177.73. As a
baseline, we use the same platform as UGT, namely, an
Intel Xeon E5440 running at 2.83 GHz, with the executable
obtained through the uniprocessor backend of StreamIt, and
compiled using the ‘-O3’ option of GCC 4.1.2.

We use the benchmarks found in the benchmark suite
bundled with the StreamIt compiler. From the description
found in their paper, we adjusted the benchmark parameters to
be as close to those used by UGT as possible. A description
of each benchmark is found in Table I.

3We were unable to deduce the configuration used by UGT for this
benchmark based on their description. Instead, we use what is reported here.
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TABLE II
BENCHMARK MAPPING PARAMETERS

Benchmark Λ G8800 / S1070 S2050
(words) W S F W S F

Bitonic 31 128 1 64 352 1 160
BitonicRec 31 128 1 64 352 1 192

DCT 193 20 4 32 62 4 96
DES 95 40 2 32 128 2 32
FFT 129 30 4 32 88 4 96

FilterBank 49 46 4 32 88 4 32
FMRadio 27 88 1 32 352 1 32

MatrixMult 209 19 4 32 56 4 96

Figure 9 shows the comparison between UGT and our
approach. We consistently obtain better performance with our
proposed mapping scheme. The speedup in the graph is the
ratio of execution time on GPU to that on the CPU. For
all 8 benchmarks, our solution executes faster than the UGT
scheme, by as much as 4.2×. On average, ours is 2.8× better
than theirs. The smallest improvement is for FMRadio, but this
is due to an opportunistic optimization that was introduced in
the UGT implementation. Because the working set buffer of
each iteration in this stream graph is relatively small, the entire
work set for a large number of iterations was allocated in SM
memory. This result actually confirms the direction taken by
our mapping strategy.

In order to demonstrate the portability of our mapping
scheme to different GPU architectures, we performed exper-
iments on the nVidia G8800 (capability 1.0), Tesla S1070
(capability 1.3) and Tesla S2050 (capability 2.0). The results
are shown in Figure 10 and Table II. For these experiments
we have used the CUDA toolkit and driver version 3.1.
We targeted a single GPU device on the multi-GPU Tesla
platforms. For S2050, we enabled the extended 48 KB SM
memory. This extended SM memory is mutually exclusive
with a larger cache. In our case, as we can instruct the
hardware which global memory data sets to essentially fetch,
caching on demand would not have performed better.
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The results show that the automated mapping scheme not
only works on different GPU architectures, but it can also
explore the advanced features of newer GPUs. On average,
while mapping on the S1070 GPUs, speedups are 1.44× better
than on the G8800, and on the S2050 the performance is
2.62× better than the S1070. We attribute this significant
improvement to the additional processing cores and to the
larger SM memory that allowed for a larger total number
of parallel stream executions, i.e., W . It shows that our
automated mapping scheme scales well with the current GPU
development trend of increasing the number of processing
cores and the size of the SM memory.

We have also attempted to port our mapping scheme onto
AMD GPUs via OpenCL. We assigned C and M threads
to different wavefronts (the AMD equivalent of warps), and
experimented with an ATI HD5870 GPU board. However,
while we did achieve linear speedups, our experiments showed
that usingM threads incurred up to 30% of overhead. We had
expected the overhead to be significantly much lower. While
AMD documentation does not fully disclose the wavefront
scheduling algorithm, it is mentioned that a pair of wavefronts
hides all the ALU execution latency [19]. Therefore, we
suspect that if this pair of wavefronts contains only C threads,
the scheduler disadvantages M threads, making them unable
to load the data in time. The M threads became a liability
instead. We would like to investigate this in the future.

VIII. CONCLUSIONS

We presented a novel and efficient scheme to execute stream
graphs on GPUs that involves pipelining memory access
threads that prefetch data from the off-chip memory to the
on-chip memory, and compute threads that are disconnected
from the off-chip memory. We support all the features of
the StreamIt language, except stateful filters. Compared with
previous mapping results of StreamIt to GPUs, our implemen-
tation always performs faster, by as much as 4.2× better, on
the same experimental setup.

Our performance characterization shows the non-trivial
trade-off between memory access and compute threads, and
we proposed a heuristic that assists in automatically selecting
the best mapping parameters.

All the benchmarks we used could be implemented within
a single partition. However, if the working set buffer of
the steady state grows too large, our scheme supports the
interleaved execution of multiple subgraphs, using the off-chip
memory as intermediate storage. Even in this scenario, our
approach still minimizes the transfer of data between on-chip
and off-chip memory.

Orthogonal to our approach, performance may also be
improved by the introduction of a buffer layout algorithm
that is better than our current heuristic. This is supported by
the observation that performance is inversely proportional to
buffer size. We intend to explore this in our future work.
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