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GPU architecture
• SIMD constraints
• Memory hierarchy

Automated mapping
• GPU model
• Program transformations

Application
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Stream graph Parallel instances of the entire graph
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Stream graph Parallel instances of the entire graph
Novel memory access scheme
Utilize fine-grained parallelism
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GPU threads



Hierarchical stream graph
◦ Well defined rates
◦ Pipeline
◦ Splitters / Joiners
◦ Mostly stateless filters

StreamIt compiler
◦ Schedules
◦ Flattens
◦ Analyzes

Peeking
◦ Alternative to filters with state
◦ Allows access to input consumed 

by future iteration
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Stream graph
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Udupa et al. (CGO 2009)
◦ Software pipelined execution 

of stream programs on GPUs
no memory prefetching
pipeline computation

Hormati et al. (ASPLOS 2011)
◦ Sponge: Portable Stream 

Programming on Graphics Engines
memory access scheme
memory traffic not fully optimized

(filters fused partially)
no compression on multiple threads
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Global GM memory
◦ Large, slow, visible by threads on all SM processors
Shared SM memory
◦ Small, fast, visible by threads on one SM processor

Other memories, subset of GM
◦ Local memory – for registers spilling
◦ Texture memory – different access pattern
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Array of SIMD processors (SM processors)
◦ Each handles a large pool of threads grouped in warps
Interleaved execution for high throughput
◦ operation latency (22 cycles)
◦ memory latency (~ 400 cycles)

10

Core 1 Core 2 Core 
N

warp 0
warp 1
warp 2

warp 0
warp 1
warp 2



11

Vicious cycle

Influenced by ratio of:
◦ Memory access
◦ Computation

Bandwidth limitation

400 cycles!
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Stream graph Parallel instances of the entire graph
Novel memory access scheme
Utilize fine-grained parallelism
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Misconception: Threads should not diverge
◦ True only for threads belonging to a warp

Warp:
◦ SIMD execution model
◦ Static thread allocation (based on thread ID)

No penalty for this CUDA code:
if (threadIdx.x < warpSize) {

compute_action();
} else if (threadIdx.x >= warpSize && threadIdx.x < 2 * warpSize)

memory_access_action();
} else if …
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Insufficient memory access warps limit 
performance
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S1070 GPU

G8800 GPU

Insufficient to sustain required bandwidth

Additional warps for memory access

(Bitonic sort)



Software pipelining a group of 
iterations in each SM processor

I/O streams in GM memory
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Software pipelining a group of 
iterations in each SM processor

I/O streams in GM memory

Double buffer (DB) for I/O exchange

17

DB

SM processor

INi-1 INi

OUTi-1 OUTi OUTi+1

INi+1

SM memory

GM memory



Software pipelining a group of 
iterations in each SM processor

I/O streams in GM memory

Double buffer (DB) for I/O exchange

Workset (WS) must fit in SM memory
◦ I/O data
◦ All intermediate stream data

Limited number of iterations

18

WS DB

O
U
T
i INi

SM processor

INi-1 INi

OUTi-1 OUTi OUTi+1

INi+1

SM memory

GM memory



Prefetching
◦ 3x COMPUTE warps
◦ 3x WS memory

warp 0

warp 1

warp 2

LOAD COMPUTE STORE

LOAD COMPUTE STORE

LOAD COMPUTE STORE

time



Prefetching
◦ 3x COMPUTE warps
◦ 3x WS memory

Specialization
◦ 1x COMPUTE warp
◦ 1x (WS+DB) memory 
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Stream graph Parallel instances of the entire graph
Novel memory access scheme
Utilize fine-grained parallelism
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GPU threads



Multiple threads / stream iteration
◦ Distributed schedule

Synchronization
◦ Lock-step execution of warp threads
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(FilterBank)

2 threads / iteration

1 thread / iteration

4 threads / iteration

G8800 GPU

S1070 GPU
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Workset size

SM memory
Iterations

I/O size

GM latency Mem. access 
threads

Filter execution 
schedule

GPU SIMD 
constraints

Threads / iteration

x Compute warps

Mem. access warpsadjust to 
full warp

adjust to 
full warp
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Stream program

StreamIt compiler

Schedule Operators

Workset
layout

GPU kernel 
mapping

Inject code for 
CUDA execution

Target GPU 
specifications

Mapping 
configuration

GPU compiler

Kernel 
loader

Operator 
code
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Fragmentation of workset allocation
◦ Small buffers are required between filters

Liveness analysis estimation of workset size

Fragmentation actual allocation may lead to a slight 
increase

Coalesced memory access
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Inter-iteration dependencies

Overlap input data to reconstruct the initial 
elements
◦ For each SM processor
◦ For each parallel thread group

Intuition:
◦ Warm-up intermediate buffers
◦ Threads access previous iterations

Custom synchronization 
◦ Only between compute threads
◦ Implemented custom barrier
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versus CGO 2009
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Different GPU architecturesversus CGO 2009



Novel scheme to execute stream graphs on 
GPU

Automatic heuristic for selecting efficient 
design points

Novel memory access scheme through 
software pipelining
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Questions?
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