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Our mapping strategy

@ Stream graph > Parallel instances of the entire graph

from memory
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@ Stream graph > Parallel instances of the entire graph
@ Novel memory access scheme
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Our mapping strategy

@ Stream graph > Parallel instances of the entire graph
@ Novel memory access scheme
® Utilize fine—-grained parallelism




Streamlt

» Hierarchical stream graph © splitter
- Well defined rates
> Pipeline Q
- Splitters / Joiners C)
- Mostly stateless filters - Q
» Streamlt compiler O O pipeline
> Schedules Q
- Flattens ()
> Analyzes Q
» Peeking
- Alternative to filters with state Q joiner

- Allows access to input consumed
by future iteration

Stream graph



Related work on Streamlt to GPU

» Udupa et al. (CGO 2009)
- Software pipelined execution

of stream programs on GPUs

& no memory prefetching
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GPU memory hierarchy

» Global GM memory

> Large, slow, visible by threads on all SM processors

» Shared SM memory
- Small, fast, visible by threads on one SM processor

memory
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» Other memories, subset of GM

> Local memory - for registers spilling
- Texture memory - different access pattern




GPU internals

» Array of SIMD processors (SM processors)

- Each handles a large pool of threads grouped in warps
» Interleaved execution for high throughput

> memory latency (~ 400 cycles) &

o operation latency (22 cycles)

warp 0

warp 1

warp 2

warp 0

warp 1

warp 2
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Memory access pattern

» Influenced by ratio of:

- Memory access
- Computation

Bandwidth
saturation Each access
- longer incurs delay

latency } BandWIdth Ilmltathn

More

accesses to [ e (-
ol . _ T

Vicious cycle 400 cycles!




Specialization

» Workset: GM memory or SM memory?

- GM = many parallel threads
= saturate bandwidth

- SM - prefetching
+ Requires parallel loads / stores
+ SM memory size dictates number of parallel iterations
= prefetch rate linked to workset size

» Separate GM memory accesses from computation
> Specialize warps
> Use SM memory to cache the workset
- Computation-only warps release the workset faster




Mapping strategy

Stream graph - Parallel instances of the entire graph
Novel memory access scheme
Utilize fine-grained parallelism
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SIMT versus SIMD

» Misconception: Threads should not diverge
> True only for threads belonging to a warp

» Warp:
> SIMD execution model
- Static thread allocation (based on thread ID)

» No penalty for this CUDA code:

if (threadIdx.x < warpSize) {
compute action() ;

} else 1f (threadldx.x >= warpSize && threadldx.x < 2 * warpSize)
memory access_action();

} else 1if ..




Bandwidth limitation

» Insufficient memory access warps limit

performance
16
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o S1070 GPU
g 3
E . G8800 GPU
4
2
0 . ; . .
0 32 64 96 128 160
Number of compute threads (BitOﬂiC SOI’t)

Insufficient to sustain required bandwidth

Additional warps for memory access




Data movement .

SM processor

ESM memory

» Software pipelining a group of
iterations in each SM processor

» 1/0 streams in GM memory

IN;, IN; | INg,

GM memory
OUT, , OUT, OUT,,,




Data movement .

SM processor

ESM memory y/\q

» Software pipelining a group of DB
iterations in each SM processor |

» 1/0 streams in GM memory

» Double buffer (DB) for I/O exchange

GM memory.
OUT,, OUT, OUT,,,
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Data movement .

» Software pipelining a group of DB

iterations in each SM processor

» 1/0 streams in GM memory

» Double buffer (DB) for I/O exchange

» Workset (WS) must fit in SM memory
- 1/0 data '
- All intermediate stream data

= Limited number of iterations

GM memory
OUT,, OUT, OUT,,,

1 1




Prefetching vs Specialization

. LOAD COMPUTE STORE
Prefe tCh/ng LOAD COMPUTE STORE
> 3x COMPUTE warps
o 3x WS memory LOAD COMPUTE STORE

warp 0
warp 1

warp 2

time

>



Prefetching vs Specialization

LOAD COMPUTE STORE warp 0

Prefetching
> 3x COMPUTE warps
> 3x WS memory

LOAD COMPUTE STORE warp 1
LOAD COMPUTE | STORE warp 2

time
>

Specialization warp 0
* 1x COMPUTE warp

> 1x (WS+DB) memory




Mapping strategy

Stream graph - Parallel instances of the entire graph
Novel memory access scheme
Utilize fine—grained parallelism




Fine grained parallelism

» Multiple threads / stream iteration
> Distributed schedule

» Synchronization
- Lock-step execution of warp threads




Design space characterization

30
// 4 threads / iteration
24
18 -
% - 2 threads / iteration
)
1 thread / iteration
G
0 n T T T
0 10 20 30 40

Number of parallel stream iterations .
(FilterBank)

—— S1070 GPU
— (8800 GPU




Design point selection

B )/ |atency ] |
] Mem. access N adjust to fMem_ access warps ]
threads J full warp L
/0O size 7
Workset size —
Iterations
== SM memory 7
adjust to
X Compute warps
full warp
Filter execution

schedule N

GPUSIMD | ——
constraints

[Threads / iteration




Flow

Target GPU ' Stream program

L =

specifications

|

GPU kernel
mapping

Workset Inject code for
layout CUDA execution

Operator
code




Flow

Target GPU ' Stream program

| =

specifications

Mapping Inject code for
configuration CUDA execution
: ! !
Kernel GPU kernel Operator
loader mapping code




Workset layout

» Fragmentation of workset allocation
- Small buffers are required between filters

- Liveness analysis =» estimation of workset size

- Fragmentation =» actual allocation may lead to a slight
InCrease

» Coalesced memory access




Peeking

» Inter-iteration dependencies

» Overlap input data to reconstruct the initial
elements

> For each SM processor
- For each parallel thread group

» Intuition:
- Warm-up intermediate buffers
- Threads access previous iterations

» Custom synchronization
> Only between compute threads
o ° Implemented custom barrier




Results

36.8x 37.2%

versus CGO 2009




Results
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versus CGO 2009

72.6x 248.7x

Different GPU architectures



Conclusions

» Novel scheme to execute stream graphs on
GPU

» Automatic heuristic for selecting efficient
design points

» Novel memory access scheme through
software pipelining




Thank you

» Questions?

b



