


2

TuneTransform

GPU

Kernels
Blocks

Warps

Programming model

Application



3

GPU architecture
• SIMD constraints
• Memory hierarchy

Automated mapping
• GPU model
• Program transformations

Application

TuneTransform

GPU

Kernels
Blocks

Warps

Programming model

Application

Kernels
Blocks

Warps

Programming model

Our approach



Stream graph Parallel instances of the entire graph

4

from memory

to memory



Stream graph Parallel instances of the entire graph
Novel memory access scheme

5

from memory

to memory



Stream graph Parallel instances of the entire graph
Novel memory access scheme
Utilize fine-grained parallelism

6

GPU threads



Hierarchical stream graph
◦ Well defined rates
◦ Pipeline
◦ Splitters / Joiners
◦ Mostly stateless filters

StreamIt compiler
◦ Schedules
◦ Flattens
◦ Analyzes

Peeking
◦ Alternative to filters with state
◦ Allows access to input consumed 

by future iteration

7

Stream graph

pipeline

splitter

joiner



Udupa et al. (CGO 2009)
◦ Software pipelined execution 

of stream programs on GPUs
no memory prefetching
pipeline computation

Hormati et al. (ASPLOS 2011)
◦ Sponge: Portable Stream 

Programming on Graphics Engines
memory access scheme
memory traffic not fully optimized

(filters fused partially)
no compression on multiple threads

8



Global GM memory
◦ Large, slow, visible by threads on all SM processors
Shared SM memory
◦ Small, fast, visible by threads on one SM processor

Other memories, subset of GM
◦ Local memory – for registers spilling
◦ Texture memory – different access pattern

9

CPU input GM 
memory

SM memory

SM memory

GPU
Compute 

kernelCPU output



Array of SIMD processors (SM processors)
◦ Each handles a large pool of threads grouped in warps
Interleaved execution for high throughput
◦ operation latency (22 cycles)
◦ memory latency (~ 400 cycles)

10

Core 1 Core 2 Core 
N

warp 0
warp 1
warp 2

warp 0
warp 1
warp 2



11

Vicious cycle

Influenced by ratio of:
◦ Memory access
◦ Computation

Bandwidth limitation

400 cycles!



12



Stream graph Parallel instances of the entire graph
Novel memory access scheme
Utilize fine-grained parallelism

13



Misconception: Threads should not diverge
◦ True only for threads belonging to a warp

Warp:
◦ SIMD execution model
◦ Static thread allocation (based on thread ID)

No penalty for this CUDA code:
if (threadIdx.x < warpSize) {

compute_action();
} else if (threadIdx.x >= warpSize && threadIdx.x < 2 * warpSize)

memory_access_action();
} else if …

14



Insufficient memory access warps limit 
performance

15

S1070 GPU

G8800 GPU

Insufficient to sustain required bandwidth

Additional warps for memory access

(Bitonic sort)



Software pipelining a group of 
iterations in each SM processor

I/O streams in GM memory

16

INi-1 INi

OUTi-1 OUTi OUTi+1

INi+1

SM processor
SM memory

GM memory



Software pipelining a group of 
iterations in each SM processor

I/O streams in GM memory

Double buffer (DB) for I/O exchange

17

DB

SM processor

INi-1 INi

OUTi-1 OUTi OUTi+1

INi+1

SM memory

GM memory



Software pipelining a group of 
iterations in each SM processor

I/O streams in GM memory

Double buffer (DB) for I/O exchange

Workset (WS) must fit in SM memory
◦ I/O data
◦ All intermediate stream data

Limited number of iterations

18

WS DB

O
U
T
i INi

SM processor

INi-1 INi

OUTi-1 OUTi OUTi+1

INi+1

SM memory

GM memory



Prefetching
◦ 3x COMPUTE warps
◦ 3x WS memory

warp 0

warp 1

warp 2

LOAD COMPUTE STORE

LOAD COMPUTE STORE

LOAD COMPUTE STORE

time



Prefetching
◦ 3x COMPUTE warps
◦ 3x WS memory

Specialization
◦ 1x COMPUTE warp
◦ 1x (WS+DB) memory 

20

time

warp 0

warp 1

warp 2

LOAD COMPUTE STORE

LOAD

COMPUTE

STORE

COMPUTE COMPUTE

LOAD COMPUTE STORE

LOAD COMPUTE STORE

LOAD

STORE

LOAD

STORE

warp 0

warp 1

warp 2



Stream graph Parallel instances of the entire graph
Novel memory access scheme
Utilize fine-grained parallelism

21

GPU threads



Multiple threads / stream iteration
◦ Distributed schedule

Synchronization
◦ Lock-step execution of warp threads

22

0 1 32 4 5

6 7 8 9

0 1 2 3 4 5

6 7 8 9



23

(FilterBank)

2 threads / iteration

1 thread / iteration

4 threads / iteration

G8800 GPU

S1070 GPU



24

Workset size

SM memory
Iterations

I/O size

GM latency Mem. access 
threads

Filter execution 
schedule

GPU SIMD 
constraints

Threads / iteration

x Compute warps

Mem. access warpsadjust to 
full warp

adjust to 
full warp



25

Stream program

StreamIt compiler

Schedule Operators

Workset
layout

GPU kernel 
mapping

Inject code for 
CUDA execution

Target GPU 
specifications

Mapping 
configuration

GPU compiler

Kernel 
loader

Operator 
code



26

Stream program

StreamIt compiler

Schedule Operators

Workset
layout

GPU kernel 
mapping

Inject code for 
CUDA execution

Target GPU 
specifications

Mapping 
configuration

GPU compiler

Kernel 
loader

Operator 
code



Fragmentation of workset allocation
◦ Small buffers are required between filters

Liveness analysis estimation of workset size

Fragmentation actual allocation may lead to a slight 
increase

Coalesced memory access

27



Inter-iteration dependencies

Overlap input data to reconstruct the initial 
elements
◦ For each SM processor
◦ For each parallel thread group

Intuition:
◦ Warm-up intermediate buffers
◦ Threads access previous iterations

Custom synchronization 
◦ Only between compute threads
◦ Implemented custom barrier

28



29

versus CGO 2009



30

Different GPU architecturesversus CGO 2009



Novel scheme to execute stream graphs on 
GPU

Automatic heuristic for selecting efficient 
design points

Novel memory access scheme through 
software pipelining

31



Questions?

32


