Automated architecture-aware mapping of streaming applications onto GPUs

Andrei Hagiescu Weng-Fai Wong School of Computing, National University of Singapore, Singapore

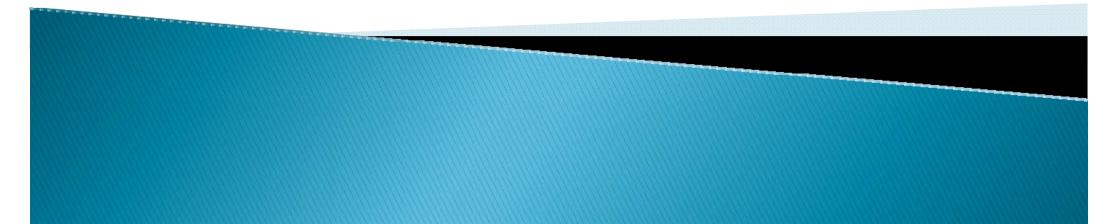
NUS National University of Singapore

Huynh Phung Huynh Rick Siow Mong Goh

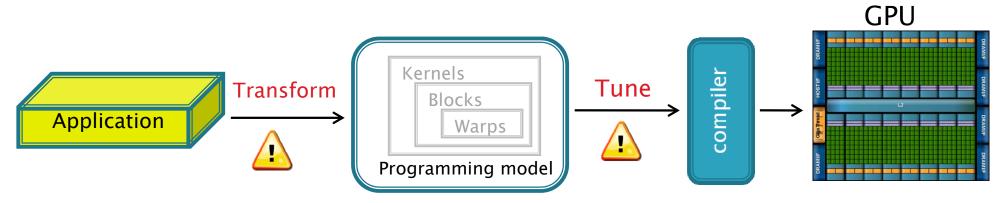
A*STAR Institute of High Performance Computing,

Sindapore

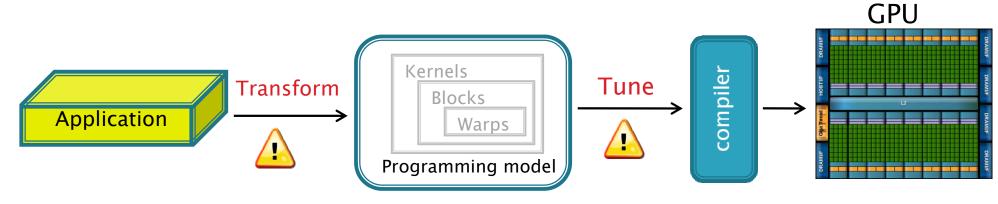
Institute of High Performance Computing



Overview



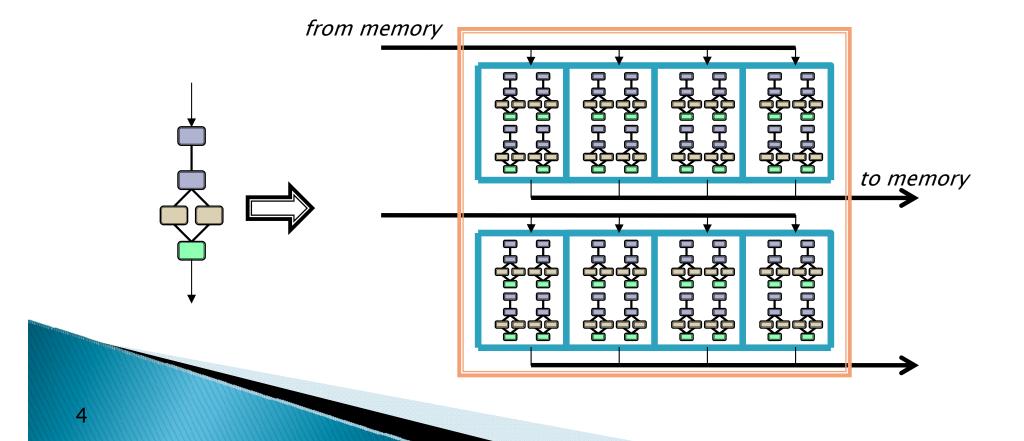
Overview



Automated mapping • GPU model • Program transformations

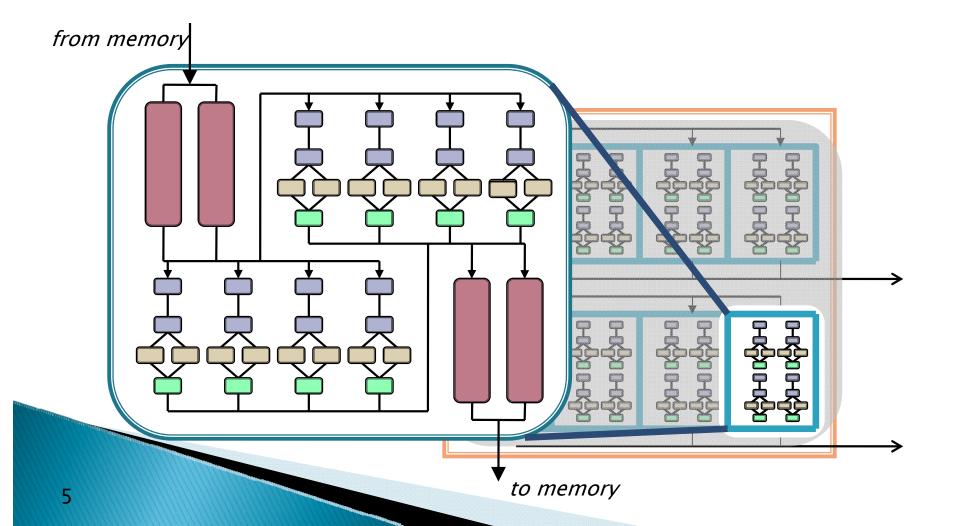
Our mapping strategy

① Stream graph \rightarrow Parallel instances of the entire graph



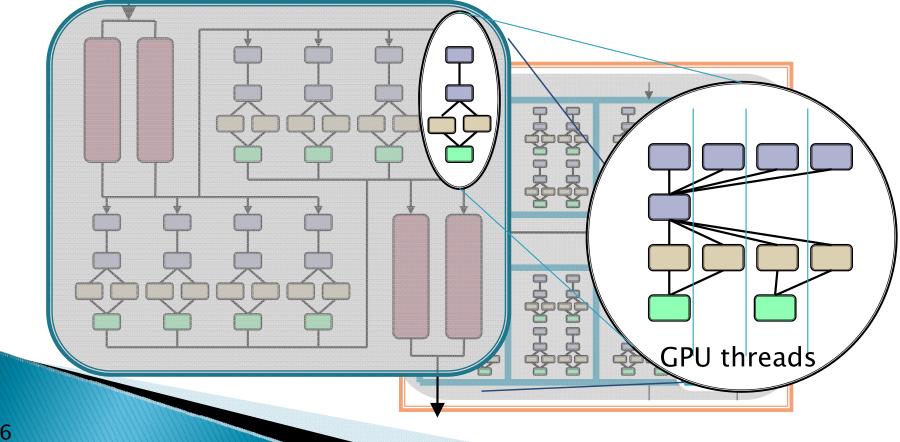
Our mapping strategy

① Stream graph → Parallel instances of the entire graph
 ② Novel memory access scheme



Our mapping strategy

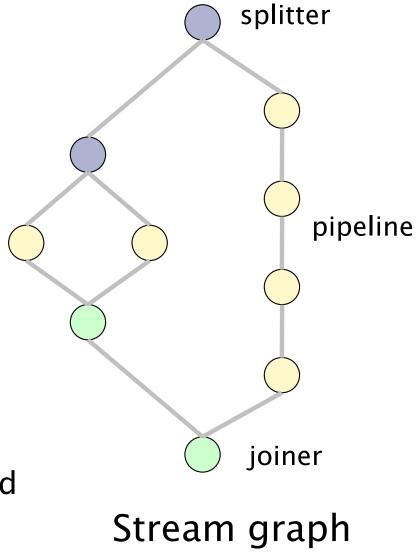
- ① Stream graph \rightarrow Parallel instances of the entire graph
- ② Novel memory access scheme
- ③ Utilize fine-grained parallelism



StreamIt

Hierarchical stream graph

- Well defined rates
- Pipeline
- Splitters / Joiners
- Mostly stateless filters
- StreamIt compiler
 - Schedules
 - Flattens
 - Analyzes
- Peeking
 - Alternative to filters with state
 - Allows access to input consumed by future iteration



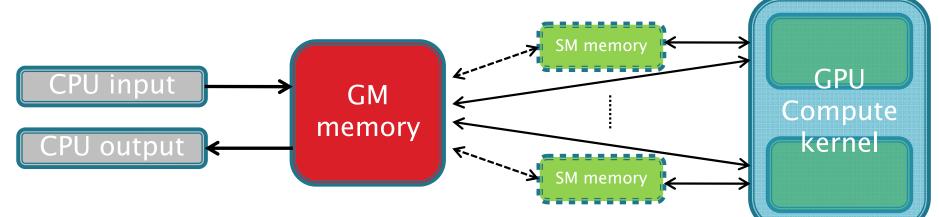
Related work on StreamIt to GPU

- Udupa et al. (CGO 2009)
 - Software pipelined execution of stream programs on GPUs
 no memory prefetching
 pipeline computation
- Hormati et al. (ASPLOS 2011)
 - Sponge: Portable Stream
 Programming on Graphics Engines
 - memory access scheme
 - Memory traffic not fully optimized
 - (filters fused partially)

locompression on multiple threads

GPU memory hierarchy

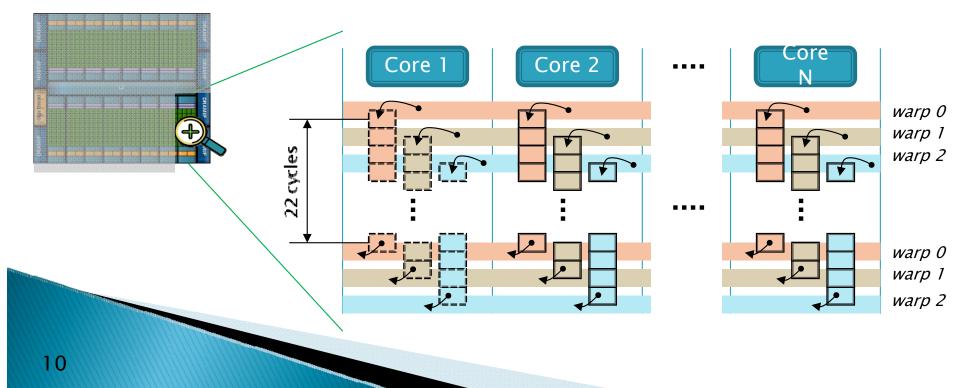
- Global GM memory
 - Large, slow, visible by threads on all SM processors
- Shared SM memory
 - Small, fast, visible by threads on one SM processor



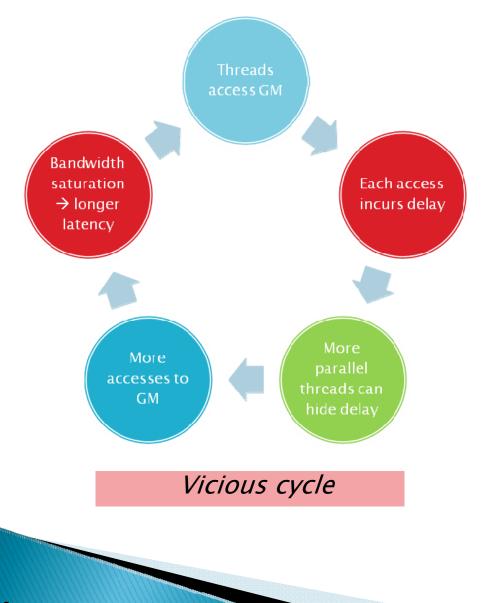
- Other memories, subset of GM
 - Local memory for registers spilling
 - Texture memory different access pattern

GPU internals

- Array of SIMD processors (SM processors)
 - Each handles a large pool of threads grouped in *warps*
- Interleaved execution for high throughput
 - operation latency (22 cycles)
 - memory latency (~ 400 cycles)



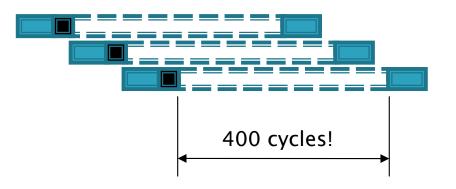
Memory access pattern



Influenced by ratio of:

- Memory access
- Computation

Bandwidth limitation



Specialization

- Workset: GM memory or SM memory?
 - GM → many parallel threads

→ saturate bandwidth

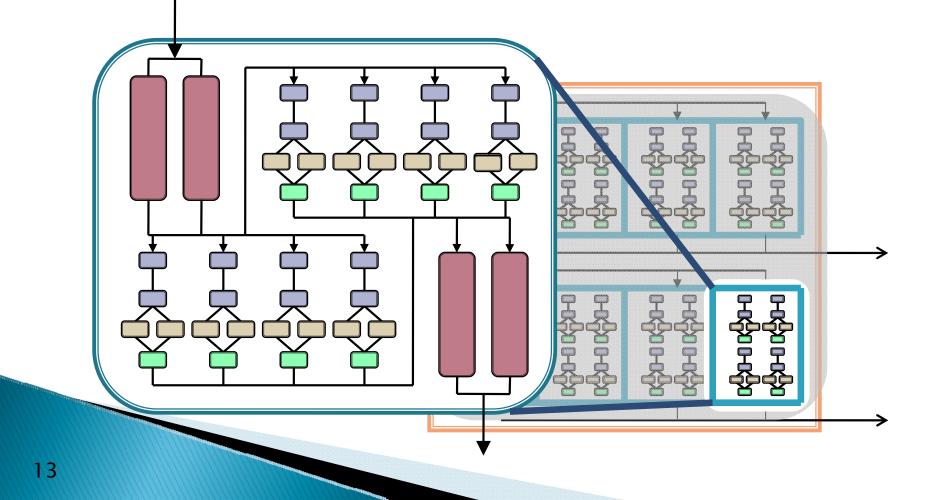
- SM → prefetching
 - Requires parallel loads / stores
 - SM memory size dictates number of parallel iterations

prefetch rate linked to workset size

- Separate GM memory accesses from computation
 - Specialize warps
 - Use SM memory to cache the workset
 - Computation-only warps release the workset faster

Mapping strategy

Stream graph → Parallel instances of the entire graph Novel memory access scheme Utilize fine-grained parallelism



SIMT versus SIMD

- Misconception: Threads should not diverge
 True only for threads belonging to a warp
- Warp:
 - SIMD execution model
 - Static thread allocation (based on thread ID)

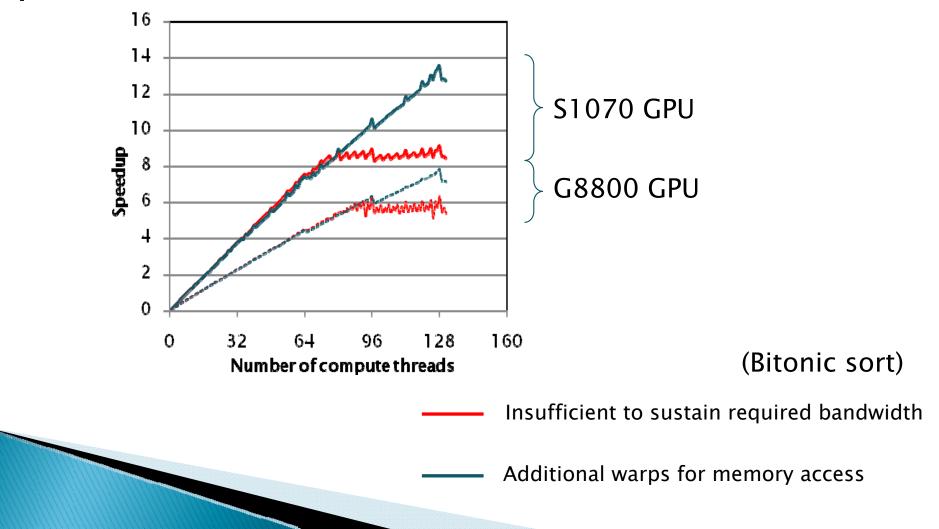
No penalty for this CUDA code:

```
if (threadIdx.x < warpSize) {
    compute_action();
} else if (threadIdx.x >= warpSize && threadIdx.x < 2 * warpSize)
    memory_access_action();
} else if ...</pre>
```

Bandwidth limitation

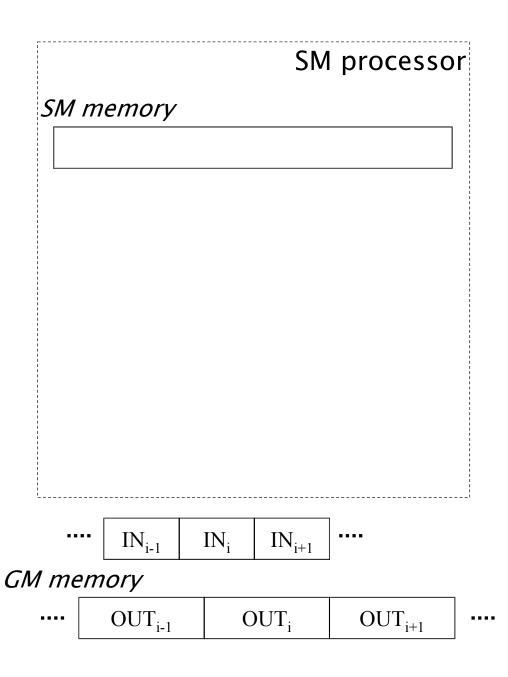
15

Insufficient memory access warps limit performance



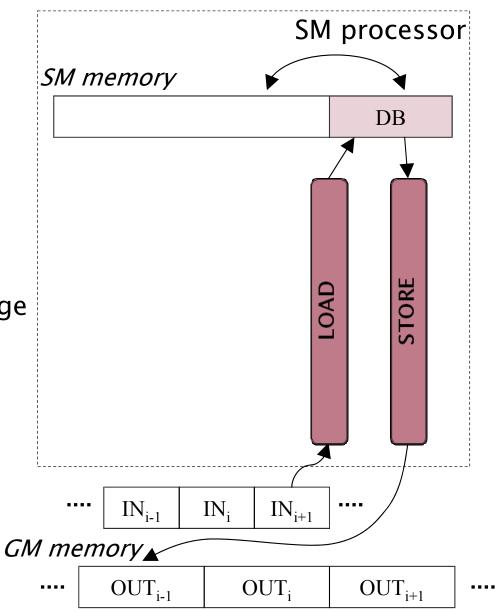
Data movement

- Software pipelining a group of iterations in each SM processor
- I/O streams in GM memory



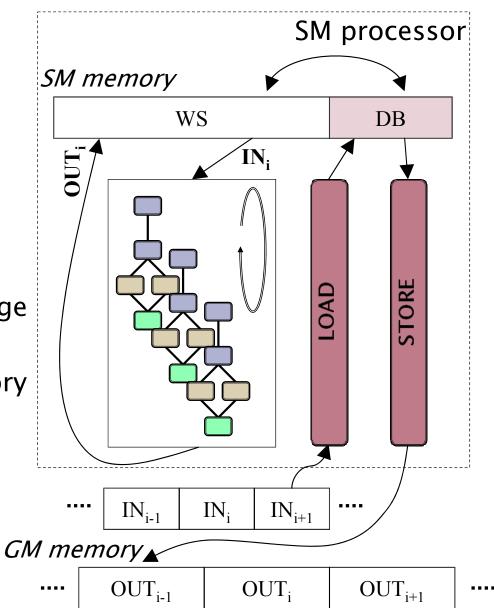
Data movement

- Software pipelining a group of iterations in each SM processor
- I/O streams in GM memory
- Double buffer (DB) for I/O exchange



Data movement

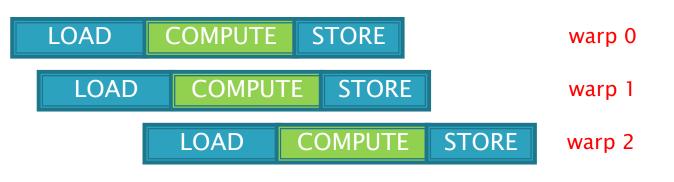
- Software pipelining a group of iterations in each SM processor
- I/O streams in GM memory
- Double buffer (DB) for I/O exchange
- Workset (WS) must fit in SM memory
 - I/O data
 - All intermediate stream data
 - → Limited number of iterations



Prefetching vs Specialization

Prefetching

- 3x COMPUTE warps
- 3x WS memory

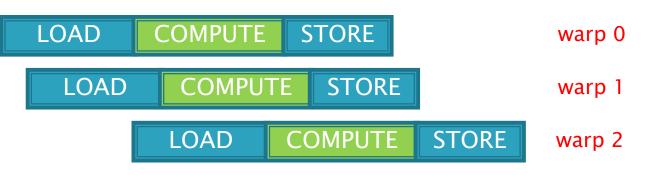


time

Prefetching vs Specialization

Prefetching

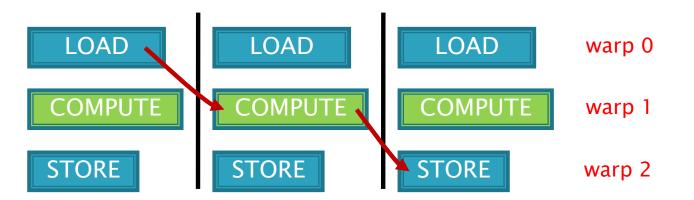
- 3x COMPUTE warps
- 3x WS memory



time

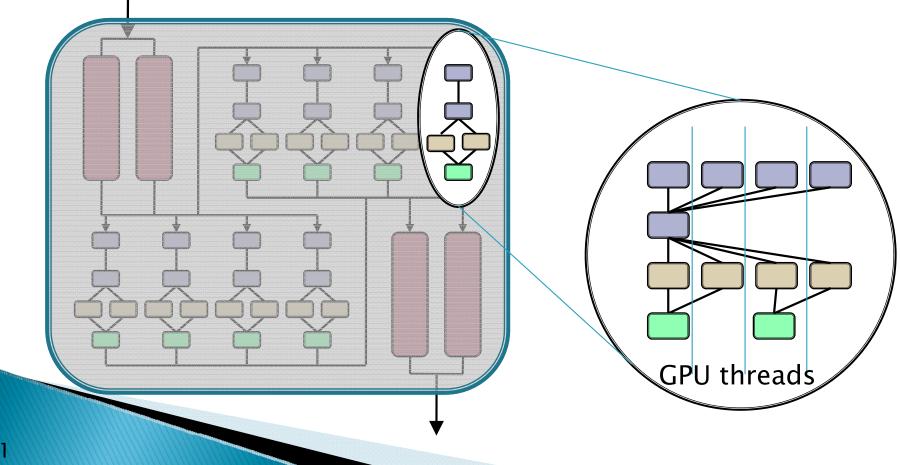
Specialization

- 1x COMPUTE warp
- 1x (WS+DB) memory



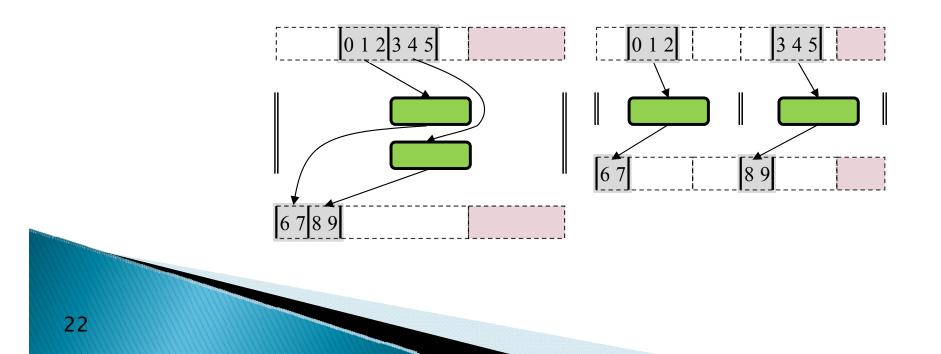
Mapping strategy

Stream graph → Parallel instances of the entire graph Novel memory access scheme Utilize fine-grained parallelism

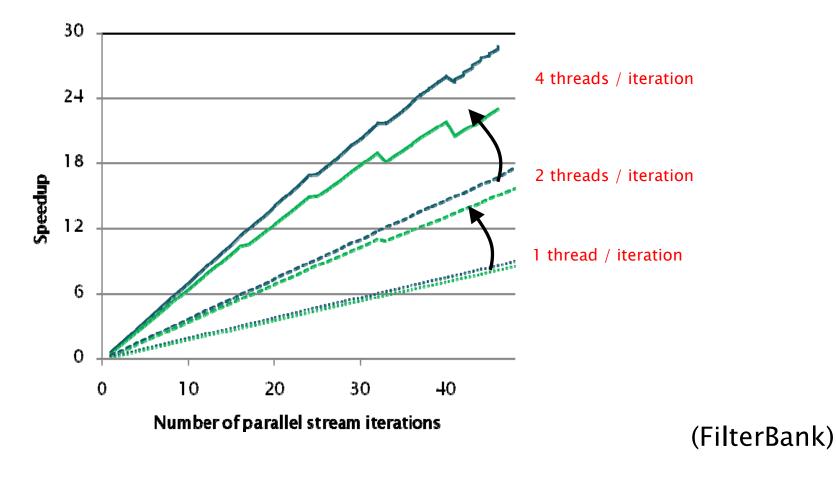


Fine grained parallelism

- Multiple threads / stream iteration
 - Distributed schedule
- Synchronization
 - Lock-step execution of warp threads



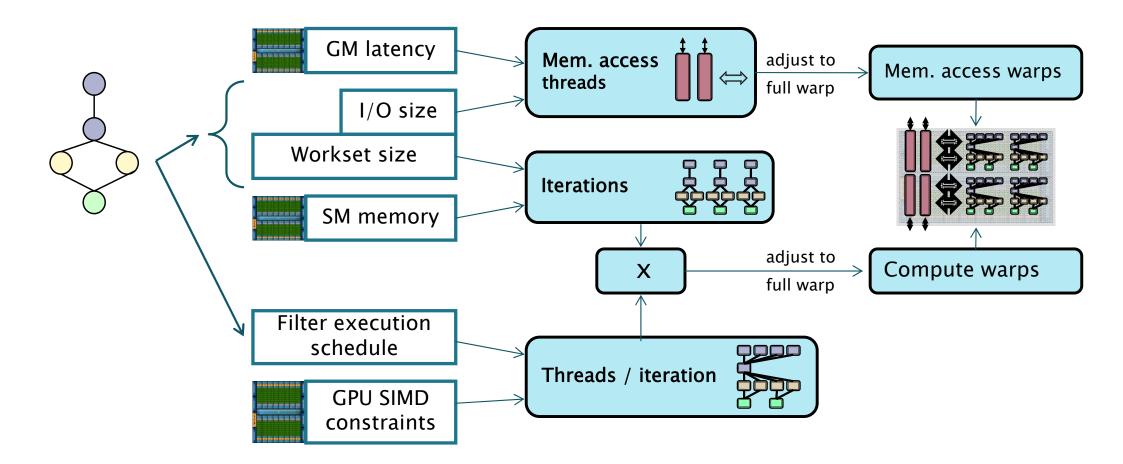
Design space characterization



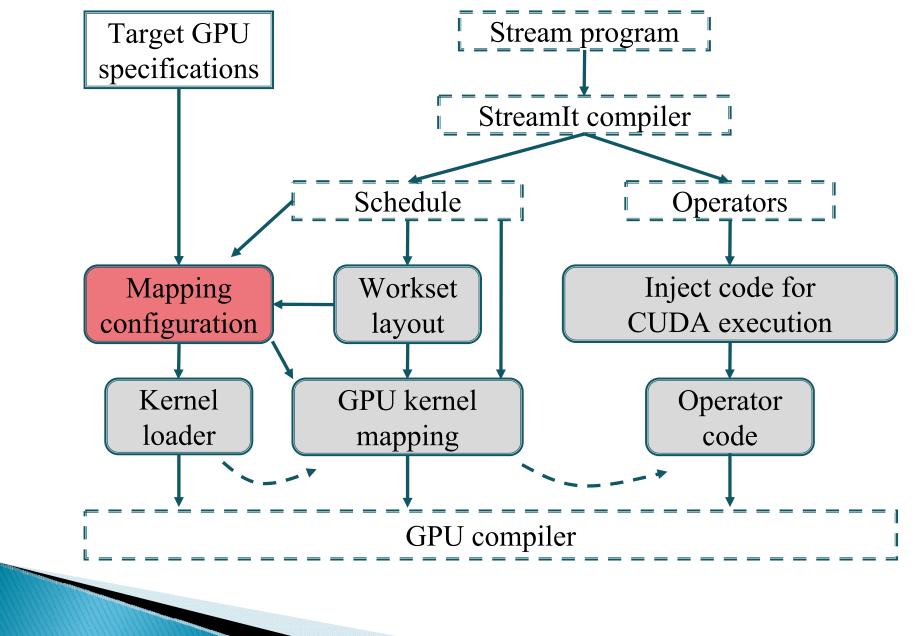


—— G8800 GPU

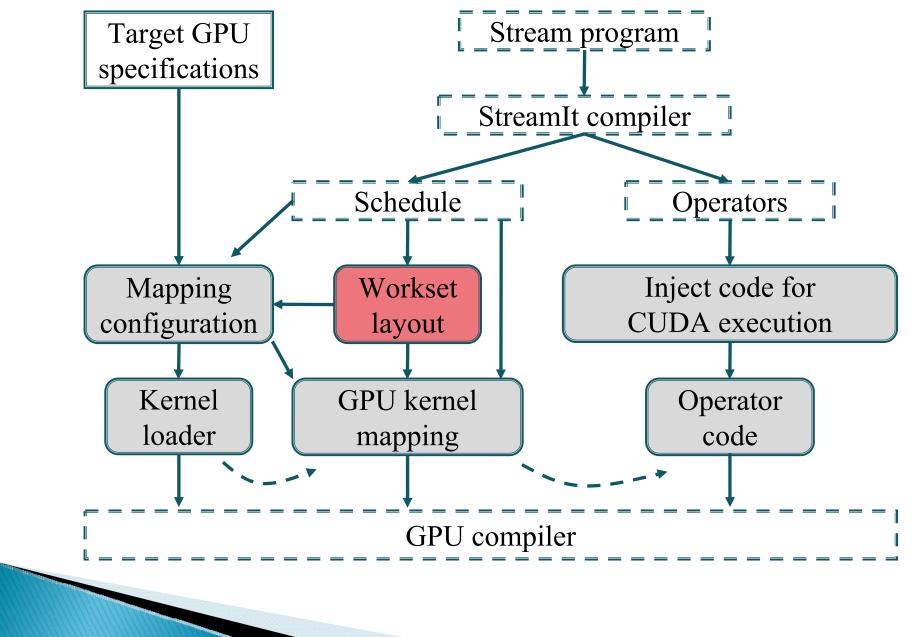
Design point selection



Flow



Flow



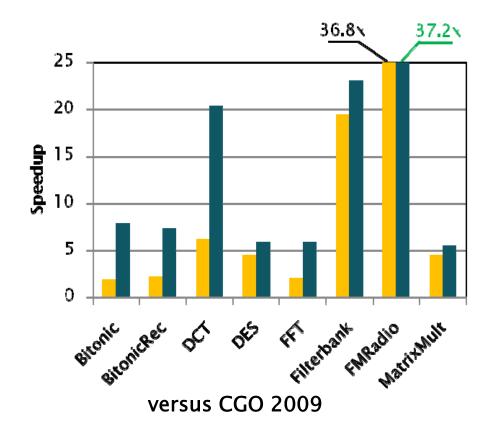
Workset layout

- Fragmentation of workset allocation
 - Small buffers are required between filters
 - Liveness analysis → estimation of workset size
 - Fragmentation → actual allocation may lead to a slight increase
- Coalesced memory access

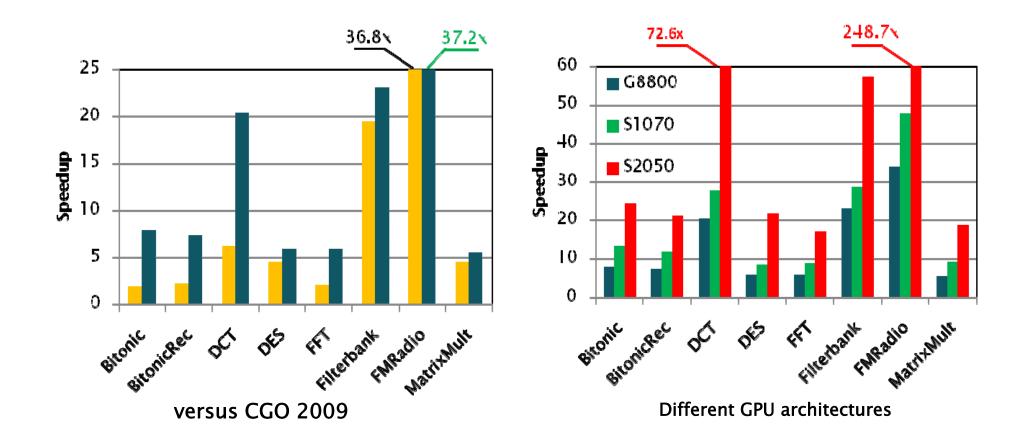
Peeking

- Inter-iteration dependencies
- Overlap input data to reconstruct the initial elements
 - For each SM processor
 - For each parallel thread group
- Intuition:
 - Warm-up intermediate buffers
 - Threads access previous iterations
- Custom synchronization
 - Only between compute threads
 - Implemented custom barrier

Results



Results



Conclusions

- Novel scheme to execute stream graphs on GPU
- Automatic heuristic for selecting efficient design points
- Novel memory access scheme through software pipelining

Thank you

Questions?

