Automated architecture-aware mapping
of streaming applications onto GPUs

Andrei Hagiescu Huynh Phung Huynh

Weng-Fai Wong Rick Siow Mong Goh
School of Computing, A*STAR Institute of

National University of Singapore, High Performance Computing,
Singapore Sinagapore

Institute of
High Performance
Computing

MNational University
of Singapore

TANUS
¥

School 0f Computing A*STAR

Overview

GPU

o L 0 L B | B | B | N | N | N 1 | 2
= =

Kernels

Blocks

Application

Warps

= =
5 EEE S NS BN ENIN ENEN A 5

Programming model

Overview

Kernels

/A Transform Blocks
Application > Warps
& Programming model

compiler

Our approach

S
S
o e

i GPU architecture

1 :SIMD constraints
/ « Memory hierarchy

Kernels

Blocks

Automated mapping
* GPU model
* Program transformations

Warps

Programming model

= z
& -
- L 8 L 3 [3 [3 [3 [3 [J [J

3 =
S T F T ¥ [§ T F T ¥ T §F [7 [W

e U L4 L8 T3 T 4 L 8 [J 1 N

Our mapping strategy

@ Stream graph > Parallel instances of the entire graph

from memory

de -

£
OPE-00G0-0
odoo
odoo
doo
odoo
£t
D000

53
Bge-00g00 Bge

Bpe-00ge-0
Bpe-00ge-0

memory

] e
Bge-00g00 Bge

Bpe-00ge0
Bpe-00ge0

Our mapping strategy

@ Stream graph > Parallel instances of the entire graph
@ Novel memory access scheme

from memor

to memory

Our mapping strategy

@ Stream graph > Parallel instances of the entire graph
@ Novel memory access scheme
® Utilize fine—-grained parallelism

Streamlt

» Hierarchical stream graph © splitter
- Well defined rates
> Pipeline Q
- Splitters / Joiners C)
- Mostly stateless filters - Q
» Streamlt compiler O O pipeline
> Schedules Q
- Flattens ()
> Analyzes Q
» Peeking
- Alternative to filters with state Q joiner

- Allows access to input consumed
by future iteration

Stream graph

Related work on Streamlt to GPU

» Udupa et al. (CGO 2009)
- Software pipelined execution

of stream programs on GPUs

& no memory prefetching

e
L

L
.

©
()
N
. E
v o
< o
(@)
new
~ wES
— v YV Y
c
5 QN ®8gYE<
" (D) SC
e SUMS.I
- — Ca
o o 2o g
m vl o O —
o MA.\mgW,r
o - = £ 09
@ s € € E
— v D
S 2w EEE
9 - o0,
fd | -
— g < &
o mOmJV
= Q=
& S WV o
T o
A

e
L

e
e

(Vp)
©
(qv]
()
S
-
e
@
)p
> B
—_— D
(qo]
= €
S
g <
o O
<
v O
S a
(D)
05
L e
= O
= O

2\ no

GPU memory hierarchy

» Global GM memory

> Large, slow, visible by threads on all SM processors

» Shared SM memory
- Small, fast, visible by threads on one SM processor

memory

e
i
L

» Other memories, subset of GM

> Local memory - for registers spilling
- Texture memory - different access pattern

GPU internals

» Array of SIMD processors (SM processors)

- Each handles a large pool of threads grouped in warps
» Interleaved execution for high throughput

> memory latency (~ 400 cycles) &

o operation latency (22 cycles)

warp 0

warp 1

warp 2

warp 0

warp 1

warp 2

"

| &

. Lo

B uéﬁ% R :znf
.
L= 4
L
P :..n..*%
L .E::::::é:? =
- ;:::*::::. e

-

.

.
=
s
L
Bms e

*.

s
= 8

-
- i

-
-

-
s
-

-
i

o

.
b
- .
s
.
.

.
.

-
Ia .

.

.
-

-

dl
)l

ss|Ma 77

MIF

Memory access pattern

» Influenced by ratio of:

- Memory access
- Computation

Bandwidth
saturation Each access
- longer incurs delay

latency } BandWIdth Ilmltathn

More

accesses to [e (-
ol . _ T

Vicious cycle 400 cycles!

Specialization

» Workset: GM memory or SM memory?

- GM = many parallel threads
= saturate bandwidth

- SM - prefetching
+ Requires parallel loads / stores
+ SM memory size dictates number of parallel iterations
= prefetch rate linked to workset size

» Separate GM memory accesses from computation
> Specialize warps
> Use SM memory to cache the workset
- Computation-only warps release the workset faster

Mapping strategy

Stream graph - Parallel instances of the entire graph
Novel memory access scheme
Utilize fine-grained parallelism

5 5

SIMT versus SIMD

» Misconception: Threads should not diverge
> True only for threads belonging to a warp

» Warp:
> SIMD execution model
- Static thread allocation (based on thread ID)

» No penalty for this CUDA code:

if (threadIdx.x < warpSize) {
compute action() ;

} else 1f (threadldx.x >= warpSize && threadldx.x < 2 * warpSize)
memory access_action();

} else 1if ..

Bandwidth limitation

» Insufficient memory access warps limit

performance
16
14
12
o S1070 GPU
g 3
E . G8800 GPU
4
2
0 . ; . .
0 32 64 96 128 160
Number of compute threads (BitOﬂiC SOI’t)

Insufficient to sustain required bandwidth

Additional warps for memory access

Data movement .

SM processor

ESM memory

» Software pipelining a group of
iterations in each SM processor

» 1/0 streams in GM memory

IN;, IN; | INg,

GM memory
OUT, , OUT, OUT,,,

Data movement .

SM processor

ESM memory y/\q

» Software pipelining a group of DB
iterations in each SM processor |

» 1/0 streams in GM memory

» Double buffer (DB) for I/O exchange

GM memory.
OUT,, OUT, OUT,,,

1 1

Data movement .

» Software pipelining a group of DB

iterations in each SM processor

» 1/0 streams in GM memory

» Double buffer (DB) for I/O exchange

» Workset (WS) must fit in SM memory
- 1/0 data '
- All intermediate stream data

= Limited number of iterations

GM memory
OUT,, OUT, OUT,,,

1 1

Prefetching vs Specialization

. LOAD COMPUTE STORE
Prefe tCh/ng LOAD COMPUTE STORE
> 3x COMPUTE warps
o 3x WS memory LOAD COMPUTE STORE

warp 0
warp 1

warp 2

time

>

Prefetching vs Specialization

LOAD COMPUTE STORE warp 0

Prefetching
> 3x COMPUTE warps
> 3x WS memory

LOAD COMPUTE STORE warp 1
LOAD COMPUTE | STORE warp 2

time
>

Specialization warp 0
* 1x COMPUTE warp

> 1x (WS+DB) memory

Mapping strategy

Stream graph - Parallel instances of the entire graph
Novel memory access scheme
Utilize fine—grained parallelism

Fine grained parallelism

» Multiple threads / stream iteration
> Distributed schedule

» Synchronization
- Lock-step execution of warp threads

Design space characterization

30
// 4 threads / iteration
24
18 -
% - 2 threads / iteration
)
1 thread / iteration
G
0 n T T T
0 10 20 30 40

Number of parallel stream iterations .
(FilterBank)

—— S1070 GPU
— (8800 GPU

Design point selection

B)/ |atency] |
] Mem. access N adjust to fMem_ access warps]
threads J full warp L
/0O size 7
Workset size —
Iterations
== SM memory 7
adjust to
X Compute warps
full warp
Filter execution

schedule N

GPUSIMD | ——
constraints

[Threads / iteration

Flow

Target GPU ' Stream program

L =

specifications

|

GPU kernel
mapping

Workset Inject code for
layout CUDA execution

Operator
code

Flow

Target GPU ' Stream program

| =

specifications

Mapping Inject code for
configuration CUDA execution
: ! !
Kernel GPU kernel Operator
loader mapping code

Workset layout

» Fragmentation of workset allocation
- Small buffers are required between filters

- Liveness analysis =» estimation of workset size

- Fragmentation =» actual allocation may lead to a slight
InCrease

» Coalesced memory access

Peeking

» Inter-iteration dependencies

» Overlap input data to reconstruct the initial
elements

> For each SM processor
- For each parallel thread group

» Intuition:
- Warm-up intermediate buffers
- Threads access previous iterations

» Custom synchronization
> Only between compute threads
o ° Implemented custom barrier

Results

36.8x 37.2%

versus CGO 2009

Results

36.8~ 37.2%
25 ™
20
215
?&,10
S-H
D | | |]]]
& & F &SP
& & & & ¢
& & &

versus CGO 2009

72.6x 248.7x

Different GPU architectures

Conclusions

» Novel scheme to execute stream graphs on
GPU

» Automatic heuristic for selecting efficient
design points

» Novel memory access scheme through
software pipelining

Thank you

» Questions?

b

