
ApproxSymate: Path Sensitive Program
Approximation using Symbolic Execution

Himeshi De Silva
School of Computing, National University of Singapore

Singapore
himeshi@comp.nus.edu.sg

Andrew E. Santosa
School of Computing, National University of Singapore

Singapore
santosa_1999@yahoo.com

Nhut-Minh Ho
School of Computing, National University of Singapore

Singapore
minhhn@comp.nus.edu.sg

Weng-Fai Wong
School of Computing, National University of Singapore

Singapore
wongwf@comp.nus.edu.sg

Abstract
Approximate computing, a technique that forgoes quantifi-
able output accuracy in favor of performance gains, is useful
for improving the energy efficiency of error-resilient soft-
ware, especially in the embedded setting. The identification
of program components that can tolerate error plays a crucial
role in balancing the energy vs. accuracy trade off in approx-
imate computing. Manual analysis for approximability is not
scalable and therefore automated tools which employ static
or dynamic analysis have been proposed. However, static
techniques are often coarse in their approximations while
dynamic efforts incur high overhead. In this work we present
ApproxSymate, a framework for automatically identifying
program approximations using symbolic execution. Approx-
Symate first statically computes symbolic error expressions
for program components and then uses a dynamic sensitivity
analysis to compute their approximability. A unique feature
of this tool is that it explores the previously not considered
dimension of program path for approximation which enables
safer transformations. Our evaluation shows that ApproxSy-
mate averages about 96% accuracy in identifying the same
approximations found in manually annotated benchmarks,
outperforming existing automated techniques.

CCSConcepts •Computingmethodologies→Hybrid
symbolic-numericmethods; •Mathematics of comput-
ing→Approximation; •Computer systems organization
→ Embedded software.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
LCTES ’19, June 23, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6724-0/19/06. . . $15.00
https://doi.org/10.1145/3316482.3326341

Keywords Approximate Computing, Symbolic Execution

ACM Reference Format:
Himeshi De Silva, Andrew E. Santosa, Nhut-MinhHo, andWeng-Fai
Wong. 2019. ApproxSymate: Path Sensitive Program Approxima-
tion using Symbolic Execution. In Proceedings of the 20th ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES ’19), June 23, 2019, Phoenix, AZ, USA.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3316482.
3326341

1 Introduction
Energy efficiency of embedded software is a critical factor
determining the successful operation of systems in power
constrained environments. In this context, the paradigm of
approximate computing, in which an application’s output
accuracy is carefully traded off in favor of energy savings, has
become attractive for low power execution. Recognizing this
phenomenon, hardware vendors are starting to provide more
support for software approximations on their platforms. For
example, Nvidia’s latest GPGPUs now support half-precision
floating point arithmetic natively [3]. However, to make use
of these advances, program components that are suitable
for approximation have to be identified, as not all of them
are equally sensitive to error. One method of identification
is to allow programmers to manually demarcate code that
can tolerate error or be run on error-resilient hardware [8,
31, 32]. However placing such annotations require expert
domain knowledge, andmaintaining such annotations across
versions, upgrades and code rewrites is costly. This has given
rise to tools that enable automatic discovery of program
approximability.
Precision scaling, loop perforation, skipping tasks and

memory accesses have been shown to speed up programs
through a graceful degradation of quality [15, 30, 33]. Search
techniques are often used to discover code patterns or data
for which these can be applied [10]. However, they can be
time consuming and often rely on heuristics to produce rea-
sonable results [1, 11]. Program analysis to examine the reach
of input error and significance analysis to identify important

https://doi.org/10.1145/3316482.3326341
https://doi.org/10.1145/3316482.3326341
https://doi.org/10.1145/3316482.3326341

LCTES ’19, June 23, 2019, Phoenix, AZ, USA Himeshi De Silva, Andrew E. Santosa, Nhut-Minh Ho, and Weng-Fai Wong

program components have also been studied [29, 34]. It is
worthwhile to also mention that with these techniques, safe
execution of the approximated program has also become
a concern and methods to provide safety guarantees have
been developed [6, 7, 26]. Recently, interest has swayed from
applying singular transformations to more specialized ones
such as phase-aware approximations [21]. Nonetheless, ap-
proximation based on different possible execution paths has
not yet been explored. Given the nature of approximable
programs to apply various sets of operations to the indi-
vidual units of an image or audio file based on their initial
input value, looking into path based approximation opens
up new dimensions for energy savings. Moreover transfor-
mations that lead to drastic deviations from original paths,
often result in unexpected increases in the output’s error
and therefore must be carefully investigated.

1.1 A Motivating Example
To demonstrate the impact of program paths on approxima-
bility, we conducted experiments in 2 major program paths
in the susan edge detection kernel fromMiBench [14] which
share the same set of variables. The number of times each
path is executed to process the sample image are 39,467 and
29,625 respectively. The program path taken is determined
dynamically at run time by the input data. We injected a 50%
relative error to all the variables in one of the two paths while
keeping the variables error-free in the other. Figure 1 shows
the differences compared to the reference output. From the
figure, we can see that the same set of variables when exe-
cuting in path 1 will have less impact on output error, and
are therefore significantly approximable (Figure 1-c). How-
ever, in program path 2 approximating them will result in
incorrect output for edge detection (Figure 1-d). Any path
agnostic technique will either be too conservative (marking
both paths as not approximable) or too aggressive (marking
both paths as approximable) in this case.
In this work we explore path based program approxima-

tions using symbolic execution to automatically discover
data and algorithmic program transformations. Our frame-
work, ApproxSymate, extends the symbolic virtual machine
KLEE [4] to produce symbolic expressions for any variable’s
error in terms of the input and possible error introduced into
the input. It does this with a novel shadow symbolic represen-
tation that represents the relation between these quantities.
Path conditions are also maintained by the shadow symbolic
expressions allowing us to examine the effect of error on dif-
ferent program paths. The symbolic expressions generated
are fed into a sensitivity analysis that identifies the approx-
imability of these components. Our main contributions are:

• ApproxSymate - A framework that determines the
error sensitivity of program components by generating
symbolic error characterization expressions for the
components;

(a) (b)

(c) (d)

Figure 1. susan edge detection: (a) input taken from [23],
(b) reference output, (c) approximation on path 1, (d) approx-
imation on path 2.

• Incorporate program execution path in the approxi-
mation analysis - a factor that hitherto has not been
studied.
• Demonstrate how ApproxSymate can be used for data
and algorithmic approximations.

In Section 2 we present some background to our work.
Section 3 presents our overall approach, focusing on the
building of the symbolic formulas that represent the relation-
ships between the program input and errors. In Section 4 we
present the design of our implementation, and in Section 5
we present the results of experimenting with our implemen-
tation on a benchmark suite. In Section 6 we discuss related
work, followed by a discussion in Section 7 and the conclu-
sion in Section 8.

2 Background
2.1 Symbolic Execution
The main idea behind symbolic execution is to supply sym-
bolic values instead of concrete data as input to a program.
Program execution happens on these symbolic input values
to produce symbolic expression for program variables. The
symbolic execution engine maintains a program state along
with a path condition which at the start of execution are
empty and true. As the execution progresses, the state is
updated with the symbolic expressions that are generated
from the computations of the program. When a conditional
statement is encountered, the execution engine invokes a
constraint solver to check the satisfiability of the two possi-
ble branching conditions. If they are satisfiable, the program
state is cloned to produce two states with the path condition

ApproxSymate: Path Sensitive Program Approximation LCTES ’19, June 23, 2019, Phoenix, AZ, USA

...

klee_make_symbolic (&a, sizeof(a), "a");

...

d = b * b - 4 * a * c;

w1 = 2 * a;

w2 = sqrt(fabs(d));

if(d > 0) {

...

x1_r = (-b + w2) / w1;

x1_i = 0;

...

} else if (d == 0) {

....

} else {

...

x1_r = -b / w1;

x1_i = w2;

...

}

...

Figure 2. Example Code

of each updated with either the true or false branching condi-
tion. The execution continues for the pair of states and their
updated path conditions with the next statement in the pro-
gram until another conditional statement is reached, upon
which these steps are repeated. At the end of the symbolic
execution, for each path condition, the constraint solver will
generate concrete values satisfying it for all the symbolic
input. These concrete inputs can be useful for testing and
debugging the program whenever an unexpected behavior
occurs.

2.2 KLEE and LLVM
KLEE is a popular symbolic execution tool that has been
widely used in software testing [2, 4]. KLEE takes as input
a source, which has been annotated with the appropriate
function calls to KLEE, in the LLVM bitcode format [17].
The basic instrumentation API of KLEE important to our
purpose is klee_make_symbolic which is used to mark the
input as symbolic, as shown in the example in Figure 2. On
completion, KLEE will produce for each execution path, by
default in a directory for that run, test cases in the form of
concrete values for the symbolic values that were provided
as input. Apart from this KLEE also provides some useful
command line arguments such as write-kqueries, which
prints out the path conditions in terms of the symbolic input
for each execution path. We made use of such features in
this work.

Sensitivity analysis

example.c
(annotated with

KLEE calls)

Augmented
KLEE (run with

arguments to generate
expressions with error)

LLVM/Clang

example.bc

Test input
Path #1

Path #2Path #1
Path #2

Symbolic expressions
for variables and path
condition (with and w/o

error)

Path #1
Path #2

Variables for
approximation

Figure 3. Overview of ApproxSymate

3 Approach
3.1 Overview
Figure 3 shows the overview of our framework. Initially, a
source C program is annotatedwith the klee_make_symbolic
function call to mark the input variables as ‘symbolic’ as well
as the klee_track_ error call (explained later in Section 4)
to indicate the input that may have uncertainty. If an input
variable is marked as symbolic but not as permitting error,
then it will be considered precise during the symbolic execu-
tion. When the LLVM bitcode (obtained from Clang) for a
source annotated with these calls is executed with the aug-
mented KLEE, the symbolic expression characterizing the
relative error for each marked program variable as well as
the path condition in terms of the symbolic input and input’s
relative error will be generated for all feasible program paths
(in addition to the default output mentioned in Section 2.2).
This is done through a shadow state that tracks input’s error
propagation. Whenever a computation occurs with the sym-
bolic input in a state, the same computation is performed in
the shadow state but with both the symbolic input as well
as symbolic variables for the input’s relative error. In this
shadow state, the relative error of variables caused by the
tainted input is accumulated and propagated according to
established rules through the program. Note that assuming
errors in the input is a means for symbolically analyzing the
effects of input error. The actual input can be error-free.
The files generated by KLEE are then fed to a sensitivity

analysis module that determines each program variable’s,
path’s and input’s sensitivity to error using the symbolic
error expressions. For each program path, it will output a
list of approximable and non-approximable variables as well
as the path’s sensitivity to error in the different inputs.

3.2 Generating Symbolic Error Expressions
For ease of our discussion, let’s consider a simple program-
ming language shown in Figure 4, a simplified form of the
LLVM language.

LCTES ’19, June 23, 2019, Phoenix, AZ, USA Himeshi De Silva, Andrew E. Santosa, Nhut-Minh Ho, and Weng-Fai Wong

To discuss symbolic manipulation of formulas during sym-
bolic execution, we assume a domain Expr . One can under-
stand Expr to be the domain of uninterpreted functions con-
taining expressions including predicates in quoted form. We
assume that logical operators (∧, ∨, etc.) and symbolic vari-
ables belong to Expr so that we can express both atomic and
composite constraints. We assume two distinct sets of sym-
bolic variables in Expr : Varv , and Vare , where Varv ⊆ Expr
is the set of value variables and Vare ⊆ Expr is the set of error
variables, which represent the relative error amount. Con-
cretely, every program variable x has two representations:
xv , and xe . xv represents its ideal value when the operations
executed introduces no error, and xe represents the relative
error introduced to x during the computation.

During symbolic execution, constraints are collected into
the path conditionwhenever a conditional branch is executed
and the condition cannot be determined to be either valid or
unsatisfiable. More formally, a path condition is a conjunc-
tion of other constraints, where each constraint in the set is
a branch condition along the execution path. Our approach
augments KLEEwith a shadow structure that computes extra
information during symbolic execution. This shadow struc-
ture consists of two extra sorts of expressions computed
during the symbolic execution and is representable by the
elements of Expr: The path conditions with error, and the
error expressions. A path condition with error is essentially
a constraint on Varv and Vare . When a branch condition
is encountered in the symbolic execution, the shadow state
creates the same branch condition, but with the relative er-
rors applied to the original values in the branch condition.
These branch conditions are then collected as constraints in
the path condition with error. We will revisit this towards
the latter end of this section. An error expression, on the
other hand, symbolically expresses the relative error amount
of a value stored in a variable. The path conditions with
error as well as the error expressions are the main outputs
of the symbolic execution that are used as the input to the
sensitivity analysis.
We define the symbolic execution semantics for the in-

structions in our language using structural operational se-
mantics in Figure 5. The big step semantics of an executed
path can be trivially built from this semantics and therefore
is not shown. As is standard in the discussion of symbolic
execution (see, e.g., [5]), our semantics considers the con-
struction of path conditions. It is important to note that for
simplicity, our description abstracts away the standard path
conditions built by KLEE that are used to decide path sat-
isfiability. Instead, we only show the path conditions with
error and the error expressions, which are the outputs of
our analysis. In Figure 5, we provide the semantics of each
instruction as a state transition between configurations of
the syntax ⟨l ,σ ,h,πe ⟩, whose components are:

1. a label l ∈ Label,

2. a symbolic state σ ∈ Σ, with Σ ≡ {v, e} × Register →
Expr, and where:
a. σv ∈ Register → Expr, is the value state, where

it is understood that the codomain expresses the
real number values had the executed operations pro-
duced no errors,

b. σe ∈ Register → Expr is an error statewhose codomain
contains expressions of the amount of error in the
computation,

3. a symbolic heap h ∈ {v, e} × (N∪ {0}) → Expr, where,
similarly to state:
a. hv ∈ (N ∪ {0}) → Expr is the value heap where its

codomain expresses the numeric values that have
been computed using operations that produce no
error,

b. he ∈ (N ∪ {0}) → Expr is the error heap where
its codomain expresses the amount of error in the
computation,

4. a path condition with error πe ∈ → Expr . Note again
that this path condition is not the path condition con-
structed by KLEE to decide path satisfiability, but one
that expresses the constraints on the error-free values
and the error amount.

It is important to note that a symbolic state, symbolic heap
and path condition has Expr as their range, and not a value in
a numerical domain. This is because our semantics describes
how our symbolic expressions are manipulated during sym-
bolic execution.
In Figure 5, the rule [alloc] is the semantics rule for a

memory allocation. To express the memory operations done
in KLEE for the rules [store] and [load], we introduce the
function concretize which assigns a constant to an address
that may be represented as non-constant symbolic expres-
sion. This abstracts how KLEE behaves: KLEE tries to con-
cretize a symbolic address using a constraint solver. In some
cases when this fails, extra constraints are added into the
path condition based on the memory region.
In Figure 5, for the rules [ap1] and [ap2], we assume a

semantics function J·K1 for unary operators UnOp where

J·K1 : {v, e} × UnOp × Register × Σ→ Expr .

and a semantics function J·K2 for binary operators BinOp
where:

J·K2 : {v, e} × BinOp × Register × Register × Σ→ Expr .

We further define the semantics function J·K1 using the se-
mantics functions J·K1v and J·K1e , respectively for providing
the value and error expressions. The function J·K1v follows
the computation of symbolic expressions by KLEE during
symbolic execution. Although this is the case, we assume a
different interpretation of the expressions to KLEE, as we as-
sume that the symbolic operators applied are mathematical
operators that produce no error, whereas KLEE tries to be
faithful to the actual LLVM semantics by interpreting the

ApproxSymate: Path Sensitive Program Approximation LCTES ’19, June 23, 2019, Phoenix, AZ, USA

Program ::= Block∗

Block ::= (Label Instruction)∗
Instruction ::= Register ← alloc Immediate |

store Register Register |
Register ← load Register |
Register ← BinOp Register Register |
Register ← UnOp Register |
br Label |
br CmpInst Label Label

CmpInst ::= Register CmpOp Register
CmpOp ::= = | < | > | ≤ | ≥

Figure 4. A simple programming language in BNF.

expressions in the bitvector domain. For J·K1e function, for
any op ∈ UnOp, we assume that Jop vK1eσ = σe (v).
As with unary operations, we define the semantics func-

tion J·K2 for binary operations using the semantics functions
J·K2v and J·K2e , respectively for the value and the error expres-
sions. We also assume that the semantics function J·K2v con-
structs the symbolic expressions in the same way as KLEE,
hence we will not provide its detail. Our definition of J·K2e
for computing the error expressions is, however, the core
of our approach and we present it in Figure 6. These rules
are derived for relative error from standard absolute error
propagation rules.
The rules [br], [btrue], and [bfalse] in Figure 5 de-

scribe our symbolic execution semantics for an unconditional
branch, a conditional branch that jumps to its first (true)
branch and another conditional branch that jumps to its sec-
ond (false) branch, respectively. For the rules [btrue] and
[bfalse], we abstract away the branching decisions, which
are made by KLEE. In the definition of both of these rules, we
use the function cond which builds a constraint on the path
condition with error. The purpose of constructing such con-
dition is to further constrain the computed error expression,
based on the branch condition being symbolically executed.
Given cmp ∈ CmpOp, we define cond(σ , r1 CmpOp r2) as
follows.

σv (r1).(1 − σe (r1)) cmp σv (r2).(1 − σe (r2)).
The accumulation of each such constraint constitutes the
construction of the path condition with error, which is one
of the outputs of our symbolic execution.

3.2.1 An Example of Symbolic Expression
Generation

Figure 7 shows the symbolic error expression generation
with shadow structures for the computations along each
branch for the example given in Figure 2, if we remove the
else-if branch and start from the state shown in root node.
π is KLEE’s path condition with no error while πe is the path
condition with error as described above. σv is the program

ι = r ← alloc i a = malloc(i)
σ ′v = σv [r 7→ a] σ ′e = σe [r 7→ 0]
(ι, ⟨l ,σ ,h,πe ⟩) −→ ⟨next(l),σ ′,h,πe ⟩ [alloc]

ι = r ← store r1 r2 a = concretize(r1)
h′v = hv [a 7→ σv (r2)] h′e = he [a 7→ σe (r2)]
(ι, ⟨l ,σ ,h,πe ⟩) −→ ⟨next(l),σ ,h′,πe ⟩ [store]

ι = r ← load r1 a = concretize(r1)
σ ′v = σv [r 7→ hv (a)] σ ′e = σe [r 7→ he (a)]
(ι, ⟨l ,σ ,h,πe ⟩) −→ ⟨next(l),σ ′,h,πe ⟩ [load]

ι = r ← op r1 op ∈ UnOp
σ ′v = σv [r 7→ Jop r1K1vσ]
σ ′e = σe [r 7→ Jop r1K1eσ]

(ι, ⟨l ,σ ,h,πe ⟩) −→ ⟨next(l),σ ′,h,πe ⟩
[ap1]

ι = r ← op r1 r2 op ∈ BinOp
σ ′v = σv [r 7→ Jop r1 r2K2vσ]
σ ′e = σe [r 7→ Jop r1 r2K2eσ]

(ι, ⟨l ,σ ,h,πe ⟩) −→ ⟨next(l),σ ′,h,πe ⟩
[ap2]

ι = r ← br l1
(ι, ⟨l ,σ ,h,πe ⟩) −→ ⟨l1,σ ,h,πe ⟩ [br]

ι = r ← br r1 l1 l2 π ′e = πe ∧ cond(σ , r1)
(ι, ⟨l ,σ ,h,πe ⟩) −→ ⟨l1,σ ,h,π ′e ⟩

[btrue]

ι = r ← br r1 l1 l2 π ′e = πe ∧ ¬cond(σ , r1)
(ι, ⟨l,σ ,h,πe ⟩) −→ ⟨l2,σ ,h,π ′e ⟩

[bfalse]

Figure 5. Semantics of our simple programming language.
The function next(l) returns the next label after l . malloc
represents the actual UNIX system call as is done in KLEE.
We also assume a function concretize which models KLEE’s
concretizing of symbolic addresses. The function cond com-
putes the constraint to be added to the error path condition.

state containing symbolic values and expressions of the com-
putations and σe holds their corresponding error expressions.
As can be seen, the error expression for x1_r (the expression
for x1_r in σe) is different in the two branches because the
computation of this variable in the two branches are differ-
ent. These error expressions are formed according to rules
laid out in Figure 5 for the different operations involved in
the computation.

4 Implementation
4.1 Extending KLEE
We modify KLEE (LLVM 3.4) such that during symbolic exe-
cution, a shadow structure builds the error expressions and
path conditions with error (described in Section 3.2) [4]. The
error expression is built using KLEE’s Expr API. Our ex-
tension to KLEE is available as an open source software at
https://github.com/ApproxSymate.

https://github.com/ApproxSymate

LCTES ’19, June 23, 2019, Phoenix, AZ, USA Himeshi De Silva, Andrew E. Santosa, Nhut-Minh Ho, and Weng-Fai Wong

Jadd r1 r2K2e = λσ .

σv (r1).σe (r1) + σv (r2).σe (r2)
d

if d , 0
0 otherwise

where d = Jadd r1 r2K2vσ

Jsub r1 r2K2e = λσ .

σv (r1).σe (r1) + σv (r2).σe (r2)
d

if d , 0
0 otherwise

where d = Jsub r1 r2K2vσ

Jmul r1 r2K2e = λσ .σe (r1) + σe (r2) − σe (r1).σe (r2)

Jdiv r1 r2K2e = λσ .

σe (r1) − σe (r2)
1 − σe (r2) if ⊢ σe (r2) , 1

σe (r1) − σe (r2) otherwise
Jop r1 r2K2e = λσ .σe (r1) + σe (r2)

when op < {add, sub, mul, div}

Figure 6. Semantics function J·K2e for error expressions. Here
we use ⊢ φ to denote that KLEE’s bitvector solver was able
to prove that φ holds.

σv : {b 7→ bv , d 7→ dv , w1 7→ w1v , w2 7→ w2v }
σe : {b 7→ be , d 7→ de , w1 7→ w1e , w2 7→ w2e }
π : true
πe : true

σv :

b 7→ bv ,
d 7→ dv ,
w1 7→ w1v ,
w2 7→ w2v ,
t1 7→ −bv ,
t2 7→ t1 +w2v ,
x1_r 7→ t2/w1v ,
x1_i 7→ 0

σe :

b 7→ be ,
d 7→ de ,
w1 7→ w1e ,
w2 7→ w2e ,
t1 7→ be ,

t2 7→ t1v t1e + w2vw2e
t1v + w2v

,

x1_r 7→ (t2e − w1e)/(1 − w1e),
x1_i 7→ 0

π : dv > 0
πe : dv (1 − de) > 0

d
>
0

σv :

b 7→ bv ,
d 7→ dv ,
w1 7→ w1v ,
w2 7→ w2v ,
t1 7→ −bv ,
x1_r 7→ t1/w1v ,
x1_i 7→ w2v

σe :

b 7→ be ,
d 7→ de ,
w1 7→ w1e ,
w2 7→ w2e ,
t1 7→ be ,
x1_r 7→ (t1e − w1e)/(1 − w1e),
x1_i 7→ w2e

π : dv ≤ 0
πe : dv (1 − de) ≤ 0

d
≤
0

Figure 7. Example of symbolic error expression generation
(assuming the first and last code blocks only). The root, left
and right nodes represent the symbolic state before, and after
the executions of the true and false branches of the program
in Figure 2, respectively. π here is the path condition gener-
ated by KLEE, and tN are temporary registers, commonly
found in LLVM.

KLEE provides a set of API for instrumenting the program
under test. These instrumentations are useful to trigger the
execution of special functionalities provided by KLEE. The
klee_make_symbolic function is one such main API used to

declare symbolic variables. Our extension adds the following
function to the KLEE API:
• void klee_track_error(void *addr, const char
*name). This function is used to indicate the uncer-
tainty of a symbolic input (declared by klee_make_sym
-bolic). It triggers the generation of a symbolic value
for that input’s relative error. The input is contained in
an object stored in memory at the address addr. name
is a string used to identify the generated symbolic in-
put error. If the input is an array, all array elements
are deemed to have the same error.

To control the behavior of our error expression computa-
tion, we add the following command-line options to KLEE:
• -approximate - enables the symbolic error expression
computation.
• -debug-approximation - outputs debug information
related to the construction of the symbolic error ex-
pressions.

During its execution KLEE checks whether memory ac-
cesses are within the bounds of the memory allocated. There-
fore, it does not allowmemory addresses to be symbolic. This
agrees with our (conservative) assumption that array indices
and pointers should not be approximated since that would
create potentially unpredictable error behavior in the pro-
gram.

For each execution path N of the program, standard KLEE
produces the following files:
• testN.kquery: Symbolic expression for path condi-
tion of path N.
• testN.ktest: Concrete values for the specified sym-
bolic input satisfying the path condition of path N.

In addition, our extended KLEE produces the following files:
• testN.expressions: The symbolic error expressions
for all program variables modified within path N. The
error expression at the last modification is given since
that will have the most likely impact on the program’s
output.
• testN.kquery_error: The path condition with error
for the path N. For example, this is πe in Figure 7.
• testN.mathf: Arguments and errors of N’s math func-
tion calls (see Section 4.2)
• testN.prob: Probability and length of execution tree
of N. This is used mainly for comparison purposes (see
Section 5)

4.2 Working with Floating Point
Many floating point applications are suitable for approxima-
tion. However, KLEE (LLVM 3.4 which is the stable version
currently) does not provide support for symbolic execution
of floating point programs (although it is planned). Therefore,
we used the following workarounds to identify approxima-
tions in floating point code:

ApproxSymate: Path Sensitive Program Approximation LCTES ’19, June 23, 2019, Phoenix, AZ, USA

1. Floating point variables are first converted to integer
ones. If there are floating point constants, wherever
possible they will be replaced with integer constants.
In cases where this is not possible, the variable will
be replaced with a new symbolic value in KLEE. The
actual value of the constant will then be substituted
during the sensitivity analysis.

2. The --scaling command line argument is used to
run programs that originally contain floating point
division. This prevents floating point divisions from
resulting in zero when the program is converted to use
integers by multiplying the numerator by a new sym-
bolic variable. This new variable will be substituted
with 1.0 in the sensitivity analysis.

3. The --math-calls command line argument is used
for programs that contain floating point math func-
tions such as sin, cos, fabs etc. Again, new sym-
bolic variables will be introduced to the execution and
they will eventually be substituted by the original func-
tions and arguments during sensitivity analysis.

4. Sensitivity analysis is then performed with floating
point values as inputs.

Possible drawbacks of this approach are that some paths
which are satisfiable in the integer domain maybe rendered
unsatisfiable by KLEE’s constraint solver in the floating-
point domain and the new symbolic variables may also lead
to unsatisfiable states. Nonetheless we believe that this im-
provisation is still useful, especially in enabling us to tackle
a much wider range of applications.

4.3 Sensitivity Analysis
Once the extended KLEE generates the output files as de-
scribed in Section 4.1, we run a sensitivity analysis on them.
Our sensitivity analysis, implemented in Python, has the
capability to calculate the sensitivity to input error of each
variable on each program path. It can also determine whether
introducing input error to a variable causes the program to
deviate from the original execution path. It uses this infor-
mation to then output the approximability of the variable,
input and path.
Algorithm 1 shows the sensitivity analysis designed for

this purpose. It starts by retrieving symbolic error expres-
sions for its program variables and path condition (with and
without error) for the current path p (Lines 7 - 10). Con-
crete values for inputs marked as symbolic are also obtained
(Lines 11 - 12). For each program variable’s symbolic error
expression, it will then take each symbolic input at a time
and generate a random value in a uniform distribution of
(0,1) as its error. All other input’s errors are set to zero (Lines
14 - 22). The input error values (random value for the se-
lected input and zero for others) and input values are then
applied to the symbolic expression for the path condition
with error of p (Line 23). If the path condition with error is

satisfied, then this means that even after applying error to
the input, the program’s execution path does not change. In
this case, the analysis obtains the variable’s relative error
from its symbolic error expression by applying the input and
input errors to it (Line 24). This is repeated for REP number
of times to obtain REP expression output error values for
the REP random input error values. These pairs are sorted
by the input error values (Line 27). They are then divided
into N equal groups and for each group the linear regression
coefficient is obtained (Lines 28 - 31). Here N < REP/2. The
gradient of 45° compared with the maximum linear regres-
sion determines approximability (Line 32). This means that
the output error is never greater than the input error. This
kind of demarcation is also done in other tools [28, 29]. For
each program variable, this process is repeated with all the
symbolic inputs marked with error. If a variable is approx-
imable for at least one input, it is marked ‘approximable’ in
path p.
The sensitivity analysis begins by assuming that all in-

puts that have been marked with klee_track_error, have
uncertainty. However in reality, not all inputs may tolerate
error. Therefore during the analysis, for each input we keep
track of the total times the path condition is satisfied when
error is applied to it (Line 26). This is output from the analy-
sis as a fraction over the total attempts of applying error to
it (Line 42). If introducing error to a particular input fails to
satisfy the path condition more often, then that means that
the input is less tolerant to error and vice-versa. If the afore-
mentioned value is greater than at least 50% we maintain our
assumption of approximability for that input. This is also
useful when inferring the approximability of variables which
are not directly computed from the input but instead whose
values are determined by path conditions (in our evaluation
we still mark such variables as non-approximable since they
will not have an error expression). Using the variable and
input approximability, the tolerance to error of a path can
be determined by the user.
During evaluation, when obtaining concrete inputs for

floating point programs, we use those that are provided by
the benchmarks or generate them using a constraint solver.
In the algorithm we assume that the variable’s error func-
tion is Lipshitz continuous. Because we only allow for error
when the original path condition is satisfied and from our
empirical observation this assumption is justified. The piece-
wise linear regression allows the algorithm to better look
at the actual error function while randomizing the input
errors allow for identification of any abnormalities in the
error function.

LCTES ’19, June 23, 2019, Phoenix, AZ, USA Himeshi De Silva, Andrew E. Santosa, Nhut-Minh Ho, and Weng-Fai Wong

Algorithm 1 Algorithm for Sensitivity Analysis
1: procedure Sensitivity(I, Ie , P, REP)
▷ I : Symbolic variables for inputs
▷ Ie : Symbolic variables for inputs marked with error
▷ P : List of all paths
▷ REP : Number of random tests, N : Number of subplots

2: approximable_var ← []
3: non_approximable_var ← []
4: inp_sensitivity ← []
5: Let ev : I → Ie ▷ Get corresponding error variable
6: Let θ : (I ∪ Ie) → IR ▷ θ gets the concrete value of

a symbolic variable
7: for each p ∈ P do ▷ For each path
8: Let πp be the path condition
9: Let πpe be the path condition with error
10: ξ ← дet_symbolic_error_expressions(p)
11: for each v ∈ I do
12: θ (v) ← дet_concrete_input(πp ,v)
13: inp_sen[v] ← 0 ▷ Tracks input sensitivity
14: for each ε ∈ ξ do ▷ For each symbolic exp.
15: is_approximable ← FALSE
16: Plot ← []
17: for each v ∈ I do ▷ For each symbolic input
18: for each ve ∈ Ie do
19: θ (ve) ← 0 ▷ Reset all input errors
20: v_error ← ev(v) ▷ Select error var. of v
21: for 1 ... REP do
22: θ (v_error) ← random(0...1)
23: if (θ ⊢ πpe) then ▷ Input with error

still satisfy path condition
24: oute = εθ ▷ Apply input and error

to current expression
25: Plot[θ (v_error)] ← oute
26: inp_sens[v] ← inp_sen[v] + 1
27: Plot ← Sort(Plot) ▷ Sort by input error
28: SubPlots ← Split(Plot ,N) ▷ Divide

equally into N sub groups
29: C ← []
30: for each s ∈ SubPlots do
31: C ← linear_regression_coefficient(s)
32: if Max(C) ≤ 1 then
33: is_approximable = TRUE
34: x = дet_variable_o f _expression(ε)
35: if is_approximable == TRUE then
36: approximable_var .insert(x)
37: else
38: non_approximable_var .insert(x)
39: Print(approximable_var) ▷ Output results
40: Print(non_approximable_var)
41: for each v ∈ inp_sensitivity do
42: Print(inp_sen[v] ÷ (REP × sizeo f (ξ)) × 100%)

5 Evaluation
5.1 Experimental Configuration
To the best of our knowledge, currently available automatic
approximation tools do not provide path sensitive approxima-
tion information. Therefore, to evaluate the effectiveness of
ApproxSymate against existing tools, we evaluated its ability
to correctly classify program variables as approximable/non-
approximable for the most likely program path [15, 28, 29].
The need to compare with multiple tools arises from the
fact that there is no single “ground truth” for approximation
defined for programs. REP was set to 10 by default but can
be changed. We found that taking one linear regression coef-
ficient was sufficient for comparison, so N = 1. We observed
through empirical tests that these values were sufficient for
our evaluation.

5.1.1 Path Probability and Depth
ApproxSymate does not rank execution paths but instead al-
lows the user to decide which paths should be approximated.
However, ApproxSymate produces a non-approximable/appr-
oximable classification for each program path while other
tools do not. Therefore, for comparison purposes, we used
path probability and depth to determine the most likely pro-
gram path with the assumption that the results of other tech-
niques are most likely related to this path. We observed that
shorter paths often correspond to paths with error conditions
while longer paths generate expressions for more program
variables. Thus we selected the longest path with the great-
est probability as the most likely execution path. Our path
probability analysis uses LLVM’s branch probability analysis.
The probability for a path is obtained by multiplying edge
probabilities of all the control-flow edges executed by a path.
Other than the probability score, our system also outputs
the length of the path, i.e., the depth of path in execution
tree. While we used this method for comparison purposes,
users are free to use other ways of selecting which path(s)
to approximate.

5.2 Comparison with Approximation Tools Against
Manually-Annotated Benchmarks

EnerJ is a framework which provides programmers with type
qualifiers to specify approximate data in Java programs [32].
EnerJ evaluates benchmarks which are manually annotated
with their @approx annotation to achieve energy savings
of up to 38%. The benchmarks that were compared against
EnerJ are given in Table 1. We used the C++ versions of
their benchmarks, translating others into C to compare our
classification against EnerJ’s, assuming that their manual
annotations are correct. Our evaluation criteria is based on
true positive, true negative, false positive, and false negative
counts. An agreement between ApproxSymate and EnerJ
on the approximability of a particular variable is considered
as a true positive. Agreement on the non-approximability

ApproxSymate: Path Sensitive Program Approximation LCTES ’19, June 23, 2019, Phoenix, AZ, USA

Table 1. Benchmarks compared with EnerJ

Application Description Error Metric LoC
SOR Scientific kernels Mean entry diff. 42

SparseMatMult from the SciMark2 Mean normalized diff. 42
MonteCarlo benchmark Normalized diff. 59

LU Mean entry diff. 87
FFT Mean entry diff. 168

Raytracer 3D image renderer Mean pixel diff. 184
ImageJ Raster image Mean pixel diff. 336

manipulation

of a variable is considered as a true negative. When EnerJ
considers a variable to be approximable contradicting the
result of ApproxSymate, we count this as a false negative,
while the opposite is a false positive. Based on these counts
we consider the following evaluation criteria:
• Accuracy = tp+tn

tp+tn+fp+fn
where tn , fn , tp , fp are the num-

bers of true negative, false negative, true positive, and
the false positive, respectively. Thismeasure howmuch
our classification matches with EnerJ’s classification.
• Precision = tp

tp+fp
measures the frequency with which

ApproxSymate indicates a variable is approximable
when it is not (according to EnerJ).
• Recall = tp

tp+fn
is the frequency with which Approx-

Symate indicates a variable is not approximable when
it is (according to EnerJ).

Because our comparison is with a binary classification
of approximability (which is path insensitive), considering
ApproxSymate’s classification for the most likely path for
comparison also helps to overcome the problem of some
variables not appearing along some program paths. We also
assumed that the sensitivity of program variables when us-
ing smaller input sizes can be extrapolated to larger input
sizes and loop iterations. Hence, we used reduced input sizes
and loop trip counts in some of the benchmarks to manage
KLEE’s runtime when the same computations are applied to
the input units. These assumptions are justified by the results
and our goal to observe only the behavior of the program to
error (for classification). To obtain the precise error amounts
the framework should be run with the original parameters.

5.2.1 Results
Table 2 shows the results of our comparison with EnerJ as
well as the approximation tools ASAC and PAC [28, 29].
ASAC is a dynamic testing tool which perturbs program
variables during program execution to test their sensitivity
to error. PAC is a static tool which relies on data flow anal-
ysis to propagate the error at the output to other program
variables. Unfortunately, both these tools are not publicly
available. Therefore, the numbers were obtained from the
respective publications. As seen from the table, ApproxSy-
mate outperforms both these tools in accurately classifying

 0

 0.2

 0.4

 0.6

 0.8

 1

SO
R

Sp
ar

se
M
at

M
ul

M
on

te
ca

rlo LU FF
T

Ra
yt

ra
ce

r

Im
ag

eF
ill

R
e
la

ti
v
e
 o

u
tp

u
t

e
rr

o
r

b
e
tw

e
e
n
 E

n
e
rj

 a
n
d

 A
p

p
ro

x
S

y
m

a
te Mild Medium Aggressive

Figure 8. Relative output error between our result and EnerJ
measured on different levels of approximation. The y-axis
represent the ratio: ApproxSymate_error ÷ EnerJ_error using
the corresponding error metric given in Table 1.

the approximability of program variables. PAC reports the
same classification of variables as EnerJ for Monte-Carlo.
The benchmark is small and the difference boiled down to a
single variable. How PAC managed to classify this variable
cannot be explained by the description of the tool in the
paper. In any case, ApproxSymate performs well in precision
- it does not incorrectly identify non-approximable variables
as approximable. This is important for safe execution of the
program. The recall numbers can be explained by the conser-
vative approach taken by ApproxSymate in favor of safety -
it does not allow error to cause a change in program path.
During our evaluation, apart from inputs, we also mark

constants as being tolerable to error. EnerJ also uses en-
dorsements to convert approximate data to precise. In our
evaluation, we disregarded these points, since such a transi-
tion cannot be detected automatically as it requires specific
domain knowledge. This is also the case with array indices
and pointers which ApproxSymate strictly assumes cannot
be approximated - approximating them can easily lead to un-
defined program behavior. Therefore variables that are used
in calculating pointers or array indices are also deemed not
approximable by ApproxSymate. However in EnerJ these can
be approximable since endorsements can be used to transition
them into precise variables.

Table 3 presents the timing information of ApproxSymate
obtained on an Intel Xeon Gold 5118 CPU @ 2.30GHz with
32K L1i and L1d and 1024K L2 caches. ASAC reports timings
of up to 30 minutes to run [28]. PAC, being a static technique
implemented in GCC, reports much faster timing [29] of
a few seconds. ApproxSymate produced better results in
shorter or same amount of time. We are unable to compare
the timings directly as we were unable to execute these tools
on our (newer) platform.

LCTES ’19, June 23, 2019, Phoenix, AZ, USA Himeshi De Silva, Andrew E. Santosa, Nhut-Minh Ho, and Weng-Fai Wong

Table 2. Comparison results using EnerJ benchmarks

Benchmark ApproxSymate ASAC [28] PAC [29]
tp fp tn fn Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

SOR 8 0 10 0 100.0% 100.0% 100.0% 88.0% 83.0% 100.0% 92.0% 100.0% 85.7%
SparseMatMult 4 0 13 0 100.0% 100.0% 100.0% 88.0% 50.0% 100.0% 100.0% 100.0% 100.0%
MonteCarlo 2 0 4 1 85.7% 100.0% 66.7% 80.0% 67.0% 100.0% 100.0% 100.0% 100.0%

LU 10 0 15 2 92.6% 100.0% 83.3% 86.0% 88.0% 88.0% 90.0% 100.0% 80.0%
FFT 15 0 25 2 95.2% 100.0% 88.2% 87.0% 88.0% 88.0% 77.0% 100.0% 56.3%

Raytracer 22 1 12 0 97.1% 95.7% 100.0% - - - - - -
ImageJ 7 0 7 0 100.0% 100.0% 100.0% - - - - - -
Average 95.8% 99.4% 91.2% 85.8% 75.2% 95.2% 91.8% 100.0% 84.4%

Table 3. Timing results

Benchmark # of Ext. KLEE Sens. Ana. Total
paths time (s) time (s) time (s)

SOR 1 0.04 2.65 2.69
SparseMatMult 1 0.06 2.47 2.53
MonteCarlo 2 0.06 2.00 2.06

LU 27 1.24 3.03 4.27
FFT 1 0.07 4.59 4.66

Raytracer 7 10.52 8.40 18.92
ImageJ 20 0.26 5.22 5.48

5.2.2 Error Measurement
We use a similar approach as EnerJ to measure the influence
of error injection on the set of approximable variables that
were determined by ApproxSymate. The error injection for
floating point arithmetic is the same as EnerJ’s float type.
We used the MPFR library to change the mantissa bitwidth
of the approximable variables to 8 bits (aggressive), 12 bits
(medium), 16 bits (mild) [12]. For integer type, we did not use
the same mechanics as EnerJ’s detailed simulation (DRAM
refresh, arithmetic timing error, etc.). Instead, we use a sim-
pler approach similar to ASAC [28]: randomly flipping a
single bit when a value is read with a probability of 10−2 for
aggressive, 10−3 for medium and 10−4 for mild approxima-
tion. We re-measured the EnerJ’s result according to their
annotation in the source code, and compare against our out-
put error. The relative output error of program produced by
our approach is then divided by the output error from EnerJ
to show the relative error between the two approaches. Note
that EnerJ’s error is always scaled to 1.0 in each benchmark
and each approximation level. This relative error is reflected
in Figure 8. Although ApproxSymate has a different accuracy
for LU and Raytracer, their error profiles are similar. For LU
this is because while arrays can be approximated in Java, we
cannot approximate pointer variables used for arrays in C
as this may cause the program to crash. For Raytracer the
difference in accuracy does not have a drastic effect on the
final output error.

5.2.3 Path-specific Accuracy
There are four benchmarks in Table 3 that have multiple
paths. Figure 9 shows the accuracy of these for all paths
found by KLEE when compared to EnerJ’s manual annota-
tion. We notice that shorter paths tend to have less accuracy.
Shorter paths also tend to correspond to error conditions.
Therefore in practice, depending on the output error thresh-
old, either shorter or longer paths or even a combination can
be selected for approximation.

5.3 Comparison with Floating Point Precision
Tuning

Floating point precision tuning tools exploit the many bits
used to represent the mantissa in the floating point number
format [15, 30]. Using dynamic search techniques they aim
to find the minimum number of mantissa bits of the program
variables required to satisfy an error threshold. We ran the
tool described in [15] with a selected error threshold to gen-
erate the precision of program variables for benchmark pro-
grams. For comparison with ApproxSymate’s classification
we sort the variables by required precision bits and classify
the variables as approximable and non-approximable based
on it. The higher the precision required by a variable, the
lower its ranking of being approximable. The approach used
by ApproxSymate is the same as in Section 5.2.

 0

 20

 40

 60

 80

 100

1 2

A
c
c
u
ra

c
y

Montecarlo paths

Selected Path

 0

 20

 40

 60

 80

 100

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

A
c
c
u
ra

c
y

Imagej paths

Selected Path

 0

 20

 40

 60

 80

 100

1 3 5 7

A
c
c
u
ra

c
y

Raytracer paths

Selected Path

 0

 20

 40

 60

 80

 100

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

A
c
c
u
ra

c
y

LU paths

Selected Path

Figure 9. Path-specific accuracy measurement

ApproxSymate: Path Sensitive Program Approximation LCTES ’19, June 23, 2019, Phoenix, AZ, USA

Table 4.Comparison results with search-based floating point
precision tuning of [15]

Program LoC Acc. Total time (s) FPTuning
(Benchmark) (KLEE T. + Sens. T) Time (s)
dct (libjpeg) 343 100.0% 13 1

(4.17 + 8.36)
ep (NAS) 424 69.7% 194 29388

(162.60 + 31.65)
blackscholes 517 79.6% 34 3
(PARSEC) (14.20 + 19.45)
cg (NAS) 1087 76.5% 4 4614

(0.27 + 3.57)
lbm (PARSEC) 1324 81.5% 916 10156

(914.30 + 2.15)

Table 4 shows the information of the benchmarks that
were used when comparing against floating point precision
turning. It also gives the accuracy results using the same
measure described in Section 5.2 (on the same platform). In
general, ApproxSymate performs well in the comparison
with precision tuning. The differences can be attributed to
the varying technique of the two tools - ApproxSymate com-
putes sensitivity to input error while precision tuning uses
the actual output error to refine the variables bit width - and
inputs. Table 4 also shows the time taken for these bench-
markswith both tools (on the same platform as in Section 5.2).
As can be seen, floating point precision tuning can be much
more expensive in time when compared to ApproxSymate.

5.4 Approximating Program Components
Compared to actual execution, symbolic execution is slower
since it maintains symbolic state information, and performs
constraint solving on the symbolic information (path condi-
tion) to decide branch satisfiability. While techniques men-
tioned in Section 5.2 can be used to manage the runtime,
another possible approach is to break up larger programs
and approximate smaller units such as methods, code blocks
etc. instead of analyzing the program in its entirety. In this
case the variables at the input of these units (eg- method
arguments) have to be marked as symbolic and tracked for er-
ror. To handle function calls an approach similar to handling
math function calls is used (see Section 4.2).

We applied this approach to the qurt method of the qurt
program from the SNU-RT benchmarks. A simplified version
of the code is shown in Figure 2. The variables a, b and c
were made symbolic and b was marked as having error. After
obtaining the symbolic expressions, the sensitivity analysis
was run on each path for the input sets provided in the bench-
mark. ApproxSymate detected the if block is very sensitive
to error in b, taking the same path when error was intro-
duced only 2% of the time. The else-if block was shown
to be the most sensitive to error in b. This is understandable

0 100 200 300 400 500

Number of inputs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

at
iv

e
ou

tp
ut

er
ro

r

ApproxSymate

Regular

Figure 10. Impact of considering program paths in approxi-
mating the qurt benchmark.

since error in b will very likely cause a path change in this
case. The else block was the only path shown to be tolerant
to error.
Figure 10 shows two sets of error measurements for 500

experiments involving the qurt benchmark. In one set, er-
rors were injected into the variable b in the else block of
Figure 2 which was deemed to be approximable by Approx-
Symate. In the other set of experiments, errors injected into b
everywhere in the code of Figure 2 without any regard given
to program path. Clearly, the latter produces more errors.
In some rare cases when testing with more random inputs,
not considering program paths can cause a drastic error of
> 700% while ApproxSymate always gave output errors that
are ≤ 100% even in these extreme cases. This again high-
lights the importance of applying path information when
performing program approximation.

6 Related Work
Techniques such as approximate circuitry and memories,
voltage scaling etc. that achieve energy savings through ap-
proximation at the hardware level have been proposed [13,
16, 18, 22, 25]. Furthermore, there are software tools which
allow programmers to specify error-resilient sections in their
code [8, 32]. Attempts have also been made to try and re-
duce the burden of adding manual annotations on program-
mers [24]. However, here we focus on approaches that auto-
matically identify such program components.
ASAC and ApproxIt are frameworks which employ dy-

namic testing methods to automatically extract approxima-
tion information from programs [28, 35]. Precision tuning
is also a dynamic approach which has become popular spe-
cially for floating point programs [15, 19, 30]. As is the case
with other dynamic approaches they cannot possibly cover
all possible tests due to the computational complexity [9, 27].
ApproxSymate reduces this margin of error by statically pro-
ducing symbolic error expressions for variables and path

LCTES ’19, June 23, 2019, Phoenix, AZ, USA Himeshi De Silva, Andrew E. Santosa, Nhut-Minh Ho, and Weng-Fai Wong

condition for testing. PAC is a static technique for approx-
imation roughly based on data flow analysis [29]. While it
may be faster, the approximations produced by it are coarse
grain. Given a program with a reliability specification and
a hardware specification which provides the reliability and
accuracy for approximate instructions and memory, Chisel
selects which operations to run on the hardware to minimize
energy consumption [20]. A significance analysis methodol-
ogy using interval arithmetic and algorithmic differentiation
to automatically rank the significance of variables to pro-
gram output has been developed [34]. Interval arithmetic
is prone to overestimation due to the dependency problem.
However, to the best of our knowledge none of these frame-
works take into consideration the effect of error on program
path during approximation. Leveraging this information can
possibly lead to a new dimension of program approximation.

7 Discussion and Future Work
While there is no widely accepted definition of a variable’s
approximability, or how classifications of approximability
should be obtained, many existing tools make use of the rela-
tionship between a variable’s error and the output’s error to
determine its approximability. ApproxSymate operates differ-
ently in that it primarily observes the relationship between
a variable’s error with its input’s errors. To examine this
difference in more detail, consider the following example;

// x - input variable , z - output variable

y = x 3;

z = y + 2;

Existing techniques determine x and y’s approximability by
their relationship to z. Then here, suppose y can be deemed
approximable (since z is linear iny) and x , non-approximable.
Now, if y is computed approximately (line 2), x too will be
approximated (according to EnerJ’s type system which we
assumed) and will lead to unexpected errors in z, since x
should not be approximated. This is an example of when y is
sensitive to x (input) and thus should not be approximated
even though z (output) is not sensitive to y. Similarly an
example where the converse it true can also be constructed.
Therefore, ideally, a variable’s approximability should be
determined based on its sensitivity to both the input and
output. Still, empirically, our results indicate that the both
directions of analysis generally yield similar results. More-
over our framework is robust in the following way: if the
relative error at the output is known, or provided by the user,
the output relative error expression can be analyzed first to
determine bounds for the input relative errors. Then these
bounds can be used when analyzing the relative error ex-
pressions of intermediate variables enabling a bi-directional
analysis with little overhead. Furthermore, to observe the
effect of error in a particular program variable on the overall
output, all that needs to be done is to mark that variable as

symbolic and erroneous, and execute the program with our
framework.

We chose to use relative error in our symbolic calculation
because we found that many approximate applications ex-
press error as thresholds, such as “5% error in variable x”.
Division by zero in relative error is handled empirically by
the sensitivity analysis.

Unfortunately, scalability to larger applications is an issue
that plagues any technique that uses symbolic execution.
There exists a trade-off between execution time and the
detail of the analysis. This is also true of other similar tools.
To control the exponential escalation of analysis time due
to large loop trip counts, we have also implemented a loop
breaking mechanism which symbolically estimates the error
for loops without executing it. However, it is not working
as well as we had expected. We are currently working on
improving it.

8 Conclusion
In this work we presented ApproxSymate - a framework
which combines a static and dynamic approach to determine
approximability in embedded software, safely and efficiently.
As far as we know, our work is the first to make use of sym-
bolic execution for program approximation. We augmented
the symbolic virtual machine KLEE with a novel shadow
symbolic expression mechanism that tracks the relationship
between the output and input errors. It also produces the
symbolic expressions for path conditions, thus providing the
ability to study the effect of program path on approxima-
tion error - an aspect previously ignored. We showed that
program paths can significantly affect the outcome of approx-
imation. We introduced a sensitivity analysis that evaluates
the symbolic expressions to ascertain whether variables, in-
puts and paths can be approximated. We also showed how
floating point code can be dealt with. Used this way, our
experiments show that it performs as well or better com-
pared with other state-of-the-art tools for identifying ap-
proximable variables. ApproxSymate works well for small
to medium size programs found in embedded computing
where there are many use-cases for approximation. We also
believe that it can be scaled for larger code through compo-
sition. Furthermore, we believe that the general approach
of ApproxSymate opens up new possibilities for the use of
symbolic execution as a technique for reasoning about and
discovering opportunities in existing code for the purpose
of approximate computing. It will be a useful addition to the
set of tools for approximation.

A Artifact Appendix
A.1 Abstract
This artifact contains all the executables of the framework de-
scribed in the paper "ApproxSymate: Path Sensitive Program

ApproxSymate: Path Sensitive Program Approximation LCTES ’19, June 23, 2019, Phoenix, AZ, USA

Approximation using Symbolic Execution". This primarily in-
cludes the augmented version of the symbolic execution
engine Klee and the Sensitivity Analysis. It also contains
benchmarks which have been modified to work with sym-
bolic execution as well as shell scripts to run them in the
framework. The artifact can support the accuracy, precision
and recall of approximability classification results presented
in the paper.

A.2 Artifact Check-list (Meta-information)
• Algorithm: Sensitivity Analysis
• Program: Benchmarks used by tools Enerj and fptun-
ing which have been modified to run with ApproxSy-
mate is included. To compare ApproxSymate’s classifi-
cation results, the benchmarkswith annotations/bitwidth
results can be downloaded from their respective repos-
itories.
• Compilation: Compiling the augmentedKlee requires
LLVM-3.4, clang-3.4, stp and klee-uclib. The Sensitiviy
Analysis does not require compilation but requires cinpy
which needs to compile tinycc. All of these are down-
loaded, compiled and included with the artifact.
• Binary: Binaries for the augmented Klee are included.
• Run-time environment: Ubuntu 16.04 with Python3
• Hardware: Timing resultswere obtained on IntelXeon
Gold 5118 CPU @ 2.30GHz with 32K L1i and L1d and
1024K L2
• Execution: Run the docker image with multiple cpus
• Metrics: Classification of approximability of program
variables are reported which can be then used to ob-
tain the accuracy, precision and recall against other
Enerj and fptuning classifications.
• Output: The output is the classification of approxima-
bility of program variables. Result is the accuracy, pre-
cision and recall of the classification against Enerj and
fptuning.
• Experiments: Pull the docker image and run it.
• Howmuch disk space required (approximately)?: 3 - 4
GB
• How much time is needed to prepare workflow (ap-
proximately)?: 0.5 hours
• How much time is needed to complete experiments
(approximately)?: 3 - 4 hours
• Publicly available?: Yes
• Workflow framework used?: No

A.3 Description
A.3.1 How Delivered

1. Pull the docker image with:
docker pull himeship/approxsymate:v3

2. Run the image with:
docker run -ti --cpus="<N>" himeship/approxsymate:v3
Replace <N> with the number of cpus for the docker image.
Using more cpus will improve the speed of evaluation of the
sensitivity analysis.

Path #1
Path #2

Symbolic expressions
for variables and path
condition (with and w/o

error)

benchmark.c
(annotated with
calls to KLEE)

Run Augmented
KLEE with arguments to
generate expressions &

path conditions with error

Compile to
bitcode with
LLVM/Clang

benchmark.bc

Sensitivity
Analysis

Path #n
Approximability classification

for the longest path with
higherst probability

Figure 11. Shell script workflow

A.3.2 Hardware Dependencies
Hardware dependencies for Docker CE.

A.3.3 Software Dependencies
Requires Docker CE.

A.4 Installation
All software and dependencies required to run ApproxSymate have
been built and installed into the docker image that can be obtained
following the instructions in Section A.3.1. Therefore, only the
installation of docker is required for this artifact. Instructions for
installing docker can be found at https://docs.docker.com/install/.

Once the docker image is run, the installation of the augmented
Klee, sensitivity analysis, and their dependencies can be found in
the /home/approxsymate folder.

A.5 Experiment Workflow
The shell script for each benchmark will generally execute the
workflow shown in Figure 11.

A.6 Evaluation and Expected Result
To evaluate a benchmark with ApproxSymate, after running the
docker image as described in Section A.3.1, run the shell script
located inside the folder for that benchmark. All benchmarks can
be found in the /home/approxsymate/benchmarks folder.

For example, to run the Montecarlo benchmark, execute the
following,

1. cd /home/approxsymate/benchmarks/Enerj/montecarlo
2. ./run_montecarlo.sh
Running the shell script will produce the approximability classifi-

cations for the given benchmark. To obtain the accuracy, precision
and recall metrics, this classification must be compared against
the classifications of the manually annotated code of Enerj or the

https://docs.docker.com/install/

LCTES ’19, June 23, 2019, Phoenix, AZ, USA Himeshi De Silva, Andrew E. Santosa, Nhut-Minh Ho, and Weng-Fai Wong

bitwidths of the floating point precision tuning tool. These results
are available at the following links.

1. Enerj: https://bitbucket.org/adrian/enerj-apps/get/tip.tar.bz2
2. fptuning: https://bitbucket.org/minhhn2910/c2mpfr/src/

For convenience, our evaluation of classifications against these tools
can be found at: https://github.com/ApproxSymate/evaluation.

A.7 Notes
Issues related to the project can be submitted at our Github project
- https://github.com/ApproxSymate.

References
[1] Woongki Baek and Trishul M Chilimbi. 2010. Green: a framework for

supporting energy-conscious programming using controlled approxi-
mation. In ACM Sigplan Notices, Vol. 45. ACM, 198–209.

[2] Roberto Baldoni, Emilio Coppa, Daniele Cono DâĂŹelia, Camil Deme-
trescu, and Irene Finocchi. 2018. A survey of symbolic execution
techniques. ACM Computing Surveys (CSUR) 51, 3 (2018), 50.

[3] Ian Buck. 2015. Nvidia’s next-gen Pascal GPU architecture to provide
10x speedup for deep learning apps. (2015).

[4] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs.. In OSDI, Vol. 8. 209–224.

[5] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Soft-
ware Testing: Three Decades Later. Comm. ACM 56, 2 (Feb. 2013),
82–90. https://doi.org/10.1145/2408776.2408795

[6] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C Rinard.
2012. Proving acceptability properties of relaxed nondeterministic
approximate programs. ACM SIGPLAN Notices 47, 6 (2012), 169–180.

[7] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C Ri-
nard. 2013. Verified integrity properties for safe approximate program
transformations. In Proceedings of the ACM SIGPLAN 2013 workshop
on Partial evaluation and program manipulation. ACM, 63–66.

[8] Michael Carbin, Sasa Misailovic, and Martin C Rinard. 2013. Verify-
ing quantitative reliability for programs that execute on unreliable
hardware. In ACM SIGPLAN Notices, Vol. 48. ACM, 33–52.

[9] Michael Carbin and Martin C Rinard. 2010. Automatically identifying
critical input regions and code in applications. In Proceedings of the
19th international symposium on Software testing and analysis. ACM,
37–48.

[10] Vinay K Chippa, Srimat T Chakradhar, Kaushik Roy, and Anand Raghu-
nathan. 2013. Analysis and characterization of inherent application
resilience for approximate computing. In Proceedings of the 50th Annual
Design Automation Conference. ACM, 113.

[11] Vinay K Chippa, Debabrata Mohapatra, Anand Raghunathan, Kaushik
Roy, and Srimat T Chakradhar. 2010. Scalable effort hardware design:
Exploiting algorithmic resilience for energy efficiency. In Proceedings
of the 47th Design Automation Conference. ACM, 555–560.

[12] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier,
and Paul Zimmermann. 2007. MPFR: A Multiple-precision Binary
Floating-point Librarywith Correct Rounding. ACMTrans. Math. Softw.
33, 2, Article 13 (June 2007). https://doi.org/10.1145/1236463.1236468

[13] Vaibhav Gupta, Debabrata Mohapatra, Sang Phill Park, Anand Raghu-
nathan, and Kaushik Roy. 2011. IMPACT: imprecise adders for low-
power approximate computing. In Proceedings of the 17th IEEE/ACM
international symposium on Low-power electronics and design. IEEE
Press, 409–414.

[14] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin,
Trevor Mudge, and Richard B Brown. 2001. MiBench: A free, commer-
cially representative embedded benchmark suite. In Workload Charac-
terization, 2001. WWC-4. 2001 IEEE International Workshop on. IEEE,
3–14.

[15] Nhut-Minh Ho, Elavarasi Manogaran, Weng-Fai Wong, and Asha
Anoosheh. 2017. Efficient floating point precision tuning for approxi-
mate computing. In Design Automation Conference (ASP-DAC), 2017
22nd Asia and South Pacific. IEEE, 63–68.

[16] Andrew B Kahng and Seokhyeong Kang. 2012. Accuracy-configurable
adder for approximate arithmetic designs. In Design Automation Con-
ference (DAC), 2012 49th ACM/EDAC/IEEE. IEEE, 820–825.

[17] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In Proceedings
of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization. IEEE Computer Society,
75.

[18] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G
Zorn. 2012. Flikker: saving DRAM refresh-power through critical data
partitioning. ACM SIGPLAN Notices 47, 4 (2012), 213–224.

[19] Harshitha Menon, M Lam, D Kuffour, Markus Schordan, S Llyod,
KathrynMohror, and Jeff Hittinger. 2018. ADAPT: Algorithmic Differen-
tiation for Floating-Point Precision Tuning. Technical Report. Lawrence
Livermore National Lab.(LLNL), Livermore, CA (United States).

[20] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C
Rinard. 2014. Chisel: Reliability-and accuracy-aware optimization of
approximate computational kernels. In ACM SIGPLAN Notices, Vol. 49.
ACM, 309–328.

[21] Subrata Mitra, Manish K Gupta, Sasa Misailovic, and Saurabh Bagchi.
2017. Phase-aware optimization in approximate computing. In Pro-
ceedings of the 2017 International Symposium on Code Generation and
Optimization. IEEE Press, 185–196.

[22] Sparsh Mittal and Jeffrey S Vetter. 2016. A survey of techniques for
modeling and improving reliability of computing systems. IEEE Trans-
actions on Parallel and Distributed Systems 27, 4 (2016), 1226–1238.

[23] M-E Nilsback and Andrew Zisserman. 2006. A visual vocabulary for
flower classification. In Computer Vision and Pattern Recognition, 2006
IEEE Computer Society Conference on, Vol. 2. IEEE, 1447–1454.

[24] Jongse Park, Hadi Esmaeilzadeh, Xin Zhang, Mayur Naik, and William
Harris. 2015. Flexjava: Language support for safe and modular approx-
imate programming. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ACM, 745–757.

[25] Ashish Ranjan, Arnab Raha, Swagath Venkataramani, Kaushik Roy,
and Anand Raghunathan. 2014. ASLAN: Synthesis of approximate
sequential circuits. InDesign, Automation and Test in Europe Conference
and Exhibition (DATE), 2014. IEEE, 1–6.

[26] Martin Rinard. 2006. Probabilistic accuracy bounds for fault-tolerant
computations that discard tasks. In Proceedings of the 20th annual
international conference on Supercomputing. ACM, 324–334.

[27] Michael Ringenburg, Adrian Sampson, Isaac Ackerman, Luis Ceze,
and Dan Grossman. 2015. Monitoring and debugging the quality of
results in approximate programs. In ACM SIGPLAN Notices, Vol. 50.
ACM, 399–411.

[28] Pooja Roy, Rajarshi Ray, Chundong Wang, and Weng Fai Wong. 2014.
Asac: Automatic sensitivity analysis for approximate computing. In
ACM SIGPLAN Notices, Vol. 49. ACM, 95–104.

[29] Pooja Roy, Jianxing Wang, and Weng Fai Wong. 2015. PAC: program
analysis for approximation-aware compilation. In Compilers, Architec-
ture and Synthesis for Embedded Systems (CASES), 2015 International
Conference on. IEEE, 69–78.

[30] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James
Demmel, William Kahan, Koushik Sen, David H Bailey, Costin Iancu,
and David Hough. 2013. Precimonious: Tuning assistant for floating-
point precision. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. ACM, 27.

[31] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati,
and Scott Mahlke. 2013. Sage: Self-tuning approximation for graphics
engines. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 13–24.

https://bitbucket.org/adrian/enerj-apps/get/tip.tar.bz2
https://bitbucket.org/minhhn2910/c2mpfr/src/
https://github.com/ApproxSymate/evaluation
https://github.com/ApproxSymate
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/1236463.1236468

ApproxSymate: Path Sensitive Program Approximation LCTES ’19, June 23, 2019, Phoenix, AZ, USA

[32] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-
gasam, Luis Ceze, and Dan Grossman. 2011. EnerJ: Approximate data
types for safe and general low-power computation. In ACM SIGPLAN
Notices, Vol. 46. ACM, 164–174.

[33] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and
Martin Rinard. 2011. Managing performance vs. accuracy trade-offs
with loop perforation. In Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software
engineering. ACM, 124–134.

[34] Vassilis Vassiliadis, Jan Riehme, Jens Deussen, Konstantinos Parasyris,
Christos D Antonopoulos, Nikolaos Bellas, Spyros Lalis, and Uwe
Naumann. 2016. Towards automatic significance analysis for approx-
imate computing. In Code Generation and Optimization (CGO), 2016
IEEE/ACM International Symposium on. IEEE, 182–193.

[35] Qian Zhang, Feng Yuan, Rong Ye, and Qiang Xu. 2014. Approxit: An ap-
proximate computing framework for iterative methods. In Proceedings
of the 51st Annual Design Automation Conference. ACM, 1–6.

	Abstract
	1 Introduction
	1.1 A Motivating Example

	2 Background
	2.1 Symbolic Execution
	2.2 KLEE and LLVM

	3 Approach
	3.1 Overview
	3.2 Generating Symbolic Error Expressions

	4 Implementation
	4.1 Extending KLEE
	4.2 Working with Floating Point
	4.3 Sensitivity Analysis

	5 Evaluation
	5.1 Experimental Configuration
	5.2 Comparison with Approximation Tools Against Manually-Annotated Benchmarks
	5.3 Comparison with Floating Point Precision Tuning
	5.4 Approximating Program Components

	6 Related Work
	7 Discussion and Future Work
	8 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-list (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Notes

	References

